
Spatial measures of software complexity

C.R.Douce
ITRI, University of Brighton, Brighton, Sussex, UK.

P.J.Layzell
Software Ivianagement Group, UMIST, Manchester, UK.

J.Buckley
University of Limerick, Limerick, Ireland

January 1999

Abstract

This paper introduces a set of simple software complexity metrics
that has been inspired by developments within cognitive psychology.
Complexity measures are constructed by analysing the distance be­
tween components of a program. The greater the distance between
program fragments, the greater the resulting spatial complexity of a
program. Suggestions are made as to how spatial complexity measures

can be tailored to individual programmer teams. Using these metrics,
the complexity of a software system can be adjusted using subjective
measures of programmer experience and knowledge. A related set of

simple object-oriented metrics based around the same principles of are
also suggested. Finally, a number of further research possibilities are
suggested.

Index Terms : Software metrics, software complexity, psychological com­
plexity, spatial reasoning, object-oriented programming, human-factors in

software engineering, programmer experience, software maintenance.

1 Introduction

There exists the belief within engineering that if something can be measured,
it can be controlled. This belief is no more evident than in the field of

software engineering, where a large number of different software metrics have

proliferated. One of the most important metric to receive attention has been
that of the complexity metric. The motivation is simple : the more complex

a software sy stem is, the more difficult the software is to comprehend and
maintain. If'complexity' can be measured in some way, then we step towards

managing and understanding software production and correction. Software

complexity has been measured in a number of different ways. The simplest

1

of all software complexity measurements is the number of lines of code; the
greater the number of lines, the more sophisticated a software system will
be. Finer measurement of complexity includes simple counts of program
statements and analysis of a programs control structures [1, 2). Studying
the source listing of software has caused two forms of measures to be defined,
control flow complexity and data flow complexity.

Recently, object-oriented metrics has been an area of increasing inter­
est, not only from the understanding that data and procedure are brought
together and so necessitate the formation of new metrics, but also from a
practical perspective. Object-oriented languages are becoming increasingly
popular as a vehicle for the construction of significant software systems.
A number of object-oriented metrics have been proposed by Chiadamber
and Kemerer that attempt to describe the design and complexity of object­
oriented software [3). There are three types of metric, those that relate to
object definitions, those that relate to object attributes or object data items,
and those that relate to object communication or relations. An object defi­
nition metric is a measure of the depth of inheritance, along with a measure
of how many methods are used. Data metrics are metrics that count the
relationships between classes and their member functions.

It can be argued that contemporary software metrics, in part describe
the software but cannot not describe how difficult parts of the software
would be able to be comprehend, modify and change. Empirical software
engineering practitioners have called for empirical assessment of software
engineering practices and approaches; software metrics is one of the ap­
proaches that a software engineer can use [4). Psychological complexity and
software complexity are different but similar conceptions. A program that
is 'psychologically complex' is a program that is difficult to understand. A
program may be difficult to understand and yet still have a small number
of lines, a small number of statements and low levels for certain types of
complexity measure1

. The spatial metrics that follow has been primarily
inspired by theories of working memory [5). Their intention is to measure
psychological complexity simply, and in a way that can be directly related
to the processes that occur during the comprehension of program code.

2 Spatial complexity metrics

Intelligence tests examine a number of cognitive abilities. Verbal ability is
tested. Graphical and textual based tests are used to test induction, and
spatial abilities are tested using mental rotation tasks. Spatial ability is a
term that is used to refer to an individuals cognitive abilities relating to
orientation, the location of objects in space, and the processing of location

1 'Within this paper, a program is considered to be a set of executable instructions that

are written in a textual format.

2

related visual information. Spatial ability has been correlated with the se­
lection of problem solving strategy, and has played an important role in the
formulation of an influential model of working memory.

To successfully solve debugging, maintenance and comprehension tasks,
programmers must posses knowledge of the programming language, have
an understanding of the application domain and develop an appreciation of
the relationships that can exist between the two [6]. Program comprehen­
sion and software maintenance are considered to substantially use program­
mers spatial abilities. To develop an understanding of non-trivial software
systems, a programmer must begin to know where significant parts of the
program lie and have an appreciation of their relevance to other parts of a
program. Important parts of the program lie in the program 'space', which
is the source file. Program space is not only one dimensional, but multidi­
mensional. Software is not simply encoded within a single source file but
can be distributed amongst any number of other files.

The idea of the programming plan or program schema has been used
as an explanatory tool to explain programmer expertise. A plan represents
a conception of some predefined action. In computing terms this can be a
sort or a searching algorithm, for example. Letovsky and Soloway believed
that programming plans can be situated within different parts of a program,
and this can make programs difficult to understand [7]. Wilde et.al. stated
that programs written within an object-oriented language can be especially
difficult to understand since a program plan can be distributed in different
program parts, within classes, methods and object [8).

The more widely distributed the connections between program functions
are, the more complex the relations between the program parts become.
Complexity metrics have historically been of two main types; control flow
oriented and data oriented. Spatial metrics, like the object-oriented metrics
that were described represents a third category of metrics : code relation
metrics.

The following sections present spatial complexity measures of increasing
sophistication, beginning with measures of standard procedural code. This
is followed with a discussion of related measures that can be applied to
object-oriented code, derived primarily from examining the C++ language,
where two main measures are presented; relations that may exist between
classes and relations that may exist between objects.

3 A function complexity metric

Understanding the purpose of program of a significant size necessitates the
understanding the functions or procedures that arc contained within a pro­
gram. The greater the distance in lines of code between related functions, the
more cognitive effort is required to be expended to understand the connec-

3

tions between functions during the initial stages of program comprehension.
If a function definition directly precedes a function call, no searching will
have to be performed to locate portions of source code that are needed to
facilitate understanding.

The function complexity value is derived in two parts; by determining
how many functions are called within a program and calculating the distance
in lines of code that lie between a function call and a functions declaration.
A complexity measure for any particular function can be calculated by,

name

FC = L distancei
i=1

where, name is the number of functions or procedures that are called,
and distance is the number of lines of code from the functions declaration2

•

FC is an absolute value.
The entire spatial complexity for a program can be calculated by sum­

ming the complexity ratings for each function it contains,

n

PC= LFCi
i=I.

where, n is the total number of functions that exist within a program.
Since it is very unlikely that source code is contained within a single

monolithic file, the function complexity value becomes more complex. It
should be calculated by totalling the distance from the function call to the
top of the current file with the line number of the file where the source code
is contained. In the case where no source code for a function can be found,
code is contained within a library which is only available within object form
only, no measure can be produced.

Two levels of granularity can be used to derive a spatial complexity
measure. Firstly there are those that can be measured in lines of code,
and those that are related to the position of the function in relation to
others. A complexity count for the distance in lines of code can be calculated
using multiples. The lower the line of code multiple, the finer the level of
complexity view.

4 Recursive function complexity metric

The simple function complexity metric does not consider that function calls
are very often nested within one another. For example, a programmer may
define multiple functions that are called from a larger 'higher level' function.

2Thc words function and procedure arc used interchangeably. The C convention of
calling everything a function is adopted

4

The recursive metric is a simple progression. As described, a function com­
plexity value calculated using LOC measures is calculated by taking the sum
of all the distances of the functions that it calls. The RFC for a function
is also calculated by summing LOC distances from calling functions. The
distances are the sum of the distances that its children call. Written more
formally,

n

FC = L distancei + FCi
i=l

wheren is the number of functions that can be called, distance is the
number of lines of code from the current function, and FC is the complexity
of the function that is called. The greater the levels of nesting, the more
navigation throughout the source text is required, the greater the spatial
complexity.

5 Object-oriented spatial complexity metrics

The spatial complexity measures can be easily modified to assess the com­
plexity of object-oriented code, just as it can be adopted to other textual
programming languages without any great degree of difficulty. Three simple
measures are proposed. The first of these is very closely related to the func­
tion complexity metrics previously described, while the other two metrics
relate directly to inheritance. There are two main forms of inheritance re­
lations that are used within object-oriented languages, inheritance through
class reuse and inheritance through the construction of compound objects.
A fourth measure, a composite measure, is also given.

5.1 Method location rating

The function location measure is a count of how close the definition of a
member function (or method) is in lines of code to its class declaration.
Within the language C++, the source code for member functions can be
written next to the declarations. If this is the case, spatial complexity of
the software is minimal and comprehension is eased since all the relevant
information is contained within one place. The number of member functions
used within a class affects the function location measure. It is a measure that
is distinctly reminiscent of the weighted methods per class metric (WMC)
as proposed by Chidamber and Kemerer.

Within C++ language, the method location metric is calculated by sum­
ming distances from a methods implementation and description. This is
represented by,

method

1'vf LR = L distancei
i=l

5

method is the number of methods within a class and distance is a function
that returns the number of lines of code. In the Java language, a slightly
different approach can be considered. MLR can be approximated by taking
the position of the current method, to the first line of its class.

5.2 Class relation measure

The class relation measure is a measure of how close an inherited class is situ­
ated to the class which it is inherited from. The greater the distance between
the class declarations, the greater the role spatial memory will play during
object-oriented code comprehension and maintenance. The CRM measure
is considered to be important since the comprehension of inheritance struc­
tures requires an understanding of many different attributes, knowledge of
methods and an appreciation of the differences between classes. Since a pro­
grammer is unlikely to hold all information within working memory at any
one time, especially when performing 'cold comprehension', knowing where
a class resides is considered to be of great importance.

The CRM is calculated by,

class

C KM = L distancei + C R1'vfi

i=l

Where, class is the number of classes that a class inherits, distance is
the number of lines of code from the top of the current class to the top of
an inherited class, and CRM is the distance measure of this class. If classes
are not defined within available code, once again the measure cannot be
derived. If classes are located in more than one file, the number of lines
from the definition of a class to top of the file is summed with the line
position within the file where the definition can be found.

Take the following example: If a class 'a' multiply inherits classes 'b' and
'c', a CRM measure for 'b' and all its subclasses is taken. This is repeated for
class 'b'. A CRM measure for class 'a', is then simply CRM(a) + CRM(b).

5.3 Object relation measure

This metric examines the usage of object types (or declarations) within
classes. The object relation measure is calculated by summing the total
distance in lines of code from each object declaration to their respective
class declaration. Like with the other metrics that have been discussed, if
declarations exist in other files (other than files that are purely intended to
be header files) the rules that have been previously stated still apply. In the
situations where the object definition is unavailable, code distances cannot
calculated. A separate 'not available' or NA value should then be created.

This metric has some similarity with the Chidamber and Kemerer cou­
pling metric, CBO, which stands for coupling between objects. Coupling can

6

be described to be the measure of interdependence between modules. If a
module or object does not access others, then coupling will be low, creating
low interdependence. The ORM further develops the conception of coupling.
An object can be considered to have low spatial coupling, or low spatial in­
terdependence if the used object or function is located near to where it is
defined.

ORM is calculated simply by,

object

0 KM = L distancei
i=l

Where object is number of objects that are used within a class declara­
tion, and distance is the distance in lines of code between its usage position
and the class where it is defined.

5.4 Combining measures

These measures can be combined to produce a composite view of the spatial
complexity of the most significant parts of an object-oriented program. No
other methods of combining the methods have currently been devised apart
from a simple summation operation. Obtaining a composite complexity
measure is one that is considered to be important, but without understand­
ing what the most cognitively demanding operations when manipulating and
working with object-oriented source code are, it is difficult to see how such
a value may relate to program comprehension and maintenance operations.

6 Complexity and Programmer Experience

Maintainers more often than not work on software systems for large amounts
of time. The measures that have been described can be used to obtain an
indication of how complex a software system is for programmers who have
had no experience in using a particular software systems; programmers who
undertake 'cold' comprehension. The complexity scores that can be derived
from software may appear to be impressive but easily become meaningless
to software development managers whose programmers have been working
on a software development for a year or more, for example.

Over a period of months and years, it is safe to assume that programmers
consign different types of information about a software system to memory.
Such information can include data flow, control flow, knowledge of functional
components and problem domain information. Spatial information about a
programs terrain is also held; where information about a particular area of
a large software system can be found as individual programmers become
familiar with particular components of a system.

7

A complexity measure that differs between different groups of program­
mers can be an especially useful tool for cost and time estimation. Measure­
ments about the complexity of particular sections can be weighted using a
subjective knowledge measurement provided by a programmer. This can be
obtained in the form of a percentage. Individual programmers can rate par­
ticular sections of a software system in terms of their familiarity. A rating
of zero percent indicates that a programmer currently has no knowledge of
a particular part of a system, while a maximum one hundred percent rat­
ing suggests that a programmer can recall the position and names of all of
the program segments and reconstruct the key elements directly from mem­
ory. A complexity rating weighted by programmer knowledge can be simply
calculated by subtracting the suggested percentage.

Group measurements for programming can be obtained by calculating
simple averages of all collected data from all members of a programming
team. Over time, subjective knowledge can change or even degrade through
lack of use. To maintain a correct view of programmers experience and
how they affect the complexity measures, subjective measures of knowledge
should be taken at regular intervals to reassess the state of knowledge. These
metrics, when combined with personal adjustments, haw the potential to
provide the software developer with a view of how 'complicated' program
comprehension can be, and indirectly, begin to gauge how costly it can be.

7 Discussion

The spatial metrics conform to many of Weyuker's desirable properties of
complexity measures [9]. Metrics should neither be too coarse or too fine.
In essence, a measure should not rank different programs as being equally
complex. It will also follow that if two programs were joined together, in
some cases, the resulting program will be more complex than the sum of its
parts. It does not follow that in all cases, if statements were re-ordered, a
different measurement will be obtained. It will follow if the function position
is changed.

Further work is needed to understand the relationship between the spa­
tial complexity measurements and cognitive effort needed to understand
program code. Spatial memory is said to play an important role in cogni­
tion, specifically working memory. Baddeley proposes a theory of working
memory that goes further than the simple distinction of short-term and
long-term memory. Evidence from cognitive neuropsychological studies of
the brain damaged gives weight to the conception that spatial processing
involves a particular cognitive system.

The psychological complexity of software goes beyond simple consider­
ations about the relative position of related fragments of software. The
spatial location metrics one describes a very particular view of a software

8

system. Like all metrics, it should be used in combination with others to
obtain a full picture of the sophistication of software.

Code position is a concept that can be expanded and used to create
further metrics. The metrics that have been presented are by no means
perfect. They are in need of refinement. The object-oriented spatial metrics
do not attempt to address additional language features such as multi-tasking
and exception handling, both of which are present within the Java language.
Although no direct consideration has been given to these features, using
the notion of distance functions, metrics can be constructed without great
difficulty.

Further research is required to further assess the advantages and short­
comings of these metrics. These metrics are rich for empirical investigation.
Correlations between other more established measures should be conducted
and empirical evidence should be collected to begin validation and assess­
ment. The spatial metric is a powerful conception. It presents a view of
software complexity that is related to the cognitive demands of conduct­
ing programming tasks, rather than to simple counts of lines, operators
and operands. It currently remains to be seen whether the artifacts that
software engineers produce can be measured with accuracy, particularly in
terms of their psychological complexity. If they can, then development and
maintenance may indeed become an activity that can be controlled.

References

[1] Halstead, M.H., Elements of software s cience. 1977, New York: Else­
vier.

[2] McCabe, T.J., A. complexity meas1ire. IEEE Transactions on Software
Engineering, 1976. SE-4: p. 308-320.

[3] Chidamber, S.R. and C.F. Kemerer. Towards a metrics snite for object­
oriented design. in OOPSLA '91. 1991: ACM SIGPLAN Notices.

[4] Fenton, N. and A. Melton, Deriving strnctnrally based software mea­
sures. Journal of Systems and Software, 1990. 12: p. 177-178.

[5] Baddeley, A., H1iman memory : theory and practice - Revised edition.
1997, Hove: Psychology Press.

[6] Brooks, R., Towards a theory of the comprehension of compnter pro­
grams. International Journal of Man-Machine Studies, 1983. 18: p. 543-
554.

[7] Letovsky, S. and E. Soloway, Delocalis ed plans and program comprehen­
sion. IEEE Software, 1986. 3: p. 41-47.

9

[8] Wilde, N., P. Mathews, and R. Huitt, Maintaining Object-Oriented
software. IEEE Software, 1993. 10: p. 75-80.

[9] Weyuker, R., Evalnating software complexity measures . IEEE 'Iransac­
tions on Software Engineering, 1988. SE-14

10

