
Mental Representation and Imagery in Program
Comprehension

Raquel Navarro-Prieto Jos J. Caas
Experimental Psychology Department Experimental Psychology

Department
Campus de la Cartuja Campus de la Cartuja
18071 Granada, Spain 18071 Granada, Spain
rnavarro@goliat.ugr.es delagado@goliat.ugr.es

http://www.ugr.es/~rnavarro http://www.ugr.es/~delagado

ABSTRACT
This paper studies the role of imagery in program
comprehension. With this goal we investigated
whether theories of mental models from Psychology
of Programming (e.g., Pennington’s Two Stages
Theory) could be expanded to account for the effect
of imagery. Given the basic research in image
processing, our hypothesis is that imagery would
allow a quicker access to the functional (Data Flow)
information of programs. Then, Visual Programming
Languages should allow for quicker construction of
a mental representation based on Data Flow
relationships of a program than procedural
languages. To test this hypothesis we ran an
experiment where we accessed the mental model of
C and spreadsheet programmers in different program
comprehension situations. The results showed
evidence that the spreadsheet programmers
developed Data Flow based mental representations
in all situations while C programmers seemed to
access to a Control Flow based mental representation
first.

Keywords
Imagery, mental model, Visual Programming
Language, Spreadsheets, C, program
comprehension.

INTRODUCTION
Program comprehension is a complex cognitive skill
which involves the acquisition of a mental
representation of program structure and function.
Imagery is a cognitive process that can play an
important role in how this mental representation is
acquired. Our research is aimed at studying this role
of imagery in program comprehension by bringing
together the data and methodology from Psychology
of Programming and image processing research.
Basic research in image processing indicated that
pictorial material would give faster access to
semantic information than verbal material (Bajo,
1988). Also research on the effect of visual aids in
text comprehension (Mayer and Gallini, 1990) and
HCI learning (Navarro, Cañas and Bajo, 1996) has
shown that visual aids enhance learning only when
they could facilitate access to the meaningful
information for a given situation. All together, these
data support the hypothesis that visual aids could

enhance computer use and the acquisition of mental
representations because they would improve access
to meaningful information.
In the last decade the mental model approach to text
understanding (van Dijk & Kintsch, 1983) has been
successfully applied in Psychology of Programming
to explain the cognitive stages underlying program
comprehension (Pennington, 1987; Corritore &
Wiedenbeck, 1991; Burkhardt, Détienne,
Wiedenbeck, 1997). According to Pennington’s Two
Stage Theory (1987) programmers go through two
phases when they try to understand a program. In the
first stage, they develop a knowledge structure
representation (program model) based on the Control
Flow relationships (i.e control patterns like loops or
conditional patterns). In the second stage, under
appropriate task conditions, programmers develop a
plan knowledge representation (domain model)
based on the Data Flow. This representation would
contain the main program functions and the key
information to understand what the program does. It
also includes information about the programming
situation.
Several variables from the situation influence how
and when programmers go through these stages.
Two of these variables are notations’ visual
characteristics (Scalan ,1989) and programming
language (Gilmore and Green, 1988) Visual
languages (VPLs) seem to facilitate program
comprehension as compared to textual languages.
This effect points to the role that imagery could play
in program comprehension. However, not much
research has been done in this issue that would allow
us to expand text comprehension theories to explain
how VPL programmers develop their mental
representations.
Our hypothesis is that IF the role of imagery is to
enhance the access to the meaningful information
THEN VPLs should allow quicker access to the Data
Flow information of a program than procedural
languages. Therefore, visual programmers should
more quickly develop a representation based on Data
Flow relationships, even when performing a simple
comprehension task, in comparison with other non
visual programming languages.
Recent research showed that the type of
comprehension task that programmers perform
influences the mental representation that they
acquired. For example, Détienne (1996) has shown

IMAGERY IN PROGRAMMING Navarro-Prieto and Cañas

2

that read-to-do (e.g. for modification) and read-to-
recall (e.g. for documentation) tasks affect
differently the mental model construction.
Pennington’s theory could explain this effect of type
of comprehension task. For performing a relatively
easy task, like reading a program, programmers only
go through the first stage. However, to modify the
program they would go through the second stage,
understanding the Data Flow structure.
We hypothesised that textual language programmers
would access Data Flow information only when they
perform a difficult task. However, visual language
programmers would access this information even
when they perform an easy task. To test this
hypothesis we designed an experiment in which C
and Spreadsheet programmers are assessed on their
mental representations of programs, under different
comprehension conditions. We are interested in
studying how the visual format of spreadsheets
affects mental model construction, both in a simple
reading and a modification task.

EXPERIMENT

Procedure
First, programmers were asked to fill in a
questionnaire about their programming experience.
Then, programmers of C or Spreadsheets were asked
to read two programs (the ‘Easy Task’) and modify
two other programs (the ‘Difficult Task’). They were
instructed to read the program until they thought
they could understand the program (Easy Task) or
could make the required modification (Difficult
task). The time limit for both types of
comprehension tasks was 10 minutes After reading
or modifying a program, they performed two tasks
designed to elicit the mental representation of the
program’s structure that they have acquired:
Primed Recognition task: This task has been widely
used in image processing research. The motivation
for using this task is that it has been shown to be
effective in testing whether the subject’s mental
representations are based on a hypothesised
relationship. In each trial of this task, subjects were
presented with a program segment (target) taken
either from the program that they had read or
modified, or from a different program. Their task
was to decide as quickly as possible whether or not
the segment was part of the program they had
already seen. The target segment was preceded by
another program segment (prime). The underlying
assumption is that knowledge is organised in
networks where the activation from one node
spreads to nearby nodes. Therefore if the prime and
target are related in the mental network, the
activation of the prime would facilitate the activation
of the target. The critical manipulation is the prime-
target relationship. To test if the mental model
developed by the subjects were based on data or
Control Flow relationships, two theoretical networks
were constructed for each program (one Control
Flow network and another Data Flow network).
Then, there were four priming conditions:

1. Data Flow related Condition: A target segment
in the test is preceded by a prime close in the
theoretical Data Flow network, and far in the
Control Flow theoretical network.

2. Control Flow related Condition: A target
segment in the test is preceded by a prime close
in the theoretical Control Flow network, and far
in the Data Flow theoretical network.

3. Unrelated condition: the target segment is
preceded by a segment from the same program,
but hypothesised to be far away in both the
control and Data Flow theoretical networks.

4. Non-Program condition: the target segment was
from a different program than the prime
segment.

Half of the targets were part of the original program.
The other half were not from the program, therefore
the subject should reject them as not belonging to the
original program. These non-program targets were
constructed by modifying some program segments,
so that the information in the modified fragment did
not correspond with the information shown in the
original program. In order to be sure that the Data
Flow related condition is not affected by Control
Flow information, and the other way around, two
controls were done with the material. First, in the
Data Flow conditions, we replaced the operations in
these segments with dots. Following the same
reasoning in the Control Flow conditions,
information about the name of the variables were
replaced with dots. Second, a distracter code
fragment was presented with every target. The target
and the distracter were identical except in an
operation, in the case of the Control Flow condition,
or a variable name in case of the Data Flow
condition or one of these options for the rest of
conditions. Therefore, the recognition decision had
to be based on the exact recognition of the Data or
Control Flow information from the program.
Primes were presented for 10 seconds, because we
wanted to be sure that the subject had time to read
them. During this time, no answer was required for
the subject, who was instructed to carefully read the
prime fragment. This time was calculated in a pilot
study as the maximum time needed to read our
fragments. After the prime disappeared, the next
screen presented the target and distracter fragments
until the subject responded. In this screen, subjects
were asked to click on the fragment/s that they
thought were from the original program, or if neither
of them was from the original program, click the OK
bottom to go to the next trial.
Recognition accuracy and time were recorded. We
predicted a priming effect. Response times to the
target segment preceded by a prime close in the
network structure should be faster than response
time (and with better accuracy) to the same target
preceded by a prime which was not as close in the
cognitive structure. This priming effect would be
observed in the control and/or Data Flow conditions
depending on the knowledge acquired by the subject.
Sorting Task: This task has been used successfully to
access a subjects’ mental model in programming

IMAGERY IN PROGRAMMING Navarro-Prieto and Cañas

3

(e.g. Robertson and Yu, 1990). The subjects were
presented with a program that they had read or
modified previously, and were asked to group
together the lines of code or the cells that they
though were related to each other. To make a group
they just needed to click on the lines/cells that they
wanted to select. They could do all the groups that
they found important. They were given some
practice trials to this task with names of fruits and
mountains.
Sixty-four subjects with different experience levels
participated in the experiment. Thirty-two subjects
were C programmers and thirty-two were
Spreadsheet programmers.

Results
The data from the experience questionnaire were
quantified by two expert programmers. We wanted
the experience data from each subject to be sure that
our results were not interacting with this variable,
which has been shown to be important in developing
mental representations in programming (Corritore &
Wiedenbeck, 1991).

Sorting task results
Raw sorting data were transformed into proximity
data by calculating the number of times that two
segments of the program were grouped together by
one subject. Therefore, for each subject there were
four proximity matrices, one for each program (two
belonging to the Modify Condition and two
belonging to the Read Condition).
Those matrices were submitted to a Pathfinder
analysis. This analysis resulted in networks with
links among the segments, which represented
relationships in the subjects’ mental representation
of the programs. The theoretical Control Flow and
Data Flow networks were our criteria for measuring
a subject’s level of comprehension of Control/Data
Flow information in the program. The PathFinder
analysis provided us with a measure of the
similarities among networks, called C (which range
goes from 0 to 1). We calculated the C between each
subject’s network for each program and our theoretic
control (four Cs) and Data Flow networks (four Cs).
We averaged the Cs between the two modified and
the two read programs for each subject. In total four
C measures were calculated for each subject. The
statistical analyses were done on these C values.
A factorial design, 2 X 2 X 2 (Language X Control
vs. Data Flow Network X Comprehension task) was
used. Language was a between-subjects variable and
Control vs. Data Flow Network, and Comprehension
task were within-subject variables.

Figure 1.

Sorting Results: Closeness (C parameter) of the C
and Spreadsheet programmer networks to the
Control and Data Flow theoretical networks.

Our results show significant effects of the
programming Language (F(1,60)= 108.934, M.S.E=
0.0023, p= 0.000), the Prime Condition (F(1,60)=
35.1022, M.S.E.= 0.0006, p= 0.000) and the
interaction between them (F(1,60)= 41.75, M.S.E.=
0.0006, p= 0.000, Fisher’s Test of the Less
Significant Difference (LSD) = 0.013). Spreadsheet
programmer representation’s were closer to both the
control and Data Flow criteria (C = 0.16) than C
programmers’ mental representations (C = 0.09).
Overall, control primes were closer to the theoretical
networks, but that was due to the C programmers. As
we can see in Figure 1, according to our hypothesis,
C programmers have better networks for Control
Flow information compared with Data Flow
information. So, C programmers learned the Control
Flow information better than Data flow information.
On the other hand, Spreadsheet programmers seem
to have developed good mental structures for both
control and Data Flow information.

Primed recognition task
The number and average time of correct responses
were recorded for positive and negative trials (where
the target segment was part or not part of the studied
program respectively) separately for each subject. A
factorial design, 2 x 4 x 2 (Comprehension task x
Prime Condition x Language) was used. Language
was a between-subjects variable, and
Comprehension Task and Prime Condition were
within-subject variables. The level of experience of
the subjects was again a covariant variable.

Figure 2. Priming Recognition Results:
Response times to Positive Trials, second
order interaction: Programming Language
by Comprehension Task and by Prime
Condition.

Positive Trials (in which the target segment was
from the studied or modified program)
 Recognition Time: The effect of Language
was significant (F(1,61)=7.332; p=0.008). C
programmers were faster (Average=2542 ms.) than
Spreadsheet programmers (Average=3137 ms.).
Close to significant was the interaction between the
Language and Comprehension Task (F(1,61)=3.49,
p=0.067), where C programmers showed larger
differences between tasks than Spreadsheet
programmers. However, this interaction was
modulated by the effect of the significant second

IMAGERY IN PROGRAMMING Navarro-Prieto and Cañas

4

order interaction of Prime Condition by
Comprehension Task and Language (F(3,186)=3.30;
p<0.021, LSD = 1265). When C programmers
modified a program, Control primes slowed down
recognition times compared with Data, Program
Unrelated and Non Program. There were no
differences among primes when C programmers had
to read a program. For spreadsheet programmers
Control primes tended to slow down recognition
after reading, and made recognition faster after
modifying a program faster.
Accuracy: There was no significant effects of any of
the manipulated variables.
Negative Trials (in which the target segment was
NOT from the studied or modified program)

Figure 3. Priming Recognition Results:
Response time to Negative Trials, second
order interaction: Programming Language
by Comprehension Task and by Prime
Condition.

Recognition Time: The effect of Language was
significant (F(1,61)=14.6; p=0.0003). Again, C
programmers were faster (Average=2135 ms) than
Spreadsheet programmers (Average =2768 ms). The
interaction of Prime Condition by Comprehension
Task was also significant (F(3,186)=10.72; p<
0.001). The data showed that when programmers
read a program, the Control Flow condition slowed
down the recognition process in comparison with the
other conditions. In the opposite way, when
programmers had done a modification task the Data
Flow targets needed more time for recognition. It
seems that programmers have acquired the Control
Flow information in the reading task, and activating
this information in the Control Flow condition made
it more difficult to refuse the incorrect target. The
same interference effect seemed to happen with the
Data Flow information for the modification task.
Again the effect of this interaction seemed to be
modulated by a second order interaction close to
significant, of Language by Prime Condition and
Comprehension task (F(3, 186)=1.97, p< 0.1204,
LSD= 671). When C programmers had to read the
program there was an inhibition effect of the Control
Flow conditions in comparison with the Data Flow
conditions. On the other hand, when C programmers
modified the programs, there was a tendency for the
Data Flow conditions to increase the time needed for
recognition although this difference was not
significant. With regard to the Spreadsheet

programmers, they also performed differently
depending on the task. There were no differences
among prime conditions when they had to read a
program. On the contrary, after modifying the
programs, Data Flow and Control Flow conditions
had the opposite effects. Data Flow conditions
slowed down the process of rejecting a fragment,
while seemed to need less time to take the correct
decision.

IMAGERY IN PROGRAMMING Navarro-Prieto and Cañas

5

Figure 4. Priming Recognition Results:
Percentage of Correct Responds to
Negative Trials, second order interaction:
Programming Language by Prime
Condition.

Accuracy: There was a significant effect of Prime
Condition F(3,186)=5.20; p< .002). Target segments
that belonged to the studied program (Data and
Control Flow conditions and Program Unrelated
condition) were recognised better than targets that
belonged to different programs.
The interaction of Language by Prime Condition was
also significant (F(3,186)=11.91; p<0.000;
M.S.E.=811.5, LSD= 10). For C programmers
Control Flow conditions decreased accuracy while
for Spreadsheet programmers Data Flow conditions
decreased accuracy. So, Control Flow conditions
inhibited recognition for C programmers and Data
Flow conditions inhibited recognition for
Spreadsheet programmers.
As a conclusion to all these data, we found a
facilitation effect in the recognition task from our
priming conditions. These facilitation effects in
recognition time were not due to a trade off with
accuracy as we could see in the accuracy data.
We also found strong inhibition effects both in time
and accuracy. Inhibition data have been more
informative than facilitation data in psychological
research. In our case the interference shown
specifically for the Control Flow conditions in C
programmers, and for Data Flow conditions in
Spreadsheet programmers gives evidence that
programmers develop different mental
representations based on Control Flow or Data Flow
respectively.

GENERAL CONCLUSION
Our conclusions are derived from the two tests that
we used to access a subject’s mental representations.
Our data indicated that using these methodologies
together could give us complementary information
which allow us a deeper understanding of both the
mental representations and the processes beneath
them.
In general, our results showed evidence that imagery
influenced programmers' mental representations.
Specifically, we found differences in the information
acquired by the programmers depending upon the
Language and the comprehension task. The data

from the sorting task showed that the mental
structure of the spreadsheet programmers has more
information about both Control and Data Flow
structures. However, C programmers seem to have a
better mental representation for the Control Flow
information. With regard to the Priming Recognition
task, we found strong interaction effects when the
programmers had to reject a target that was not from
the program. C programmers seemed to be more
influenced by the Control Flow primes, so their
representation was more strongly based in Control
Flow information. When Spreadsheet programmers
read programs, they were more influenced by the
Control Flow primes. However, after modifying the
program, the Data Flow primes showed a stronger
influence on recognition. These results are congruent
with previous research showing differences in the
program representation depending on the task and
programming language (Pennington, 1987,
Burkhardt, Détienne, Wiedenbeck, 1997).
Furthermore, these data together gave support to our
hypothesis that the Spreadsheet, with its visual
characteristics, helped programmers to develop a
representation of the program based on Data Flow
structure. The sorting data clearly showed that the
Spreadsheet programmers develop a Data Flow
mental representation even in the easiest tasks, while
C programmers seemed to need to have special task
conditions (e.g.- more difficult) to acquire this
information. Therefore our data with C programmers
replicates the results of Pennington (1987),
supporting her Two Stages theory for procedural
languages. Based on the effects found for
Spreadsheet programmers, we claim that it is
necessary to add a factor to this theory to account for
the role of imagery in programming. Programmers
will go through the stages that have been proposed
depending on the variables that enhance the
processes underlying these stages. One of these
variables seems to be imagery, which enhances
access to Data Flow information.

ACKNOWLEDGEMENTS:
The authors would like to thank Professor Jorma
Sajaniemi and Paul Charette for all his help in the
preparation of this work. The several departments
and organisations that provided us the programmers
for the experiment also deserve our grateful thanks.

REFERENCES
Bajo, M. T.(1988) Semantic facilitation with pictures

and words. Journal of Experimental Psychology:
Learning, Memory and Cognition, 4, 579-589.

Burkhardt, J.M.; Détienne, F.; Wiedenbeck, S.
(1997) Mental representations constructed by
experts and novice in object-oriented program
comprehension. In INTERACT’97.

Corritore, C. L.; Wiedenbeck, S. (1991) What do
novices learn during program comprehension?
International Journal of Human-Computer
Interaction, 3·(2), 199-222.

IMAGERY IN PROGRAMMING Navarro-Prieto and Cañas

6

Davies, S. P. (1991) The role of notation and
knowledge representation in the determination of
programming strategy: a framework of integrating
models of programming behaviour. Cognitive
Science, 15, 547-572.

Détienne, F. (1996) What model(s) for program
understanding? UCIS’96, Pointers, France,
September, 1996.

Gilmore, D. J.; Green, T.R.G. (1988) Programming
plans and programming expertise. The Quarterly
Journal of Experimental Psychology, 40A (3),
423-442.

Mayer, R. E.; Gallini, J. K.. (1990) When a
illustration worth ten thousand words? Journal of
Experimental Psychology, 4, 715-726.

Navarro, R.; Cañas, J.J.; Bajo, M.T. (1996) Pictorial
aids in computer use. In T.R.G Green,.; J.J
Cañas,.; C Warren,. (eds.). Proc. of the 8 Th
European Conference on Cognitive Ergonomics.
pp. 77-82. Granada.

Pennigton, N. (1987) Stimulus structures and mental
representation in expert comprehension of
computer programs. Cognitive Psychology, 19,
295-341.

Robertson, S. P.; Yu, C.C. (1990) Common
cognitive representations of program code across
task and languages. International Journal of Man-
Machine Studies. 33, 343-360.

van Dijk, T.A.; Kintsch, W. (1983) Tapping into
tacit programming knowledge. IEEE Transactions
on Software Engineering, SE-10, 595-609.

