
In A.F. Blackwell & E. Bilotta (Eds). Proc. PPIG 12 Pages 33-44

12th Workshop of the Psychology of Programming Interest Group, Cozenza Italy, April 2000 www.ppig.org

Experiences with Novices: The Importance of Graphical Representations in
Supporting Mental Models

Carlisle E. George

School of Computing Science
Middlesex University, London

c.george@mdx.ac.uk

Keywords: POP-II.A. Novice/Expert, POP-III.A. Recursion, POP-V.A. Mental Models

Abstract
Recursion is an important problem solving technique used in programming. It is also a highly unfamiliar

mental activity and many computing novices have difficult understanding recursion and applying recursive
techniques in problem solving. Research studies have concluded that novices and experts differ in their mental
models of recursion. Novices seem to possess various inadequate models of recursion especially the iterative or
loop model. This paper examines whether novices who are aided in acquiring an expert’s mental model of
recursion (the copies model) can effectively use this model in evaluating recursive algorithms. Results of a study
indicated that a large percentage of novices who had previously demonstrated an understanding of the copies
model (using explicit diagrammatic traces) failed do so when not using diagrammatic traces. In fact, they
appeared to demonstrate evidence for the incorrect iterative or loop model when trying to mentally evaluate
recursive programs. The results provide evidence that mental models are unstable and that graphical
representations are a very necessary aid to retrieval of novices’ mental models. This suggests that the teaching
of recursion may be best facilitated by teaching students how to simulate the execution of a recursive algorithm
using diagrammatic traces.

Introduction
Cognitive research studies in computer programming and other disciplines have demonstrated the importance

of adequate mental representations or models in understanding processes, complex tasks, or systems and have
also revealed that learning is facilitated by aiding learners in forming appropriate mental models or by modifying
and elaborating learners' incomplete models (e.g. DuBoulay, O'Shea & Monk 1980; Mayer 1981). While
novices may acquire an understanding of the syntax of a programming language, without appropriate mental
models they are unable to successfully understand complex concepts or engage in more difficult aspects of
problem solving. Effective mental models are thus of critical importance in understanding programming
concepts.

This paper focuses on recursion, a programming concept which many students find difficult to understand
and to apply in their problem solving activities (e.g. Anderson et al 1988; Anzai & Uesato, 1982a, 1982b; Baird
1986; Elenbogen & O'kennon 1988; Ford, 1984; Ginat & Shifroni 1999; Henderson & Romero 1989; Kahney
1983; Kessler & Anderson 1986; Kurland & Pea 1983; Pirolli, 1986; Roberts 1986; Wiedenbeck, 1988).
Recursion is a misunderstood or barely understood programming concept among programmers (Ford 1982). It is
difficult because it is a highly unfamiliar mental activity (Anderson et al 1988) and may be counter-intuitive to
beginning computer science students (Elenbogen & O’Kennon 1988).

Kahney (1983) concluded that novices and experts differ in their mental models of recursion and further
categorised various mental models that novices were seen to possess. Kahney’s conclusions have been
supported by many other subsequent studies (cited above). They indicate that most novices, unlike experts, are
unable to conceptualise separate and unique invocations of subprograms in recursion (the copies model) and
more importantly the flow of control in an executing recursive program. Novices easily adopt the more familiar
notion of iteration when attempting to understand recursion (Kessler & Anderson 1986; Kurland & Pea 1983;
Wiedenbeck, 1989).

In Kahney’s study, students were not explicitly taught how to simulate the flow of execution control and
visualise separate invocations of subprograms. They were only required to comment on whether the solution
programs given would work and did not seemed to have used any diagrammatic drawings to help them in their
problem-solving. This paper will investigate whether novices who are aided in acquiring an expert’s mental
model of recursion (the copies model) can effectively use this model in evaluating recursive algorithms.
Particular focus will be placed on the role of graphical /diagrammatic execution traces during problem solving.

Mental Models
The history of the concept of mental models in human cognition may be traced to Craik (1943), who

suggested that humans make use of internal models of external reality, which enable them to better understand
and react to situations in their environment. These internal models are formed through interaction with external

George ii

PPIG 2000, Cozenza Italy www.ppig.org

events. He argues that humans reason by manipulating internal symbolic representations and translating them
back into actions or at least recognising the correspondence between these internal representations and external
events. Eysenck & Keane (1990) make the distinction between two bodies of research into mental models: (i)
mental models viewed as analogical representations distinguished from propositional representations and images
- e.g work by Johnson-Laird (1983) which is primarily concerned with analogy and insight problems involving
classical syllogisms and (ii) mental models as theoretical constructs, characterised in propositional terms, and
used to account for various aspects of behaviour especially in novel problem solving situations. - e.g. Gentner
& Stevens, (1983) and Norman (1983) whose work has focused on investigating everyday problem situations
where people used their ‘mental models’ to understand the world, especially physical systems (also see Bennett
1984; Kieras & Boviar 1984; Carroll & Olson 1987; Sein 1988; Gentner & Gentner 1983).

This paper is primarily concerned with the ‘mental models’ as theoretical constructs and for purposes of this
work, ‘mental models’ generally refer to a learner’s mental representations or knowledge of processes, complex
tasks or systems (formed from interactions with abstract or concrete representations) which on construction and
manipulation allows the learner to reason, predict and understand the particular process, task or system.

Kahney’s Mental Models of Recursion
Kahney (1983) attempted to test the hypothesis that novice programmers and experts differ in terms of their

respective mental models of recursion as a process and further tried to discriminate between the models of
recursion which novices actually possessed. Experts were hypothesised to possess a copies model of recursion
while novices were hypothesised to possess a loop model. In the copies model, a recursive subroutine or
subprogram is defined as a process which is capable of triggering new instantiations (or copies) of itself with
control passing forward to successive instantiations and back to suspended ones. In the loop model a recursive
subroutine is viewed as a single object (instead of a series of new instantiations) consisting of an entry point,
an action part and a propagation mechanism.

The hypothesis about the differences between novice and expert models was tested by presenting subjects
with a questionnaire containing three programs written in the SOLO programming language (Eisenstadt 1978).
Subjects were asked to say whether the programs would perform a specific task and if not, to explain why.
Using a database containing the names of persons who kiss each other, the programs were required to make the
inference that: if somebody ‘X’ has flu, then whoever ‘X’ kisses also has flu, and whoever is infected spreads
the infection to the person he/she kisses, and so on. The resulting output of the correct program(s) was a new
database showing all persons infected with flu.

The three programs differed in their actions. Program-1 terminated after infecting the first name passed as an
argument from the database and hence did not achieve the required effect. Program-2 and Program-3 both
performed the required task but differed in procedure. Program-2 (an example of tail recursion) worked by
‘infecting’ the first argument passed then generating the next argument hence triggering recursion. Program-3
(an example of embedded recursion) worked by first creating a stack of bindings for the arguments and
‘infecting’ each on return from the recursive creation of the list, hence infected each argument in reverse order to
Program-1. Figure 1 below shows the three programs written in the SOLO programming language. The asterisk
(*) represents an argument (a name) from the database.

.
 Program-1 Program-2

 TO INFECT /X/ TO INFECT /X/
 1 CHECK /X/ KISSES? 1 NOTE /X/ HAS FLU

 1A If Present: NOTE * HAS FLU; EXIT 2 CHECK /X/ KISSES?
 1B If Absent: EXIT 2A If Present: INFECT * ; EXIT

 DONE 2B If Absent: EXIT
 DONE

 Program-3
 TO INFECT /X/
 1 CHECK /X/ KISSES?
 1A If Present: INFECT * ; CONTINUE
 1B If Absent: CONTINUE
 2 NOTE /X/ HAS FLU
 DONE
. .

. Figure 1 - Text of Kahney’s SOLO programs

Strong evidence for possession of the copies model of recursion was taken to be the selection of Program-1
and Program-2. Strong evidence for possession of the loop model of recursion was taken to be selection of
Program-2 and rejection of Program-3 on the grounds that only the last argument would be infected. Various
other criteria relating to written explanations determined the extent of possessing idiosyncratic notions of
recursion and also provided insight into the possible existence of other competing models. Questionnaires from
30 subjects classified as ’respondents’ and 9 expert programmers were analysed.

Results showed a highly significant result in the difference in selection between novices and experts (chi-
squared = 21.40, p < .001). Novices chose Program-1 and Program-3 significantly less often than experts (chi-
squared = 10.78, p < .01). From the data, eight of the nine experts showed strong evidence for the copies model
of recursion and only one novice (3%) showed evidence for a copies model of recursion. Kahney found evidence

George iii

PPIG 2000, Cozenza Italy www.ppig.org

for the loop model of recursion among novices (53%) but also concluded after further analysis that for processes
like recursion, different novices may acquire a wide range of mental models, may achieve no understanding at all
or may simply be able to identify a program as a member of a particular class if it has expected features in
expected configurations. He identified three other possible models of recursion which were different from either
the copies model or loop model.

Respondents who said that none of the programs would work were referred to as having a null model or no
model of recursion. Kahney found evidence which suggested that some respondents had slightly idiosyncratic
copies or loop models and hence did not correctly predict the behaviour of the programs. He referred to this
group as having an odd model of recursion. Among other observations, a common notion acquired in this group
was that the flow of control statement (e.g. EXIT, Figure 3.1) rather than the absence of a particular pattern in
the database acts as the stopping rule for recursion. Finally Kahney identified the syntactic or magic model,
where respondents recognised a particular program structure as being a recursive procedure based on previously
seen recursive programs. Although they knew what the procedure did, they had no idea of the actual behaviour
of the process, or how it achieved its effects. Recursion thus remained a mystery.

Revisiting Kahney
George(1996) developed the EROSI tutor which was used to aid novices in acquiring the copies model of

recursion by first helping novices understand a sophisticated subprogram execution model called the dynamic
logical model of subprogram calls which is then linearly extended to self referential calls resulting in the copies
model of recursion. As part of a Final Study, after using the EROSI tutor and learning how to diagrammatically
trace the copies execution model of recursion, forty nine novices were given post-treatment tasks which tested
their ability to evaluate and construct recursive programs. All students were advised to use diagrammatic traces
during their problem solving activities. A few days after completing the post-treatment tasks, twenty-two
students were interviewed.

One part of the post-treatment interviews focused on investigating subjects’ mental models of recursion by
using a modified version of Kahney’s Model Test (see Appendix A). Twenty-one of the twenty-two students who
were interviewed, volunteered to do Kahney’s model test. On arrival at the interview, each student was given one
of four textual variants of the test (to avoid collusion) to study for about five to ten minutes before he/she was
asked to give answers to the questions. Consistent with the criteria used by Kanhey, from three solutions given
(entailing: no recursion, tail recursion, embedded recursion), evidence for the possession of the copies model
was identification of the last two solutions as being correct and the ability to identify differences in their output
sequences. Evidence for a loop or iterative model was identification of the second solution only as being
correct and rejection of the third solution on the basis that only the last person infected would get flu. Evidence
of a ‘null’ model or no understanding of recursion was the inability to identify either of the last two solutions as
being correct or identifying the first solution as being correct.

Analysis of Performance on Kahney’s Model Test.
Some students had difficulty understanding either the problem to be solved or some other aspect of the test,

however, after some explanations they were able to give their answers. All students were able to identify that the
first solution did not involve recursion and was therefore incorrect. Eight students (38%) showed evidence for
possessing the copies model, and thirteen students (53%) showed evidence for the loop model. All of the eight
students who showed evidence for the copies model had previously demonstrated a good understanding of the
copies execution of an embedded recursive algorithm. Conversely only one of the students who showed
evidence for a loop model had made an analogous error in evaluating the embedded recursive algorithm.
Moreover nine (out of thirteen i.e. 69%) of them had previously shown a good understanding of the copies
execution of the embedded recursive algorithm.

These results point to the difference in performance when using diagrammatic traces as opposed to mentally
simulating the execution of recursion. Some students thought that they would be more certain of their answer if
they had taken the time to draw diagrams. For example when one student was pressed to give a definite
statement after saying that he was not completely sure of his answer he said: ‘I don’t feel confident just to say, it
just needs a couple of drawings really’. Also when shown what the correct answer was, a student who had
previously shown evidence for a loop model remarked: ‘Oh! Yes I can see that. I think that if I had drawn
boxes I would have been able to work it out, but it’s so hard to think about it without drawing the boxes’. These
observations seem to highlight the importance of teaching students how to explicitly simulate recursive processes
using diagrammatic traces.

Discussion
Results of Kahney’s Model Test compared to the Post-treatment tasks showed that in the absence of explicit

diagrammatic traces many students who evaluated embedded recursive algorithms mentally, gave answers which
were indicative of a loop model of recursion. With diagrammatic traces, however, these students did not make
the same error. In fact on the post-treatment tasks only two students , who incidentally did not use any diagrams
when evaluating an embedded recursive algorithm, gave incorrect responses corresponding to the use of a loop
model of recursion.

A possible explanation for the results above may be found in the work of Norman(1983), who observed that
mental models may be ‘unstable’ (forgotten or confused with similar systems) and that people usually keep them
as uncomplicated as possible, avoiding mental complexity. With respect to the copies model, the above seems to
apply when diagrammatic traces are not used. This implies that perhaps the teaching of recursion is best
accompanied by the teaching of explicit evaluation methods involving diagrammatic traces of recursive

George iv

PPIG 2000, Cozenza Italy www.ppig.org

processes. Various explanations for the effectiveness of graphical representations in reasoning and problem-
solving include that they: facilitate perceptual judgements and act as aids to retrieval (Larkin & Simon, 1987);
and reduce search and working memory load by organising information by location (Cox & Brna, 1995).

In reviewing the work of some previous studies (e.g. Kahney, 1983) which reported that novices generally
possess a loop (or iterative) model for recursion, the findings above can perhaps illuminate a major reason for
these observations. Generally from reports of these studies students were either not taught how to
diagrammatically simulate the execution of a recursive algorithm or were not encouraged to do so during their
problem-solving activities. Therefore they probably mentally simulated the process of recursion, in the process
encountering difficulty with keeping track of variables and flow of control, and hence adopted the easy and
more familiar iterative model.

References
Anderson, J. R., Pirolli, P., & Farrell, R. (1988). Learning to program recursive functions. In M. T. Chi, R.

Glaser, & M. J. Farr. (Eds.), The Nature of Expertise, 151-183. Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc.

Anzai, Y., & Uesato, Y. (1982a). Is recursive computation difficult to learn? CIP paper No.439, Dept. of
Psychology, Carnegie-Mellon University, 1982.

Anzai, Y., & Uesato, Y. (1982b). Learning recursive procedures by middleschool children. Proceedings of the
Fourth Annual Conference of the Cognitive Science Society, Ann Arbor, Michigan, 100-102, August 1982.

Baird, W.G. (1986). My freshmen learn recursion, ACM SIGCSE BULLETIN, 18(2), June 1986, 25-28.
Bennett, K. B. (1984). The Effect of Display Design on the User’s Mental Model of a Perceptual Database

System. (Doctoral dissertation, The Catholic University of America, 1984). Dissertation Abstracts
International, 45, 1604B.

Bhuiyan, S. H. (1992). Identifying and Supporting Mental Methods of Recursion in a Learning Environment.
Unpublished PhD Thesis. Dept. of Computational Science, University of Saskatchewan. Saskastoon,
Canada.

Carroll, J. M., & Olson, J. R. (Eds.), (1987). Mental Models in Human-Computer Interaction: Research Issues
about what the User of Software Knows. Washington, DC: National Academy Press.

Cox, R., & Brna, P. (1995). Supporting the use of external representations in problem solving: The need for
flexible learning environments. Journal of Artificial Intelligence in Education 1995, 6(2/3), 239-302.

Craik, K. (1943). The Nature of Explanation. UK: Cambridge University Press.
Du Boulay, B., O'Shea, T., & Monk, J. (1981). The black box inside the glass box. International Journal of

Man-Machine Studies, 14, 237-249.
Elenbogen, B. S., & O'Kennon, M. R. (1988). Teaching recursion using fractals in PROLOG. ACM SIGCSE

BULLETIN 20(1), Feb.,1988, 263-266

Eisenstadt, M. (1978). The SOLO primer. Units 3-4, Cognitive Psychology: A Third Level Course. Milon
Keynes UK: Open University Press.

Eysenck, M. W., & Keane, M. T. (1990). Cognitive Psychology: A Student’s Handbook. London, UK:
Lawrence Erlbaum Associates.

Ford, G. (1982). A framework for teaching recursion. ACM SIGCSE BULLETIN 14(2), June 1982, 32-39.
Ford, G. (1984). An implementation-independent approach to teaching recursion, ACM SIGCSE BULLETIN,

16(1), Feb.,1984, 213-216.
Gentner, D. (1983). Structure-mapping: a theoretical framework for analogy. Cognitive Science, 7, 155-170.
Gentner, D., & Gentner, D. R. (1983). Flowing waters or teemings crowds: mental models of electricity. In D.

Gentner & A. L. Stevens (Eds), Mental Models, 99-129. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Gentner, D., & Stevens A. L. (Eds), (1983). Mental Models, Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
George, C.E. (1996). Investigating the Effectiveness of a Software-Reinforced Approach to Understanding

Recursion. PhD Thesis, University of London, Goldsmiths.
Ginat & Shifroni (1999). Teaching Recursion in a Procedural Environment – How much should we emphasize

the computing model? Proceedings of ACM SIGCSE ’99, p 127 – 131.
Henderson, P. B., & Romero, F. J. (1989). Teaching recursion as a problem-solving tool. ACM SIGCSE

BULLETIN, Feb., 1989, 21(1), 27-31.
Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of Language, Inference and

Consciousness. Cambridge, UK: Cambridge University Press
Kahney, H. (1983). What do novice programmers know about recursion?. Proceedings of the CHI ’83

Conference on Human Factors in Computer Systems, 235-239. Boston, MA.
Katz, N. (1986). Construct validity of Kolb’s Learning Style Inventory, using factor analysis and Guttman’s

smallest space analysis. Perceptual and Motor Skills, 63, 1323-1326.
Kessler, C. M., & Anderson, J. R. (1986). Learning flow of control: Recursive and iterative procedures.

Human-Computer Interaction, 2, 135-166.
Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to operate a device. Cognitive

Science, 8, 255-273.
Kurland, D. M., & Pea, R. D. (1983). Children's mental models of recursive LOGO programs. Proceedings of

the 5th Annual Conference of the Cognitive Science Society, session 4, 1-5. Rochester, NY.
Larkin, J.H., & Simon, H.A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive

Science, 11, 65-100.
Mayer, R. (1981). The psychology of how novices learn computer programming. Computing Surveys, 13(1),

121-141.
Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental

Models, Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
Pirolli, P. L. (1985). Problem Solving by Analogy and Skill Acquisition in the Domain of Programming.

Unpublished doctoral dissertation, Carnegie-Mellon University, Pittsburgh.

George v

PPIG 2000, Cozenza Italy www.ppig.org

Pirolli, P. (1986). A Cognitive model and computer tutor for programming recursion. HUMAN-COMPUTER
INTERACTION, 2, 319-355.

Roberts, E. S. (1986).Thinking Recursively. NY: John Wiley & Sons, Inc.
Sein, M. K. (1988). Conceptual Models in Training Novice Users of Computer Systems: Effectiveness of

Abstract vs. Analogical Models and Influence of Individual Differences. (Doctoral dissertation, Indiana
University). Dissertation Abstracts International, 49, 880A.

Wiedenbeck, S. (1988). Learning recursion as a concept and as a programming technique. ACM SIGCSE
BULLETIN 20(1), Feb., 1988, 275-278.

Wiedenbeck, S. (1989). Learning iteration and recursion from examples. International Journal of Man-
Machine Studies, 30, 1-22.

Appendix A

Modified Kahneys Model test questionnaire (Interview)

A doctor in a small town knows the following secret:

Jack kisses → Fay kisses → Tom kisses → Sue kisses → Chris.

Contagious Rule:

If a person X is infected with flu and kisses person Y then person Y

will become infected with the flu and whoever person Y kisses becomes

infected with the flu and so on.

I want to write a procedure INFECT to infect a person and to obey the

contagious Rule.

My procedure must return the names of every person who has the flu. Hence

INFECT(Jack) should tell me that:

Jack has flu; Fay has flu; Tom has flu; Sue has flu; Chris has flu.

 (In any order).

 Assume that I have the function Kisses(X) which returns the name of the

 person whom X kisses. If X does not kiss anyone then the function returns

 the string ‘Nobody’. Hence

 Kisses(Jack) returns ‘Fay’

 Kisses(Fay) returns ‘Tom’.

 Kisses(Tom) returns ‘ Sue’

 Kisses(Sue) returns ‘Chris’

 Kisses(Chris) returns ‘Nobody’

 I have been given three solutions for procedure INFECT. Consider each of

 the solutions given below in turn and say:

George vi

PPIG 2000, Cozenza Italy www.ppig.org

 (a) Whether or not it will give me the names of all persons infected with

 the flu. and

 (b) If it will say how it does it (in your own words) or if it won’t, say why

 it doesn’t (again in your own words).

 Solution Blue PROCEDURE INFECT(X : String);

 VAR Y : String;

 BEGIN

 Y := Kisses(X);

 IF Y<> ‘Nobody’ THEN Write(Y, ‘ has Flu’);

 END;

 Solution Black PROCEDURE INFECT(X : String);

 VAR Y : String;

 BEGIN

 Write(X, ‘ has Flu’);

 Y := Kisses(X);

 IF Y<> ‘Nobody’ THEN INFECT (Y)

 END;

 Solution Green PROCEDURE INFECT(X : String);

 VAR Y : String;

 BEGIN

 Y := Kisses(X);

 IF Y<> ‘Nobody’ THEN INFECT(Y);

 Write(X, ‘has Flu’)

 END;

