
In M. Petre & D. Budgen (Eds) Proc. Joint Conf. EASE & PPIG 2003

Java debugging strategies in

rnulti-representational environrnents

Pablo Romero, Benedict du Boulay, Richard Cox, and Rudi Lutz
Human Centred Technology Group,

School of Cognitive & Computing Sciences
University of Sussex, Fahner, BNl 9QH, UK.

juanr@cogs.susx.ac.uk

Abstract

This paper reports the qualitative analysis part of a Java debugging
experiment. Java program debugging was investigated in computer
science students who used a software debugging environment (SDE) that
provided concurrently displayed, adjacent, multiple and linked
representations consisting of the program code, a visualisation of the
program, and its output.

The aim of this qualitative analysis was to characterise the
debugging strategies employed by participants, both at the level of focus
of attention and representation use as well as in terms of the genera.I
reasoning strategy deployed. A modified version of the Restricted Focus
Viewer (RFV) - a visual attention tracking system - was employed to
measure the degree to which each of the representations was used, and
to record switches between representations.

The experimental results are in agreement with research in the area
that suggests that people start a debugging session by trying to
understand the code of the program before they attempt to locate any
bugs. Two different strategies to locate bugs were detected: by spotting
something odd in the program code and by comparing information from
the different external representations available. These strategies may be
linked to cognitive characteristics of the programmer such as level of
programming skill and display modality preference.

1 Introduction

Professional programmers typically employ debugging packages, prototyping
and visualisation tools in software devdopment environments. ThE:se tools
routindy provide a range of E:xternal reprE:sentations of both thE: static and
dynamic staks of the program in addition to tlw codE: itsdf. A mE:asurE: of
professional expertise is the ability with which these rE'presentations are
coordinated to form a multifacekd but coherent understanding of thE: program.

A similar situation applies to novicE: programmers. ThE:y often spn1d a largE:
amount of their timE: attempting to understand the behaviour of programs

1

15th Workshop of the Psychology of Programming Interest Group, Keele UK, April 2003

Pages 421-435

www.pp1g.org

when trying to discover errors in the code. To perform this task, they
normally work with both the program code and the debugger output, trying to
coordinate and make sense of these two representations.

Despite the importance of coordinating multiple representations in
programming, little is known about how multi-representational systerns are
used for this kind of prog,Tamming task.

This paper reports an investigation into multiple representation use in novice
program debugging. The next section briefly describes research on working
with multiple external representations, both inside and outside the
programming area. After this, we present the experimental method we applied
in an empirical study, and describe its main findings. Finally we relate these
findings to similar work both inside and outside the area of computer
programming.

2 Coordination of n1ultiple external

representations in progranuuing

11fodality and pcrsvcctivc are two important aspects to consider regarding the
coordination of multiple representations in programming (de Jon, Ainsworth,
Dobson, van der Hulst, Levonen, &: Reimann, 1998).

2.1 Modality

The term 'modality' is used here to mean the representational form used to
present or display information, rather than in the psychological sense of a
sensory channel. A typical modality distinction is between propositional and
diagrammatic representations.

Tims, this first aspect refers to coordinating representations which are
basically propositional with those that are mainly diagrammatic. It is not
clear whether coordinating representations with the same modality type has
advantages over working with mixed multiple representations or whether
including a high degree of graphicality has potential benefits for performing
the task (Ainsworth, Wood, &: Bibby, 1996).

According to (Ainsworth et al., 1996), in general, the more different the degree
of g-raphicality external representations exhibit, the more difficult it is for
students to coordinate them. However, this will also depend on individual
ability and the support given by the software environment. According to
Oberlander, Stenning, and Cox (1999), one view is that if the multimodal
system involves diag,Tammatic representations, people who have a preference
for the visual modality are those who will benefit more from it (the visual
zwcf crcncc hypothesis). Another view is that people will benefit from
multimodal systems to the degree that they are able to translate between
modalities (the transmodal hypothesis).

2

This latter view seems to be in agreement with Ainsworth, vVood, and
O'Malley's (1998) conclusion that the design of environments that require the
coordination of different modalities has to pay special attention to providing
cues to support the process of translation between the representations.

Although programmers normally have to coordinate representations of
different modalities, there has not been much research on this topic in the area
of prog,Tamming. One of the few examples is the GIL system (Merrill, Reiser,
Beekelaar, &: Hamid, 1992), which attempts to provide reasoning-congruent
visual representations in the form of control-flow diagrams to aid the
generation and comprehension of LISP, a functional programming language
which normally employs textual representations. Merrill et al. (1992) claim
that the GIL system is successful in teaching novices to program in this
language; however, this work did not compare coordination of the same and
different modalities.

Work in the algorithm animation area (Byrne, Catrambone, &: Stasko, 1999)
has found advantages for the use of multiple representations of mixed
modality. Byrne et al. (1999) found that students benefited from the dual
mental encoding that results from presenting a graphical visualisation of the
program together with a textual explanation of it.

Other studies in the area have been concerned with issues related to the
format of the output of debugging packages (Mulholland, 1997; Patel,
du Boulay, &: Taylor, 1997). Those studies have offered conflicting results
about the coordination of representations of different modality. Patel et al.
(1997) found that subjects working with representations of the same and
different modalities had similar performance, while Mulholland (1997)
reported that those working with different modalities showed a poorer
performance than those working with the same modality. In both cases,
participants worked with the program code and with the debugger's output.
The debugger notations used by both of these studies were mostly textual.
The only predominantly graphical debugging tool used was TPM (Eisenstadt,
Brayshaw, &: Paine, 1991). While the performance of the participants of the
former study (Patel et al., 1997) was similar for the textual debuggers and for
TPM, the subjects of the latter study (Mulholland, 1997) found working with
TPM more difficult. One important difference between these two studies is
that while the former used static representations, the latter employed a
visualisation package (dynamic representations). The additional cog11itive load
of learning and using a multi-representational visualisation package may
explain the difference in findings.

2.2 Perspective

vVhile modality is concerned with form, perspective is concerned with content.
Perspective refers to the prog,Tamming information types that a representation
highlights. Computer programs are information structures that comprise
different types of information (Pennington, 1987b), and programming
notations usually highlight some of these aspects at the cost of obscuring
others (the match-mismatch. h.yvoth.csis) (Gilmore &: Green, 1984). Some of

3

these different information types are: function, data structure, operations,
data-flow and control-flow.

Experienced programmers, when comprehending code, are able to develop a
mental representation that comprises these different perspectives or
information types, as well as rich mappings between them (Pennington, 1987a).

Pernped.iw� is orthogonal to modality. F;ad1 of these pernpedives ca.n he
displayed in either a diagrammatic or textual modality and each modality can
be employed to present a variety of perspectives of the prog,-ram.

2.3 Java debugging

To date, there have been numerous investigations of debugging behaviour
across a range of programming languages (Gilmore, 1991; Romero, 2001;
Vessey, 1989), and previous research has also examined the effect of
representational mode upon program comprehension (Good, 1999; Merrill
et al., 1992; Mulholland, 1997; Patel et al., 1997).

Studies relating to debugging strateg,ies are of special interest to this
investigation (Jeffries, 1982; Gugerty &: Olson, 1986; Carver &: Klahr, 1986;
Kessler &: Anderson, 1986; Katz &: Anderson, 1988). According to Katz and
Anderson (1988), debugging strategies can be classified into those that reflect
either forward reasoning or backward reasoning. The first category comprises
those strateg,ies in which programmers start the bug search from the program
code, while the second involves starting from the incorrect behaviour of the
program and reasoning backwards to the origin of the problem in the code.
Examples of forward reasoning include comprehension, where bugs are found
while the programmer is building a representation of the program and hand
sim.ulation, where progra1mners evaluate the code as if they were the
computer. Backward reasoning includes strategies such as simple mapving and
causal reasoning. In simple mapping the program's output points directly to
the incorrect line of code, while in causal reasoning the search starts from the
incorrect output going backwards towards the code segment that caused the
bug.

However, debugg,ing studies have tended not to employ debugging
environments that are typical of those used by professional progra1mners (i.e.
multi-representational software debugging environments, SDEs). Such
environments typically permit the user to switch rapidly between multiple,
linked, concurrently displayed representations. These include program code
listings, data-flow and control-flow visualisations, output displays, etc. So the
issue of how multiple representations are used and coordinated in debugging
and in an object-oriented paradigm is relatively unexplored.

The aim of this paper is to investigate the coordination of
multi-representational environments for Java debugg,ing. In particular, this
work aims to characterise the debugging strategies employed by participants,
both at the level of focus of attention and representation use as well as in
terms of the general reasoning strategy deployed.

4

3 Method

The aim of the experiment reported here was to relate debugg,ing behaviour,
especially representation use and coordination, to debugg,ing strategy and
accuracy, and to representation modality and perspective.

This experiment considered three within subject independent variables:
visualisation modality (textual or graphical), visualisation perspective (data
structure or control-flow), and type of error (data structure or control-flow).
The qualitative analysis reported here took into account the verbal utterances
of participants as well as their debugging accuracy, accumulated fixation time
on and switching frequency between the available representations.
Accumulated fixation time refers to the total time participants spent focusing
on each representation for each of the debugging sessions. Switching frequency
refers to the total number of switches involving each possible pair of
representations (code and visualisation, code and output and visualisation and
code) for each of the debugging sessions.

All subjects participating in the experiment were pre-tested on a battery of
individual difference tests. These comprised verbal, spatial and translation
between representations ability tests.

3.1 The experimental debugging environment

Romero, Cox, du Boulay, and Lutz (2002a) showed that visual attention
tracking methods, and more specifically a tool like the Restricted Focus
Viewer (RFV) (Blackwell, Jansen, &: Marriott, 2000) can be used to
investigate issues related to the process of coordinating multiple external
representations in program debugging. Research of this type can offer
important clues about the relationship between representation use and
programming information types, the issue of sentential versus graphical
representations, and debugging performance.

The Java SDE, a modified version of the RFV that we employed in our
experiment, enabled participants to see the program code, its output for a
sample execution, and a visualisation of this execution. A screen shot of the
system is shown in Figure 1. Participants were able to see the several program
class files in the code window, one at a time, through the use of the side-tabs
('coin', 'pile', 'till' in the example shown). Additionally, the visualisation
window presented a visualisation of the program's execution similar to those
found in Object-Oriented software development environments. This
visualisation highlighted either a data structure or a control-flow perspective.
These representations were selected because research in Object-Oriented
program comprehension has suggested that function and data element
information is highlighted in lang,1.1ages of this programming paradigm while
control-flow is obscured (see Section 3.1).

In our experiments, these representations, and the Java SDE, were static in
that participants were presented with selected pre-computed information
about the program execution. 'vVe chose to present information in this limited

tHHl

Vi. sua l i. sati. on

Output

Figure 1: The debugging environment used by participants

way so that we could control for issues like the increased complexity of dealing
with a full debugging environment and the ephemeral nature of the
information presented by a dynamic debugging tool, which, as mentioned in
Section 2.1, could have played a role in the discrepancy of results reported
by Mulholland (1997) and Patel et al. (1997).

The SDE was implemented on top of a modified version of the Restricted
Focus Viewer (RFV) (Blackwell et al., 2000). The SDE presents image stimuli
in a blurred form. When the user clicks on an image, a section of it around the
mouse pointer becomes focused. In this way, the program restricts how much
of a stimulus can be seen clearly and allows visual attention to be tracked as
the user moves an unblurred 'foveal' area around the screen. Use of the SDE
enabled moment-by-moment representation switching between concurrently
displayed, adjacent representations to be captured for later analysis.

A previous study which employed the SDE to validate the suitability of this
technology to investigate Java program debugging offered promising
results (Romero et al., 2002a). Specifically, it suggested that debugging
performance is not affected by this method of tracking visual attention and
that there might be fixation and switching patterns characteristic of superior
debugging in this context.

3.2 Participants and procedure

The experimental participants were forty nine computer science undergraduate
students from the School of Cognitive and Computing Sciences at Sussex
University, U .K. All of the participants had taken a three month introductory

6

"

"'

course in Java, but their programming experience varied from having only
taken this course to a few extra months of Java experience and even having
worked as professional programmers. The less experienced programmers had
on average ;3 months of Java experience (basically the duration of the
introductory Java course) plus 10.5 months of other programming experience,
while the more experienced group had on average l year of Java and 1:3
months of other prog,Tamming experience.

Participants performed five debugg,ing sessions. The first one was a warm-up
session and it employed a functional visualisation. The four main sessions
followed, two of them using a data structure and the other two a control-flow
visualisation. Also, two of them employed a textual and the other two a
graphical visualisation. In this way, the main sessions' conditions comprised
the four ways in which perspective and modality could be combined, and their
order and combinations were counterbalanced across participants and target
programs.

Each debugging session consisted of two phases. In the first phase participants
were presented with a specification of the target program. This program
specification consisted of two paragraphs that described, in natural language,
the problem that the program was intended to solve, the way it should solve it
(detailing the solution steps, specifying which data structures to use and how
to handle them), together with some samples of program output (both desired
and actual). vVhen participants were dear about the task that the program
should solve and also how it should be solved, they moved on to the second
phase of the session.

In the second phase of a debugging session participants were presented with
three windows containing the program code, a sample interaction with the
program and a visualisation which illustrated this interaction. They were
allowed up to ten minutes to debug each prog,Tam. They were instructed to
identify as many errors as possible in this prog,Tam and to report them
verbally by stating the class file and line number in which they occurred as
well as a brief description of them. They were also encouraged, besides
reporting the errors, to think aloud throughout this second phase. Some
participants chose to speak much more than others.

The target programs consisted of five short Java programs. Functionally, the
'warm-up' session program detects whether a point is inside a rectangle, given
the coordinates of the point and the vertices of the rectangle. The first and
second experimental program prints out the names of the children of a sample
family. The main difference between these two programs is that the second
one is a more sophisticated version of the first one. The third and fourth
experimental programs ('Till' programs) count the cash in a cash reg,ister till,
giving subtotals for the different coin denominations. Again, the main
difference between these two versions is that the fourth program is
implemented in a more sophisticated way. Some of the code, output for a
sample execution session and a control-flow graphical visualisation of this
execution for one of the Till programs are shown in Figures 2, ;3 and 4
respectively.

7

}

public void add(Coin c) {

}

for (int i=O; i<piles.length; i++) {

}

if (c.label.equals(piles[i].coin_type))

piles[O] .add(c);

public static void main(String args[])

}

throws IOException {
Till myTill = new Till();

boolean end_of_coins = false;
BufferedReader in = new BufferedReader

(new InputStreamReader(System.in));

while (!end_of_coins) {

}

String coin_type = in.readLine();
if (coin_type. equals("end"))

end_of_coins = true;

Coin coin = new Coin(coin_type);
myTill.add(coin);

System.out .println("Till contents:");
myTill .countO;

Figure 2: Segment of the prog,l'am code for the Till class.

The programs of the two main debugg,ing sessions were seeded with four
errors, and the 'warm.-up' session's program. was seeded with two errors. The
errors of the main debugging sessions' programs can be classified as
'control-flow' and 'data structure'. In this classification, control-flow errors
have to do with the execution of the program not following a correct path. For
example, the control-flow error in the Till program is located in the two last
lines of the while loop of its main procedure. These two lines should be
included within an else structure, so that the execution of the prog,l'am either
acknowledges an end-of-coins case or adds the new coin to the till, but never
follows both paths at the same time.

Data structure errors normally have undesired consequences for the program
data structures. For the Till program of Figure 2, the data structure error is
located within the only instruction of the if structure of the add method. This
error consists of every coin added to the till being sent only to the first money
pile, regardless of its type. In this way, the money pile receiving all coins is
one which should only accumulate coins of a one-pence denomination.

3.3 Analysis of the representational system

This section offers a brief analysis of the representational system employed in
the experimental task. The DeFT framework (Ainsworth & Labeke, 2002)
provides a basis for exploring the space of interactions between the variables of
interest. The DeFT framework has been proposed by Ainsworth and Labeke

8

rsunx% java Till
6p

1p

2p
6p

1 pound
end
unknovn coin: end

Till contents:
6 1p coins is 0.06 pounds

0 2p coins is 0.0 pounds
0 6p coins is 0.0 pounds
0 10p coins is 0.0 pounds
0 20p coins is 0.0 pounds
0 60p coins is 0.0 pounds

0 1 pound coins is 0.0 pounds
The total is: 0.0 pounds

rsunx%

Fig11re :3: Output from a sample execution session of the Till program.

(2002) for systems that work with multiple external representations. Although
this framework is concerned with learning, some of the issues it raises can be
applied to multi-representational systems of other sorts. It comprises three
fundamental aspects: the functions of the representations, the cognitive tasks
that must be undertaken by a user of these systems, and the desig11
parameters that are unique to learning with multiple external representations.
For the purposes of this analysis, only functions and cognitive tasks will be
taken into account.

The functions of the representations are the roles each representation and
representation subsystem play within the whole system. For example,
representations might complement each other because they encode different
information or because they support different cognitive processes.

Cognitive tasks are the activities that users must undertake in order to, for
example, understand how each representation in the system encodes
information, how to select the appropriate representation to use at any given
moment, and how to coordinate the representations in the system.

Generally speaking, the code represents the specification of the solution to a
problem in the programming language. For the specific problems in the
debugging exercise, the solution consists mainly of simulating the behavior of
entities in the real world. In this way, the output represents some aspect of
this behavior in symbolic terms. Finally, the visualisation represents certain
aspects of the execution of the program.

The main purpose of the debugging environment is to help users to build a
robust mental representation of the program under consideration so that they
can discover and correct any potential errors. In this way, the functions of the
external representations of this debugging environment were mainly to play

9

Figure 4: Control-flow graphical visualisation of a sample execution session of
the Till program.

complementary roles and to assist in the construction of a deeper and more
comprehensive understanding of the program.

There were two kinds of complementary roles played by these external
representations: one concerned with processes, the other concerned with
information. In the graphical visualisation condition, different comprehension
processes can be brought into play because the code and output
representations are mainly textual . The representations also provided
additional information because although all information about the program is
implicit in the code, the input for the sample interaction was only available in
the visualisation and output representations.

The way in which the representations support the construction of a deeper
understanding is by helping users to identify the different perspectives or
information types comprised by the program. According to Pennington
(1987a) , developing a mental representation that comprises these different
perspectives as well as to rich mappings between them is characteristic of good
progra1n1ners.

10

3.4 Debugging accuracy scoring

Participants described aloud where the errors were located and their nature.
The audio recordings of the debugging sessions were analysed to identify the
participants' debugging accuracy. Each set of utterances reporting an error
was scored according to whether participants identified the place and nature of
the error correctly. The place of the error was considered correct if
participants mentioned the line of code where the bug occurred, and partially
correct if they mentioned only the Java method where it happened. Similarly,
identifying the nature of the error was considered as correct if participants
described it appropriately or if they proposed a correct fix for it. If, for
example, they described an effect but not the cause of the error, the score for
identifying the nature of the error was reduced.

4 Results

The quantitative analysis of this experiment has already been reported
in Romero, Lutz, Cox, and du Boulay (2002b). This quantitative analysis
suggested that graphical representations might be more useful than textual
ones when the degree of difficulty of the debugging task poses a challenge to
programmers. Additionally, the results of that analysis linked programming
experience to switching behaviour, suggesting that although switches between
the code and the visualisation are the most common ones, programming
experience might promote a more balanced switching behaviour between the
main represent.ll.t.ion, the r.ode, and the ser.ondary ones .

for the purposes of the qualitative analysis, the data for two participants only
were taken into account. The reason for this was that although all participants
were encouraged to verbalise their thoughts, this was not a compulsory
condition, and only a small percentage of the total participant population did
so. There were six students who talked the whole way through the experiment,
and from these only the two more contrasting participants (in terms of the
independent variables and the pre-test results) are described here. Throughout
this analysis, these two participants will be referred as Participants 1 and 2.

Participant 2 had considerably more programming experience than participant
1. Participant 2 had worked as a professional programmer, knew at least three
other progra1mning languages apart from Java, had 48 months of general
programming experience and 12 months of experience with Java. On the other
hand, participant 1 had not worked as a professional programmer did not
know any other programming languages apart from Java and had only 4
months of both general and Java programming experience. The results of the
individual differences pre.-tests were similar for these two participants, except
for the case of the verbal ability test. The score for Participant 2 in this test
was good while that of Participant 1 was poor.

This analysis compares verbal utterance and log files for these two participants
to explore whether individual differences and different levels of experience were
related to the information types referred to by their verbalisations as well as

11

their general debugging strategy. In order to carry out this comparison, the
utterances of these two participants were categorised both in terms of general
strategy and the information types they referred to. The utterance
categorisation scheme is similar to those applied in Mulholland (1997) and
in Bergantz and Hassell (1991).

This verbal information was supported by synchronous data from the log file
to create a better picture of their debugging strategy.

4.0.1 Utterance analysis

Tables 1 and 2 present the verbal utterances data for the two participants.
Table 1 shows the relative percentages of the different types of utterances. The
final row Total number of utterances shows the total number of utterances in
each debugging session. It can be noticed that Participant 2 provided more
utterances of the type svotting susvicious code than Participant 1. Also,
Participant 1, unlike Participant 2, did not provide utterances of the type
communication of compliance. On the other hand, Participant 2, unlike
Participant 1, did not talk in terms of agenda management. This table does
not exhibit any obvious pattern which characterises sessions by experimental
condition.

Table 2 shows the percentages of the different information types referred to by
the participants. Notice that the utterances taken into account for this table
are a subset of the total number of utterances of participants; this table only
considers those verbalisations referring directly to the program code. Most of
these code references occurred under the utterance type code descrivtion, but
also included some in the hyvothcsis testing, error reporting or noticing
inconsistency types in table 1, among others. The column labeled
undetermined is for those utterances which were describing the code
superficially, almost reading it out loud, and therefore could not be classified
as comprising a specific information type. It can be noticed that Participant 1
talks mostly in terms of data structure, while Participant 2 produces
utterances of undetermined type.

4.0.2 Debugging strategy analysis

The debugging sessions analysed shared several characteristics. First, both
participants started these sessions by making long fixations at the code
window, reading the program almost like reading prose, from top to bottom.
These initial code browsing c11isodcs might have been necessary for them to
familiarise themselves with the code. These code browsing episodes varied in
length, sometimes they were relatively short, while at other times they
extended to cover almost all the debugging session. Occasionally participants
would discover a suspicious piece of code within these initial code browsing
episodes. Sometimes this spotting a suspicious piece of code would prornpt
participants to report this piece of code as containing an error.

After these initial code browsing episodes, the referred participants would

12

Utterance type Example Participant 1 Participant 2
dg dt cg ct dg dt

Hypothesis Should be around line i:i 11 8 i) i) ;3
testing 20 . . 22
Representation .. I'll try the other screen i) 8 i) 2 ;3
related
Confirmatory yeah it was right what I 6 2 8 ;3

said before ...
Code so you've got three 5;3 48 43 63 ;37 i:ii:i

description classes .. . got name age
sex

Visualisation Ok all the inputted coins i:i 8 ;3
description are going to pile zero
Output just saying male, male 9 i)

description male
Agenda I'll come back and look i) 2 2 2
management at that
Self-awareness I find it very difficult 6 14 14 7 li:i 8
of difficulty
Noticing which doesn't really 6 6 fi 2
inconsistency make sense ..
Point of insight that's why it keeps on ;3 3 2

saying " oh its zero'' lll

the visualisation
Analogy "vVe've got the sa1ne 2 7

things as before
Meta-cognitive this output on the side is 2

quite helpful
Communication I'm just looking at 10 12
of compliance the usual program

interaction
Error reporting For a start that i) p ;3 2 6 3 8 8

shouldn't be :":i it should
be O.O;:,

Spotting suspi- buffer reader equals new 2 ;3 2 4 4
cious code buffer reader, that does

seem a bit odd
Total number of 4;3 43 :3::i :",8 40 47
utterances

Table 1: Relative percentages of the different types of participants' utterances.
dg = data structure graphical condition, dt = data structure textual condition,
cg = control-flow graphical condition, ct = control-flow textual condition

cg

62

9

9

19

21

ct
2

4

4

40

i:i

7

2

7

14

7

i:i

42

13

Information Participant 1 Participant 2
type

dg dt cg ct dg dt cg ct
Control-flow 2;1% 8% 9% 5% 15% 6% 28% 2;1%
Data 40% 52% 56% 59% 25% 42% 28% 2;1%
structure
Undetermined 3()% 40% ;J::,% 3()% GO% fi2% 4;3% fi4%

Total lllllll- 30 2;:i 2;3 ;31 20 ;3 1 14 22
ber of
utterances

Table 2: Percentages of the different information types referred to by the par­
ticipants. dg = data structure graphical condition, dt = data structure textual
condition, cg = control-flow graphical condition, ct = control-flow textual con­
dition

sometimes engage in several coordination of representations episodes. These
episodes were characterised by frequent switches between the code and one of
the other two representations. In these episodes, it seems that participants
were trying to build a more robust understanding of the program by
integrating information from different external representations.

Sometimes, errors were reported after a coordination of representations
episode. Participants combined a forward and backward reasoning strategy in
these episodes. Sometimes, by interpreting the code, they would create
expectations about the content of one of the other representations. If these
expectations were not met, the participant tried to locate the place in the code
which might be responsible for this inconsistency, as this place could be the
source of the error. On other occasions they would notice a deviation from the
desired behaviour of the pror,-ram in either the visualisation or the output
window, and try to link it to the place in the code where it originated as this
location could contain the error.

In some cases, participants could not identify the error after a coordination of
representations episode. In these cases, an impasse was produced and they
would normally return to a code browsing episode.

Table 3 shows the number of coordination of representations episodes and of
suspicious piece of code spottings. The rows after these events show the
number of times they prompted participants to report an error and also how
many times these reports were correct. This table also presents the number of
bugs detected and percentage of time devoted to code browsing episodes.

One important difference between Participants 1 and 2 was that Participant 2
devoted a high proportion of his debugging session time doing code browsing
episodes and reported a high proportion of errors by spotting a suspicious
piece of code. It is relevant here to note that Participant 2 showed a high level
of skill when translating between representations as well as verbal skills in the
experiment pre-tests. He also had more programming experience than

14

Participant 1 Participant 2
dg dt cg ct dg dt cg ct

Coordination episode ;3 1 2 1 2 1 2
Episode leading to report 1 1 1 2
Successful episode 1 1 1 1
Spot suspicious code 1 1 1 2 2 4 1
Spotting leading to 1 1 1 2 2 2 1
report
Successful spotting 1 1 1 1
Errors detected 1 0 2 1 2 0 0 2
Initial code browsing ;35 ;3;3 ;35 42 5;3 99 76 41
episode time percentage

Table ;3: Number of coordination of representations episodes and of suspicious
piece of code spottings. dg = data structure graphical condition, dt = data
structure textual condition, cg = control-flow g,Taphical condition, ct = control­
flow textual condition

Participant 1. This seems to indicate that he chose to concentrate mainly on
the code only, not because of a lack of ability or confidence to coordinate the
other two representations, but because he preferred to work in a uni-modal,
textual environment.

Despite this difference in strategy, the debugging accuracy of these two
participants was similar.

5 Discussion

This investigation aimed to relate debugging strategy and performance to
representation use in a multi-representational, multi-modal debugging
environments similar to those found in c01mnercial software development
environments and software visualisation packages. These sorts of environment
are characterised by having several concurrently displayed representations of
the program. There is a central representation, the program code, and a series
of secondary representations that support it (program output and execution
visualisations).

The qualitative analysis of the logs and verbal utterances files for two vocal
participants showed several common characteristics in these two debugging
sessions. Both participants started their sessions with code browsing episodes
in which they performed long fi..xations at the code window, reading the
program almost like reading prose, from top to bottom. Occasionally
participants would discover, within these code browsing episodes, a suspicious
pier-e of r-ode .

This initial code browsing episode to get familiar with the code is in
agreement with studies that have suggested that when debugging someone

else's code, programmers devote an initial period of time to do program
comprehension (Jeffries, 1982; Kessler &: Anderson, 1986; Katz &: Anderson,
1988). Spotting suspicious pieces of code during these episodes could be
classified as a com.prehension debugg,ing strategy (Katz &: Anderson, 1988), in
which participants find bugs while building a representation of the program.

After this initial code browsing episode, participants would sometimes engage
in several coordination of representations episodes. These episodes were
characterised by frequent switches between the code and one of the other two
representations. Sometimes, errors were reported after a coordination of
representations episode. These episodes seem to be a combination of hand
simulation and causal reasoning debugging strategies (Katz &: Anderson,
1988), because participants would reason backwards and forwards between the
code and the other two available representations. These combination of
strategics seem to be due mostly to the employment of a multi-representational
debugging environment and in particular to the visualisation representation.

Previous studies (Jeffries, 1982; Gugerty &:: Olson, 1986; Katz &: Anderson,
1988) disting,11ished clearly between hand (mental) simulation, in which the
program was evaluated by the programmer as if she were the computer and
causal reasoning, in which an error was spotted in the output of the program
and then traced backwards to the code. It seems reasonable to assume that
having a representation that could be considered as an interinediate type of
output could promote a strategy in which the prog,Tam would be mentally
simulated and its expected behaviour verified step by step on the visualisation
representation. Differences between this expected behaviour and the one
reflected in the visualisation could prompt possible error hypotheses. But it is
also possible that the visualisation could contain inconsistencies not related to
the hand simulation expectations, but to those that have to do with the global
functionality of the prog,-ram (the price of an item suddenly chang,ing to a
negative number, for example). In this latter case, the programmer would
probably reason backwards from this inconsistency to the code to discover a
possible error.

The problem solving strategy of these two participants was different in that
Participant 2 had long code browsing episodes and spotted suspicious pieces of
code more frequently during these initial code browsing episodes. Participant
1, on the other hand, had relatively short code browsing episodes and engaged
in more coordination of representations episodes. As pointed out in Section 4,
he might have chosen to concentrate largely on the code, not because of a lack
of ability or confidence to coordinate the other two representations, but
because he preferred to work in a uni-modal, textual environment.

The finding that despite differences in strategy, the debugging accuracy of the
two participants was similar, was also noteworthy. Marked individual
differences in reasoning strategy associated with similarities in performance
have been found on other computer-based tasks such as proof development in
first-order log,ic (Oberlander et al., 1999). In this case, Participant 2 had
considerably more programming experience than Participant 1. He also
showed a higher level of skill when translating between representations as well
as in verbal abilities in the experiment pre-tests. Taking this into account, it

16

was surprising that he did not show a better debugging accuracy than
Participant 1. One possible explanation for this is that his choices of
debugging strategies were not optimal. For example, by choosing a
comprehension debugging strategy he engaged in a relatively large number of
reports of suspicious pieces of code. These reports were unsuccessful most of
the times. The fact that the comprehension debugging strategy was not highly
effective for him suggests that he might have been better off by engag,ing in
more coordination of representations episodes instead.

A clear difference in the types of utterances of these two participants was that
Participant 1 talked mostly in terms of data structure, while Participant 2
produced utterances of undeterm ined type. It seems reasonable to assume that
this difference is related to their difference in the choice of debugging
strategies. Possibly data structure utterances were preferred to control-flow
ones g,iven that Java as an Object-Oriented lang,11age would highlight function
as well as static data element information whilst obscuring control-flow
information (Corritore &: Wiedenbeck, 1999; Wiedenbeck &: Ramalingam,
1999).

It is worth noting that there were no noticeable differences either in debugging
strategy or in utterance type due to the type of visualisation employed
(control-flow and data structure, textual and g,-raphical). However, it is clear
that these results should be taken with caution as only a small proportion of
the participants was taken into account.

6 Conclusions

This study investigated Java program debugging strategies through the use of
a software debugging environment that provided concurrently displayed,
adjacent, multiple and linked representations and that allowed visual attention
switches of participants to be tracked.

The experimental results suggest that the employment of a
multi-representational debugging environment and in particular of a
visualisation representation might have promoted participants to use a
debugging strategy that combined a forward and backward mode of reasoning
about the program code and the rest of the available representations. In this
debugging strategy, progra1mners performed frequent switches between the
code and one of the other two representations. In these episodes, it seems that
participants were trying to build a more robust understanding of the prog,Tam
by integrating information from the different external representations available.

The results confirm previous findings that suggest that when debugging
someone else's code, prog,Tammers devote an initial period of time to do
program comprehension (Jeffries, 1982; Kessler &: Anderson, 1986; Katz &:
Anderson, 1988). This program comprehension episode seem to be
characterised by long fi..xations at the code window, reading the program
almost like reading prose, from top to bottom.

The results of the experiment reported here need to be reinforced by further

17

empirical studies with different experimental settings. One experimental factor
that is important to manipulate is the use of a dynamic debugging
environment instead of, as in this case, a static one. The use of a dynamic
debugging environment might impose an additional cognitive load on
participants but will enhance the ecological validity of the experimental task
by providing an interactive (and more authentic) SDE environment.

7 Acknowledgn1ents

This work is supported by the EPSRC grant GR/N64199. The authors would
like to thank the participants for taking part in the study.

References

Ainsworth, S., &: Labeke, N. V. (2002). Using a multi-representational design
framework to develop and evaluate a dynamic simulation environment.
In Proceedings of the 2002 Dynamic Information and Visualisation
Workshop Ttiebingen, Germany.

Ainsworth, S., Wood, D., &: Bibby, P. (1996). Co-ordinating multiple
representations in computer based learning environments. In Brna, P.,
Paiva, A., &: Self, J. (Eds.), Proceedings of the 1996 European Conference
on Artificial Intelligence on Education, pp. :3:36-342 Lisbon, Portugal.

Ainsworth, S., Wood, D., &: O'Malley, C. (1998). There is more than one way
to solve a problem: evaluating a learning environment that supports the
development of children's multiplication skills. Learning and Instruction,
8(2), 141-L':>7.

Bergantz, D., &: Hassell, J. (1991). Information relationships in PRO LOG
programs: how do programmers comprehend functionality?.
International Journal of Afan-lrfachine Studies, 35, 313-:328.

Blackwell, A., Jansen, A., &: Marriott, K. (2000). Restricted focus viewer: a
tool for tracking visual attention. In Anderson, M., Cheng, P., &:
Haarslev, V. (Eds.), Theory and Ap11lication of Diagrams. Lecture Notes
in Artificial Intelligence 1889, pp. 162-177. Springer-Verlag.

Byrne, M. D., Catrambone, R., &: Stasko, J. T. (1999). Evaluating animations
as student aids in learning computer algorithms. Computers ei

Education, 33, 2;5:3-278.

Carver, S. M., &: Klahr, D. (1986). Assessing children's logo debugging skills
with a formal model Journal of educational computing research, 2.

Corritore, C. L., & Wiedenbeck, S. (1999). Mental representations of expert
procedural and object-oriented programmers in a software maintenance
task. International Journal of Human Com.puter Studies, 50, 61-83.

18

de Jon, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen, J ., &:
Reimann, P. (1998). Acquiring knowledge in science and mathematics:
The use of multiple representations in technology-based learning
environments. In van Someren, M. vV., Reimann, P., Boshuizen, H.
P. A., &: de Jon, T. (Eds.), Learning with Jfultivle Revresentations, pp.
9-40. Elsevier Science, Oxford, U .K.

Eisenstadt, M., Brayshaw, M., &: Paine, J. (1991). The Transvarent Prolog
Jfach.ine. Intellect, Oxford, England.

Gilmore, D. J. (1991). Models of debugging. Acta psych.ologica, 78(1),
1:31-172.

Gilmore, D. J ., &: Green, T. R. G. (1984). Comprehension and recall of
miniature programs. International Journal of Jfan-Jfach.ine Studies,
21 (1), ;31-48.

Good, J. (1999). Programm.ing Paradigm.s, Inforination Tyves and Gravh.ical
Revresentations: Empirical Investigations of Not1ice Program.
Comvreh.ension. Ph.D. thesis, University of Edinburgh, Edinburgh,
Scotland, U .K.

Gugerty, L., &: Olson, G. (1986). Comprehension differences in debugging by
skilled and novice progTammers. In Soloway, E., &: Iyengar, S. (Eds.),
Empirical Studies of Programmers, first worksh.011, pp. 1;3-27 Norwood,
New Jersey. Ablex.

Jeffries, R. (1982). A comparison of the debugging behaviour of expert and
novice programmers. In Proceedings of .11ERA annual m eeting.

Katz, I., &: Anderson, J. R. (1988). Debugging: an analysis of bug location
strategies. Hum.an-Computer Interaction, 3, 3:39-399.

Kessler, C. M., &: Anderson, J. R. (1986). A model of novice debugging in lisp.
In Empirical Studies of Programmers, first worksh.011 Norwood, New
Jersey. Ablex.

Merrill, D. C., Reiser, B. J., Beekelaar, R., &: Hamid, A. (1992). Making
processes visible: scaffolding learning with reasoning-congruent
representations. Lecture Notes in Comvuter Science, 608, 103-110.

Mulholland, P. (1997). Using a fine-grained comparative evaluation technique
to understand and design software Yisualization tools. In vViedenbeck,
S., &: Scholtz, J. (Eds.), Empirical Studies of Programmers, seventh.
worksh.ov, pp. 91-108 New York. ACM press.

Oberlander, J., Stenning, K., &: Cox, R. (1999). Hyperproof: Abstraction,
visual preference and modality. In Moss, L. S., Ginzburg, J., &: de Rijke,
M. (Eds.), Logic, Language, and Computation, Vol. II, pp. 222-2;36.
CSLI Publications.

Patel, M. J ., du Boulay, B., &: Taylor, C. (1997). Comparison of contrasting
Prolog trace output formats. International .Journal of Human Computer
Studies, 47, 289-;322.

19

Pennington, N. (1987a). Comprehension strategies in programming. In Olson,
G. M., Sheppard, S., &: Soloway, E. (Eds.), Em.pirical Studies of
Programmers, second workshop, pp. 100-113 Norwood, New Jersey.
Ab lex.

Pennington, N. (1987b). Stimulus structures and mental representations in
expert comprehension of computer programs. Cognitive Psychology, 19,
295-341.

Romero, P. (2001). Focal structures and information types in Prolog.
International Journal of Human Co1nputer Studies, 54, 211-236.

Romero, P., Cox, R., du Boulay, B., &: Lutz, R. (2002a). Visual attention and
representation switching during java program debugging: A study using
the restricted focus viewer. In Hegarty, M., Meyer, B., &: Narayanan,
N. H. (Eds.), Diagramm.atic Representation and Inference. Second
International Conference, Diagram.s 2002. Lecture Notes in Artificial
Intel ligence 2317, pp. 221-2:3;;,.

Romero, P., Lutz, R., Cox, R., &: du Boulay, B. (2002b). Co-ordination of
multiple external representations during java program debugging. In
Wiedenbeck, S., &: Petre, M. (Eds.). 2002 IEEE Sym1wsia on Human
Centric ComJ)Uting Languages and Environm.ents, pp. 207-214. IEEE
press, Airlington, Virginia, USA.

Vessey, I. (1989). Toward a theory of computer program bu�-s: an empirical
test. International Journal of Afan-Afachine Studies, SO(l), 2:3-46.

vViedenbeck, S., &: Ramalingam, V. (1999). Novice comprehension of small
programs written in the procedural and object-oriented styles.
International Journal of Human Computer Studies, 51, 71-87.

20

