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Abstract 

This paper reports the qualitative analysis part of a Java debugging 
experiment. Java program debugging was investigated in computer 
science students who used a software debugging environment (SDE) that 
provided concurrently displayed, adjacent, multiple and linked 
representations consisting of the program code, a visualisation of the 
program, and its output. 

The aim of this qualitative analysis was to characterise the 
debugging strategies employed by participants, both at the level of focus 
of attention and representation use as well as in terms of the genera.I 
reasoning strategy deployed. A modified version of the Restricted Focus 
Viewer (RFV) - a visual attention tracking system - was employed to 
measure the degree to which each of the representations was used, and 
to record switches between representations. 

The experimental results are in agreement with research in the area 
that suggests that people start a debugging session by trying to 
understand the code of the program before they attempt to locate any 
bugs. Two different strategies to locate bugs were detected: by spotting 
something odd in the program code and by comparing information from 
the different external representations available. These strategies may be 
linked to cognitive characteristics of the programmer such as level of 
programming skill and display modality preference. 

1 Introduction 

Professional programmers typically employ debugging packages, prototyping 
and visualisation tools in software devdopment environments. ThE:se tools 
routindy provide a range of E:xternal reprE:sentations of both thE: static and 
dynamic staks of the program in addition to tlw codE: itsdf. A mE:asurE: of 
professional expertise is the ability with which these rE'presentations are 
coordinated to form a multifacekd but coherent understanding of thE: program. 

A similar situation applies to novicE: programmers. ThE:y often spn1d a largE: 
amount of their timE: attempting to understand the behaviour of programs 

1 

15th Workshop of the Psychology of Programming Interest Group, Keele UK, April 2003 

Pages 421-435 

www.pp1g.org 



when trying to discover errors in the code. To perform this task, they 
normally work with both the program code and the debugger output, trying to 
coordinate and make sense of these two representations. 

Despite the importance of coordinating multiple representations in 
programming, little is known about how multi-representational systerns are 
used for this kind of prog,Tamming task. 

This paper reports an investigation into multiple representation use in novice 
program debugging. The next section briefly describes research on working 
with multiple external representations, both inside and outside the 
programming area. After this, we present the experimental method we applied 
in an empirical study, and describe its main findings. Finally we relate these 
findings to similar work both inside and outside the area of computer 
programming. 

2 Coordination of n1ultiple external 

representations in progranuuing 

11fodality and pcrsvcctivc are two important aspects to consider regarding the 
coordination of multiple representations in programming ( de Jon, Ainsworth, 
Dobson, van der Hulst, Levonen, &: Reimann, 1998). 

2.1 Modality 

The term 'modality' is used here to mean the representational form used to 
present or display information, rather than in the psychological sense of a 
sensory channel. A typical modality distinction is between propositional and 
diagrammatic representations. 

Tims, this first aspect refers to coordinating representations which are 
basically propositional with those that are mainly diagrammatic. It is not 
clear whether coordinating representations with the same modality type has 
advantages over working with mixed multiple representations or whether 
including a high degree of graphicality has potential benefits for performing 
the task (Ainsworth, Wood, &: Bibby, 1996). 

According to (Ainsworth et al., 1996), in general, the more different the degree 
of g-raphicality external representations exhibit, the more difficult it is for 
students to coordinate them. However, this will also depend on individual 
ability and the support given by the software environment. According to 
Oberlander, Stenning, and Cox (1999), one view is that if the multimodal 
system involves diag,Tammatic representations, people who have a preference 
for the visual modality are those who will benefit more from it ( the visual 
zwcf crcncc hypothesis). Another view is that people will benefit from 
multimodal systems to the degree that they are able to translate between 
modalities (the transmodal hypothesis). 
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This latter view seems to be in agreement with Ainsworth, vVood, and 
O'Malley's (1998) conclusion that the design of environments that require the 
coordination of different modalities has to pay special attention to providing 
cues to support the process of translation between the representations. 

Although programmers normally have to coordinate representations of 
different modalities, there has not been much research on this topic in the area 
of prog,Tamming. One of the few examples is the GIL system (Merrill, Reiser, 
Beekelaar, &: Hamid, 1992), which attempts to provide reasoning-congruent 
visual representations in the form of control-flow diagrams to aid the 
generation and comprehension of LISP, a functional programming language 
which normally employs textual representations. Merrill et al. (1992) claim 
that the GIL system is successful in teaching novices to program in this 
language; however, this work did not compare coordination of the same and 
different modalities. 

Work in the algorithm animation area (Byrne, Catrambone, &: Stasko, 1999) 
has found advantages for the use of multiple representations of mixed 
modality. Byrne et al. (1999) found that students benefited from the dual 
mental encoding that results from presenting a graphical visualisation of the 
program together with a textual explanation of it. 

Other studies in the area have been concerned with issues related to the 
format of the output of debugging packages (Mulholland, 1997; Patel, 
du Boulay, &: Taylor, 1997). Those studies have offered conflicting results 
about the coordination of representations of different modality. Patel et al. 
(1997) found that subjects working with representations of the same and 
different modalities had similar performance, while Mulholland (1997) 
reported that those working with different modalities showed a poorer 
performance than those working with the same modality. In both cases, 
participants worked with the program code and with the debugger's output. 
The debugger notations used by both of these studies were mostly textual. 
The only predominantly graphical debugging tool used was TPM (Eisenstadt, 
Brayshaw, &: Paine, 1991). While the performance of the participants of the 
former study (Patel et al., 1997) was similar for the textual debuggers and for 
TPM, the subjects of the latter study (Mulholland, 1997) found working with 
TPM more difficult. One important difference between these two studies is 
that while the former used static representations, the latter employed a 
visualisation package ( dynamic representations). The additional cog11itive load 
of learning and using a multi-representational visualisation package may 
explain the difference in findings. 

2.2 Perspective 

vVhile modality is concerned with form, perspective is concerned with content. 
Perspective refers to the prog,Tamming information types that a representation 
highlights. Computer programs are information structures that comprise 
different types of information (Pennington, 1987b), and programming 
notations usually highlight some of these aspects at the cost of obscuring 
others (the match-mismatch. h.yvoth.csis) (Gilmore &: Green, 1984). Some of 
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these different information types are: function, data structure, operations, 
data-flow and control-flow. 

Experienced programmers, when comprehending code, are able to develop a 
mental representation that comprises these different perspectives or 
information types, as well as rich mappings between them (Pennington, 1987a). 

Pernped.iw� is orthogonal to modality. F;ad1 of these pernpedives ca.n he 
displayed in either a diagrammatic or textual modality and each modality can 
be employed to present a variety of perspectives of the prog,-ram. 

2.3 Java debugging 

To date, there have been numerous investigations of debugging behaviour 
across a range of programming languages (Gilmore, 1991; Romero, 2001; 
Vessey, 1989), and previous research has also examined the effect of 
representational mode upon program comprehension (Good, 1999; Merrill 
et al., 1992; Mulholland, 1997; Patel et al., 1997). 

Studies relating to debugging strateg,ies are of special interest to this 
investigation (Jeffries, 1982; Gugerty &: Olson, 1986; Carver &: Klahr, 1986; 
Kessler &: Anderson, 1986; Katz &: Anderson, 1988). According to Katz and 
Anderson ( 1988), debugging strategies can be classified into those that reflect 
either forward reasoning or backward reasoning. The first category comprises 
those strateg,ies in which programmers start the bug search from the program 
code, while the second involves starting from the incorrect behaviour of the 
program and reasoning backwards to the origin of the problem in the code. 
Examples of forward reasoning include comprehension, where bugs are found 
while the programmer is building a representation of the program and hand 
sim.ulation, where progra1mners evaluate the code as if they were the 
computer. Backward reasoning includes strategies such as simple mapving and 
causal reasoning. In simple mapping the program's output points directly to 
the incorrect line of code, while in causal reasoning the search starts from the 
incorrect output going backwards towards the code segment that caused the 
bug. 

However, debugg,ing studies have tended not to employ debugging 
environments that are typical of those used by professional progra1mners ( i.e. 
multi-representational software debugging environments, SDEs). Such 
environments typically permit the user to switch rapidly between multiple, 
linked, concurrently displayed representations. These include program code 
listings, data-flow and control-flow visualisations, output displays, etc. So the 
issue of how multiple representations are used and coordinated in debugging 
and in an object-oriented paradigm is relatively unexplored. 

The aim of this paper is to investigate the coordination of 
multi-representational environments for Java debugg,ing. In particular, this 
work aims to characterise the debugging strategies employed by participants, 
both at the level of focus of attention and representation use as well as in 
terms of the general reasoning strategy deployed. 

4 



3 Method 

The aim of the experiment reported here was to relate debugg,ing behaviour, 
especially representation use and coordination, to debugg,ing strategy and 
accuracy, and to representation modality and perspective. 

This experiment considered three within subject independent variables: 
visualisation modality ( textual or graphical), visualisation perspective ( data 
structure or control-flow), and type of error ( data structure or control-flow). 
The qualitative analysis reported here took into account the verbal utterances 
of participants as well as their debugging accuracy, accumulated fixation time 
on and switching frequency between the available representations. 
Accumulated fixation time refers to the total time participants spent focusing 
on each representation for each of the debugging sessions. Switching frequency 
refers to the total number of switches involving each possible pair of 
representations ( code and visualisation, code and output and visualisation and 
code) for each of the debugging sessions. 

All subjects participating in the experiment were pre-tested on a battery of 
individual difference tests. These comprised verbal, spatial and translation 
between representations ability tests. 

3.1 The experimental debugging environment 

Romero, Cox, du Boulay, and Lutz (2002a) showed that visual attention 
tracking methods, and more specifically a tool like the Restricted Focus 
Viewer (RFV) (Blackwell, Jansen, &: Marriott, 2000) can be used to 
investigate issues related to the process of coordinating multiple external 
representations in program debugging. Research of this type can offer 
important clues about the relationship between representation use and 
programming information types, the issue of sentential versus graphical 
representations, and debugging performance. 

The Java SDE, a modified version of the RFV that we employed in our 
experiment, enabled participants to see the program code, its output for a 
sample execution, and a visualisation of this execution. A screen shot of the 
system is shown in Figure 1. Participants were able to see the several program 
class files in the code window, one at a time, through the use of the side-tabs 
('coin', 'pile', 'till' in the example shown). Additionally, the visualisation 
window presented a visualisation of the program's execution similar to those 
found in Object-Oriented software development environments. This 
visualisation highlighted either a data structure or a control-flow perspective. 
These representations were selected because research in Object-Oriented 
program comprehension has suggested that function and data element 
information is highlighted in lang,1.1ages of this programming paradigm while 
control-flow is obscured (see Section 3.1). 

In our experiments, these representations, and the Java SDE, were static in 
that participants were presented with selected pre-computed information 
about the program execution. 'vVe chose to present information in this limited 



tHHl 

Vi. sua l i. sati. on 

Output 

Figure 1: The debugging environment used by participants 

way so that we could control for issues like the increased complexity of dealing 
with a full debugging environment and the ephemeral nature of the 
information presented by a dynamic debugging tool, which, as mentioned in 
Section 2.1, could have played a role in the discrepancy of results reported 
by Mulholland (1997) and Patel et al. (1997). 

The SDE was implemented on top of a modified version of the Restricted 
Focus Viewer (RFV) (Blackwell et al., 2000). The SDE presents image stimuli 
in a blurred form. When the user clicks on an image, a section of it around the 
mouse pointer becomes focused. In this way, the program restricts how much 
of a stimulus can be seen clearly and allows visual attention to be tracked as 
the user moves an unblurred 'foveal' area around the screen. Use of the SDE 
enabled moment-by-moment representation switching between concurrently 
displayed, adjacent representations to be captured for later analysis. 

A previous study which employed the SDE to validate the suitability of this 
technology to investigate Java program debugging offered promising 
results (Romero et al., 2002a). Specifically, it suggested that debugging 
performance is not affected by this method of tracking visual attention and 
that there might be fixation and switching patterns characteristic of superior 
debugging in this context. 

3.2 Participants and procedure 

The experimental participants were forty nine computer science undergraduate 
students from the School of Cognitive and Computing Sciences at Sussex 
University, U .K. All of the participants had taken a three month introductory 
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course in Java, but their programming experience varied from having only 
taken this course to a few extra months of Java experience and even having 
worked as professional programmers. The less experienced programmers had 
on average ;3 months of Java experience (basically the duration of the 
introductory Java course) plus 10.5 months of other programming experience, 
while the more experienced group had on average l year of Java and 1:3 
months of other prog,Tamming experience. 

Participants performed five debugg,ing sessions. The first one was a warm-up 
session and it employed a functional visualisation. The four main sessions 
followed, two of them using a data structure and the other two a control-flow 
visualisation. Also, two of them employed a textual and the other two a 
graphical visualisation. In this way, the main sessions' conditions comprised 
the four ways in which perspective and modality could be combined, and their 
order and combinations were counterbalanced across participants and target 
programs. 

Each debugging session consisted of two phases. In the first phase participants 
were presented with a specification of the target program. This program 
specification consisted of two paragraphs that described, in natural language, 
the problem that the program was intended to solve, the way it should solve it 
(detailing the solution steps, specifying which data structures to use and how 
to handle them), together with some samples of program output (both desired 
and actual). vVhen participants were dear about the task that the program 
should solve and also how it should be solved, they moved on to the second 
phase of the session. 

In the second phase of a debugging session participants were presented with 
three windows containing the program code, a sample interaction with the 
program and a visualisation which illustrated this interaction. They were 
allowed up to ten minutes to debug each prog,Tam. They were instructed to 
identify as many errors as possible in this prog,Tam and to report them 
verbally by stating the class file and line number in which they occurred as 
well as a brief description of them. They were also encouraged, besides 
reporting the errors, to think aloud throughout this second phase. Some 
participants chose to speak much more than others. 

The target programs consisted of five short Java programs. Functionally, the 
'warm-up' session program detects whether a point is inside a rectangle, given 
the coordinates of the point and the vertices of the rectangle. The first and 
second experimental program prints out the names of the children of a sample 
family. The main difference between these two programs is that the second 
one is a more sophisticated version of the first one. The third and fourth 
experimental programs ('Till' programs) count the cash in a cash reg,ister till, 
giving subtotals for the different coin denominations. Again, the main 
difference between these two versions is that the fourth program is 
implemented in a more sophisticated way. Some of the code, output for a 
sample execution session and a control-flow graphical visualisation of this 
execution for one of the Till programs are shown in Figures 2, ;3 and 4 
respectively. 
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} 

public void add(Coin c) { 

} 

for (int i=O; i<piles.length; i++) { 

} 

if (c.label.equals(piles[i].coin_type)) 

piles[O] .add(c); 

public static void main(String args[]) 

} 

throws IOException { 
Till myTill = new Till(); 

boolean end_of_coins = false; 
BufferedReader in = new BufferedReader 

(new InputStreamReader(System.in)); 

while (!end_of_coins) { 

} 

String coin_type = in.readLine(); 
if (coin_type. equals("end")) 

end_of_coins = true; 

Coin coin = new Coin(coin_type); 
myTill.add(coin); 

System.out .println("Till contents:"); 
myTill .countO; 

Figure 2: Segment of the prog,l'am code for the Till class. 

The programs of the two main debugg,ing sessions were seeded with four 
errors, and the 'warm.-up' session's program. was seeded with two errors. The 
errors of the main debugging sessions' programs can be classified as 
'control-flow' and 'data structure'. In this classification, control-flow errors 
have to do with the execution of the program not following a correct path. For 
example, the control-flow error in the Till program is located in the two last 
lines of the while loop of its main procedure. These two lines should be 
included within an else structure, so that the execution of the prog,l'am either 
acknowledges an end-of-coins case or adds the new coin to the till, but never 
follows both paths at the same time. 

Data structure errors normally have undesired consequences for the program 
data structures. For the Till program of Figure 2, the data structure error is 
located within the only instruction of the if structure of the add method. This 
error consists of every coin added to the till being sent only to the first money 
pile, regardless of its type. In this way, the money pile receiving all coins is 
one which should only accumulate coins of a one-pence denomination. 

3.3 Analysis of the representational system 

This section offers a brief analysis of the representational system employed in 
the experimental task. The DeFT framework (Ainsworth & Labeke, 2002) 
provides a basis for exploring the space of interactions between the variables of 
interest. The DeFT framework has been proposed by Ainsworth and Labeke 
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rsunx% java Till 
6p 

1p 

2p 
6p 

1 pound 
end 
unknovn coin: end 

Till contents: 
6 1p coins is 0.06 pounds 

0 2p coins is 0.0 pounds 
0 6p coins is 0.0 pounds 
0 10p coins is 0.0 pounds 
0 20p coins is 0.0 pounds 
0 60p coins is 0.0 pounds 

0 1 pound coins is 0.0 pounds 
The total is: 0.0 pounds 

rsunx% 

Fig11re :3: Output from a sample execution session of the Till program. 

(2002) for systems that work with multiple external representations. Although 
this framework is concerned with learning, some of the issues it raises can be 
applied to multi-representational systems of other sorts. It comprises three 
fundamental aspects: the functions of the representations, the cognitive tasks 
that must be undertaken by a user of these systems, and the desig11 
parameters that are unique to learning with multiple external representations. 
For the purposes of this analysis, only functions and cognitive tasks will be 
taken into account. 

The functions of the representations are the roles each representation and 
representation subsystem play within the whole system. For example, 
representations might complement each other because they encode different 
information or because they support different cognitive processes. 

Cognitive tasks are the activities that users must undertake in order to, for 
example, understand how each representation in the system encodes 
information, how to select the appropriate representation to use at any given 
moment, and how to coordinate the representations in the system. 

Generally speaking, the code represents the specification of the solution to a 
problem in the programming language. For the specific problems in the 
debugging exercise, the solution consists mainly of simulating the behavior of 
entities in the real world. In this way, the output represents some aspect of 
this behavior in symbolic terms. Finally, the visualisation represents certain 
aspects of the execution of the program. 

The main purpose of the debugging environment is to help users to build a 
robust mental representation of the program under consideration so that they 
can discover and correct any potential errors. In this way, the functions of the 
external representations of this debugging environment were mainly to play 
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Figure 4: Control-flow graphical visualisation of a sample execution session of 
the Till program. 

complementary roles and to assist in the construction of a deeper and more 
comprehensive understanding of the program. 

There were two kinds of complementary roles played by these external 
representations: one concerned with processes, the other concerned with 
information. In the graphical visualisation condition, different comprehension 
processes can be brought into play because the code and output 
representations are mainly textual . The representations also provided 
additional information because although all information about the program is 
implicit in the code, the input for the sample interaction was only available in 
the visualisation and output representations. 

The way in which the representations support the construction of a deeper 
understanding is by helping users to identify the different perspectives or 
information types comprised by the program. According to Pennington 
( 1987a) , developing a mental representation that comprises these different 
perspectives as well as to rich mappings between them is characteristic of good 
progra1n1ners. 
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3.4 Debugging accuracy scoring 

Participants described aloud where the errors were located and their nature. 
The audio recordings of the debugging sessions were analysed to identify the 
participants' debugging accuracy. Each set of utterances reporting an error 
was scored according to whether participants identified the place and nature of 
the error correctly. The place of the error was considered correct if 
participants mentioned the line of code where the bug occurred, and partially 
correct if they mentioned only the Java method where it happened. Similarly, 
identifying the nature of the error was considered as correct if participants 
described it appropriately or if they proposed a correct fix for it. If, for 
example, they described an effect but not the cause of the error, the score for 
identifying the nature of the error was reduced. 

4 Results 

The quantitative analysis of this experiment has already been reported 
in Romero, Lutz, Cox, and du Boulay (2002b). This quantitative analysis 
suggested that graphical representations might be more useful than textual 
ones when the degree of difficulty of the debugging task poses a challenge to 
programmers. Additionally, the results of that analysis linked programming 
experience to switching behaviour, suggesting that although switches between 
the code and the visualisation are the most common ones, programming 
experience might promote a more balanced switching behaviour between the 
main represent.ll.t.ion, the r.ode, and the ser.ondary ones . 

for the purposes of the qualitative analysis, the data for two participants only 
were taken into account. The reason for this was that although all participants 
were encouraged to verbalise their thoughts, this was not a compulsory 
condition, and only a small percentage of the total participant population did 
so. There were six students who talked the whole way through the experiment, 
and from these only the two more contrasting participants (in terms of the 
independent variables and the pre-test results) are described here. Throughout 
this analysis, these two participants will be referred as Participants 1 and 2. 

Participant 2 had considerably more programming experience than participant 
1. Participant 2 had worked as a professional programmer, knew at least three 
other progra1mning languages apart from Java, had 48 months of general 
programming experience and 12 months of experience with Java. On the other 
hand, participant 1 had not worked as a professional programmer did not 
know any other programming languages apart from Java and had only 4 
months of both general and Java programming experience. The results of the 
individual differences pre.-tests were similar for these two participants, except 
for the case of the verbal ability test. The score for Participant 2 in this test 
was good while that of Participant 1 was poor. 

This analysis compares verbal utterance and log files for these two participants 
to explore whether individual differences and different levels of experience were 
related to the information types referred to by their verbalisations as well as 
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their general debugging strategy. In order to carry out this comparison, the 
utterances of these two participants were categorised both in terms of general 
strategy and the information types they referred to. The utterance 
categorisation scheme is similar to those applied in Mulholland (1997) and 
in Bergantz and Hassell (1991). 

This verbal information was supported by synchronous data from the log file 
to create a better picture of their debugging strategy. 

4.0.1 Utterance analysis 

Tables 1 and 2 present the verbal utterances data for the two participants. 
Table 1 shows the relative percentages of the different types of utterances. The 
final row Total number of utterances shows the total number of utterances in 
each debugging session. It can be noticed that Participant 2 provided more 
utterances of the type svotting susvicious code than Participant 1. Also, 
Participant 1, unlike Participant 2, did not provide utterances of the type 
communication of compliance. On the other hand, Participant 2, unlike 
Participant 1, did not talk in terms of agenda management. This table does 
not exhibit any obvious pattern which characterises sessions by experimental 
condition. 

Table 2 shows the percentages of the different information types referred to by 
the participants. Notice that the utterances taken into account for this table 
are a subset of the total number of utterances of participants; this table only 
considers those verbalisations referring directly to the program code. Most of 
these code references occurred under the utterance type code descrivtion, but 
also included some in the hyvothcsis testing, error reporting or noticing 
inconsistency types in table 1, among others. The column labeled 
undetermined is for those utterances which were describing the code 
superficially, almost reading it out loud, and therefore could not be classified 
as comprising a specific information type. It can be noticed that Participant 1 
talks mostly in terms of data structure, while Participant 2 produces 
utterances of undetermined type. 

4.0.2 Debugging strategy analysis 

The debugging sessions analysed shared several characteristics. First, both 
participants started these sessions by making long fixations at the code 
window, reading the program almost like reading prose, from top to bottom. 
These initial code browsing c11isodcs might have been necessary for them to 
familiarise themselves with the code. These code browsing episodes varied in 
length, sometimes they were relatively short, while at other times they 
extended to cover almost all the debugging session. Occasionally participants 
would discover a suspicious piece of code within these initial code browsing 
episodes. Sometimes this spotting a suspicious piece of code would prornpt 
participants to report this piece of code as containing an error. 

After these initial code browsing episodes, the referred participants would 
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Utterance type Example Participant 1 Participant 2 
dg dt cg ct dg dt 

Hypothesis Should be around line i:i 11 8 i) i) ;3 
testing 20 . .  22 
Representation .. I'll try the other screen i) 8 i) 2 ;3 
related 
Confirmatory yeah it was right what I 6 2 8 ;3 

said before ... 
Code so you've got three 5;3 48 43 63 ;37 i:ii:i 

description classes .. .  got name age 
sex 

Visualisation Ok all the inputted coins i:i 8 ;3 
description are going to pile zero 
Output just saying male, male 9 i) 

description male 
Agenda I'll come back and look i) 2 2 2 
management at that 
Self-awareness I find it very difficult 6 14 14 7 li:i 8 
of difficulty 
Noticing which doesn't really 6 6 fi 2 
inconsistency make sense .. 
Point of insight that's why it keeps on ;3 3 2 

saying " oh its zero'' lll 

the visualisation 
Analogy "vVe've got the sa1ne 2 7 

things as before 
Meta-cognitive this output on the side is 2 

quite helpful 
Communication I'm just looking at 10 12 
of compliance the usual program 

interaction 
Error reporting For a start that i) p ;3 2 6 3 8 8 

shouldn't be :":i it should 
be O.O;:, 

Spotting suspi- buffer reader equals new 2 ;3 2 4 4 
cious code buffer reader, that does 

seem a bit odd 
Total number of 4;3 43 :3::i :",8 40 47 
utterances 

Table 1: Relative percentages of the different types of participants' utterances. 
dg = data structure graphical condition, dt = data structure textual condition, 
cg = control-flow graphical condition, ct = control-flow textual condition 

cg 

62 

9 

9 

19 

21 

ct 
2 

4 

4 

40 

i:i 

7 

2 

7 

14 

7 

i:i 

42 
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Information Participant 1 Participant 2 
type 

dg dt cg ct dg dt cg ct 
Control-flow 2;1% 8% 9% 5% 15% 6% 28% 2;1% 
Data 40% 52% 56% 59% 25% 42% 28% 2;1% 
structure 
Undetermined 3()% 40% ;J::,% 3()% GO% fi2% 4;3% fi4% 

Total lllllll- 30 2;:i 2;3 ;31 20 ;3 1 14 22 
ber of 
utterances 

Table 2: Percentages of the different information types referred to by the par­
ticipants. dg = data structure graphical condition, dt = data structure textual 
condition, cg = control-flow graphical condition, ct = control-flow textual con­
dition 

sometimes engage in several coordination of representations episodes. These 
episodes were characterised by frequent switches between the code and one of 
the other two representations. In these episodes, it seems that participants 
were trying to build a more robust understanding of the program by 
integrating information from different external representations. 

Sometimes, errors were reported after a coordination of representations 
episode. Participants combined a forward and backward reasoning strategy in 
these episodes. Sometimes, by interpreting the code, they would create 
expectations about the content of one of the other representations. If these 
expectations were not met, the participant tried to locate the place in the code 
which might be responsible for this inconsistency, as this place could be the 
source of the error. On other occasions they would notice a deviation from the 
desired behaviour of the pror,-ram in either the visualisation or the output 
window, and try to link it to the place in the code where it originated as this 
location could contain the error. 

In some cases, participants could not identify the error after a coordination of 
representations episode. In these cases, an impasse was produced and they 
would normally return to a code browsing episode. 

Table 3 shows the number of coordination of representations episodes and of 
suspicious piece of code spottings. The rows after these events show the 
number of times they prompted participants to report an error and also how 
many times these reports were correct. This table also presents the number of 
bugs detected and percentage of time devoted to code browsing episodes. 

One important difference between Participants 1 and 2 was that Participant 2 
devoted a high proportion of his debugging session time doing code browsing 
episodes and reported a high proportion of errors by spotting a suspicious 
piece of code. It is relevant here to note that Participant 2 showed a high level 
of skill when translating between representations as well as verbal skills in the 
experiment pre-tests. He also had more programming experience than 
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Participant 1 Participant 2 
dg dt cg ct dg dt cg ct 

Coordination episode ;3 1 2 1 2 1 2 
Episode leading to report 1 1 1 2 
Successful episode 1 1 1 1 
Spot suspicious code 1 1 1 2 2 4 1 
Spotting leading to 1 1 1 2 2 2 1 
report 
Successful spotting 1 1 1 1 
Errors detected 1 0 2 1 2 0 0 2 
Initial code browsing ;35 ;3;3 ;35 42 5;3 99 76 41 
episode time percentage 

Table ;3: Number of coordination of representations episodes and of suspicious 
piece of code spottings. dg = data structure graphical condition, dt = data 
structure textual condition, cg = control-flow g,Taphical condition, ct = control­
flow textual condition 

Participant 1. This seems to indicate that he chose to concentrate mainly on 
the code only, not because of a lack of ability or confidence to coordinate the 
other two representations, but because he preferred to work in a uni-modal, 
textual environment. 

Despite this difference in strategy, the debugging accuracy of these two 
participants was similar. 

5 Discussion 

This investigation aimed to relate debugging strategy and performance to 
representation use in a multi-representational, multi-modal debugging 
environments similar to those found in c01mnercial software development 
environments and software visualisation packages. These sorts of environment 
are characterised by having several concurrently displayed representations of 
the program. There is a central representation, the program code, and a series 
of secondary representations that support it (program output and execution 
visualisations). 

The qualitative analysis of the logs and verbal utterances files for two vocal 
participants showed several common characteristics in these two debugging 
sessions. Both participants started their sessions with code browsing episodes 
in which they performed long fi..xations at the code window, reading the 
program almost like reading prose, from top to bottom. Occasionally 
participants would discover, within these code browsing episodes, a suspicious 
pier-e of r-ode .  

This initial code browsing episode to get familiar with the code is  in 
agreement with studies that have suggested that when debugging someone 



else's code, programmers devote an initial period of time to do program 
comprehension (Jeffries, 1982; Kessler &: Anderson, 1986; Katz &: Anderson, 
1988). Spotting suspicious pieces of code during these episodes could be 
classified as a com.prehension debugg,ing strategy (Katz &: Anderson, 1988), in 
which participants find bugs while building a representation of the program. 

After this initial code browsing episode, participants would sometimes engage 
in several coordination of representations episodes. These episodes were 
characterised by frequent switches between the code and one of the other two 
representations. Sometimes, errors were reported after a coordination of 
representations episode. These episodes seem to be a combination of hand 
simulation and causal reasoning debugging strategies (Katz &: Anderson, 
1988), because participants would reason backwards and forwards between the 
code and the other two available representations. These combination of 
strategics seem to be due mostly to the employment of a multi-representational 
debugging environment and in particular to the visualisation representation. 

Previous studies (Jeffries, 1982; Gugerty &:: Olson, 1986; Katz &: Anderson, 
1988) disting,11ished clearly between hand (mental) simulation, in which the 
program was evaluated by the programmer as if she were the computer and 
causal reasoning, in which an error was spotted in the output of the program 
and then traced backwards to the code. It seems reasonable to assume that 
having a representation that could be considered as an interinediate type of 
output could promote a strategy in which the prog,Tam would be mentally 
simulated and its expected behaviour verified step by step on the visualisation 
representation. Differences between this expected behaviour and the one 
reflected in the visualisation could prompt possible error hypotheses. But it is 
also possible that the visualisation could contain inconsistencies not related to 
the hand simulation expectations, but to those that have to do with the global 
functionality of the prog,-ram (the price of an item suddenly chang,ing to a 
negative number, for example). In this latter case, the programmer would 
probably reason backwards from this inconsistency to the code to discover a 
possible error. 

The problem solving strategy of these two participants was different in that 
Participant 2 had long code browsing episodes and spotted suspicious pieces of 
code more frequently during these initial code browsing episodes. Participant 
1, on the other hand, had relatively short code browsing episodes and engaged 
in more coordination of representations episodes. As pointed out in Section 4, 
he might have chosen to concentrate largely on the code, not because of a lack 
of ability or confidence to coordinate the other two representations, but 
because he preferred to work in a uni-modal, textual environment. 

The finding that despite differences in strategy, the debugging accuracy of the 
two participants was similar, was also noteworthy. Marked individual 
differences in reasoning strategy associated with similarities in performance 
have been found on other computer-based tasks such as proof development in 
first-order log,ic (Oberlander et al., 1999). In this case, Participant 2 had 
considerably more programming experience than Participant 1. He also 
showed a higher level of skill when translating between representations as well 
as in verbal abilities in the experiment pre-tests. Taking this into account, it 
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was surprising that he did not show a better debugging accuracy than 
Participant 1. One possible explanation for this is that his choices of 
debugging strategies were not optimal. For example, by choosing a 
comprehension debugging strategy he engaged in a relatively large number of 
reports of suspicious pieces of code. These reports were unsuccessful most of 
the times. The fact that the comprehension debugging strategy was not highly 
effective for him suggests that he might have been better off by engag,ing in 
more coordination of representations episodes instead. 

A clear difference in the types of utterances of these two participants was that 
Participant 1 talked mostly in terms of data structure, while Participant 2 
produced utterances of undeterm ined type. It seems reasonable to assume that 
this difference is related to their difference in the choice of debugging 
strategies. Possibly data structure utterances were preferred to control-flow 
ones g,iven that Java as an Object-Oriented lang,11age would highlight function 
as well as static data element information whilst obscuring control-flow 
information (Corritore &: Wiedenbeck, 1999; Wiedenbeck &: Ramalingam, 
1999). 

It is worth noting that there were no noticeable differences either in debugging 
strategy or in utterance type due to the type of visualisation employed 
(control-flow and data structure, textual and g,-raphical). However, it is clear 
that these results should be taken with caution as only a small proportion of 
the participants was taken into account. 

6 Conclusions 

This study investigated Java program debugging strategies through the use of 
a software debugging environment that provided concurrently displayed, 
adjacent, multiple and linked representations and that allowed visual attention 
switches of participants to be tracked. 

The experimental results suggest that the employment of a 
multi-representational debugging environment and in particular of a 
visualisation representation might have promoted participants to use a 
debugging strategy that combined a forward and backward mode of reasoning 
about the program code and the rest of the available representations. In this 
debugging strategy, progra1mners performed frequent switches between the 
code and one of the other two representations. In these episodes, it seems that 
participants were trying to build a more robust understanding of the prog,Tam 
by integrating information from the different external representations available. 

The results confirm previous findings that suggest that when debugging 
someone else's code, prog,Tammers devote an initial period of time to do 
program comprehension (Jeffries, 1982; Kessler &: Anderson, 1986; Katz &: 
Anderson, 1988). This program comprehension episode seem to be 
characterised by long fi..xations at the code window, reading the program 
almost like reading prose, from top to bottom. 

The results of the experiment reported here need to be reinforced by further 
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empirical studies with different experimental settings. One experimental factor 
that is important to manipulate is the use of a dynamic debugging 
environment instead of, as in this case, a static one. The use of a dynamic 
debugging environment might impose an additional cognitive load on 
participants but will enhance the ecological validity of the experimental task 
by providing an interactive (and more authentic) SDE environment. 
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