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Abstract 

Syntactically correct code does not fall from the sky; for beginning programmers, the process that 
leads to a student’s first executable program is not well understood. We have begun to explore the 
behaviors that students exhibit while authoring code by focusing on when and what they choose to 
compile. By examining these compilation behaviors, we have determined the most common errors 
encountered in-class by students using BlueJ in our introductory course on object-oriented 
programming at Kent, how they tend to program when in supervised laboratory sessions, and 
identified future directions of study driven by our initial observations. Our goal is to apply this 
research to the future development of BlueJ and instructional methodologies involving it’s use in the 
classroom. 

Introduction 

This paper presents a first look at novice compilation behavior of students learning object-oriented 
programming using the BlueJ pedagogic programming environment. The goals of our explorations of 
observable programmer behavior are to help inform the teaching of programming and the 
development of pedagogic programming environments. In this paper, we explore some gross 
behavioral characteristics exhibited by a population of first-year students learning Java while utilizing 
BlueJ, a pedagogic integrated development environment for programming in Java. We begin by 
presenting related work in this area in section two, our data collection methods in section three, in 
section four an analysis of the data collected during the autumn term of 2003, a discussion of our work 
in section five, and close with future research directions based on these analyses. 

1.  Previous Work 

Bits and pieces of research in the areas of computer science education research, the psychology of 
programming, and human-computer interaction contribute to our current understanding of compilation 
behavior. At the least, studies regarding novice programming, syntax errors and error rates, compiler 
and error message design, debugging, pedagogical programming environments, pedagogic 
programming languages, and language subsets all have some measure of relevance. Typically, these 
studies explore the cognitive psychology of novice programmers, probing what they understand. Very 
few of these studies explore the programmer's behavior, or how we might shape that behavior to 
improve programming practice. 

Misconceptions, Planning 

Studies regarding logical, run-time (post-syntactic) errors and  “misconceptions” represent one class 
of cognitive research (Spohrer et. al. 1985; Spohrer & Soloway 1986a, 1986b). Characterizing the 
planning process, problem-solving process, and comprehension of written programs are yet other 
themes in the research (Brooks 1983; Rist, 1986; Klahr & Carver 1988; Mayrhauser & Vans 1994; 
Ramalingam & Wiedenbeck 1997). This type of research typically sheds little or no light on our own 
explorations, as the researchers have already decided that there is nothing interesting about the process 
students go through in developing a program that is syntactically correct. These studies typically begin 
with the students' first syntactically correct programs, ignoring the observable behavior of novice 
programmers, or focus on extrapolating cognitive explanations for the behaviors observed. 
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Pedagogic Integrated Development Environments 

There is a growing body of literature regarding programming languages designed for novices and 
environments to support those languages (Freund & Roberts, 1996; Findler et. al 1997; Allen et. al. 
2002; Patterson et. al. 2003). There are few studies regarding the use of these kinds of environments 
by students; from them, we know they tend to appreciate the simpler interfaces, errors tend to persist 
over fewer compiles with “reduced” or “subsetted” languages, and the students clearly interact with 
the pedagogic environments differently than professional integrated development environments 
(DePasquale 2003; Heeren et. al. 2003).  This is a young area of study, however, and a great deal 
more work needs to be done. 

Green and Petre (1996) provide a model for evaluating programming environments in their analysis of 
two visual programming languages, LabView and Prograph, and their associated programming 
environments. A primary goal of their work was to provide an example of the use of Green's cognitive 
dimensions framework as a non-specialist tool for evaluating whole environments. In the course of her 
Ph.D. work, Linda McIver (2001) evaluated a number of programming languages using the cognitive 
dimensions framework, although this evaluation was not carried out as an empirical investigation, and 
did not take into account the environment in which the programming might take place—an important 
part of the novice's programming experience. 

Types and rates of error occurrence 

Although not strictly labeled as behavioral studies, research into error message design and syntactic 
errors in programming languages are pertinent to our work.(Brown 1983; Schorsch 1995) Gannon's 
(1975) work evaluating TOPPS and TOPPS II (a pair of statically and dynamically typed languages 
developed at the University of Maryland for teaching programming and studying the design of 
programming languages) provide a starting point for the systematic comparison of two different (but 
syntactically similar) programming languages. These studies provide models and ideas for analyses of 
the process students go through while programming, as well as approaches to analyze the programs 
generated themselves.  

Several studies have been carried out that are methodologically similar to ours, with interesting 
results. In evaluating the effectiveness of their new computing center, Moulton and Muller (1967) 
provide some numerical and anecdotal reports on error rates and programmer behavior at the 
University of Wisconsin. Litecky and Davis (1976) carried out a study of 73 novices programming in 
COBOL, focusing entirely on the syntax errors generated. Zelkowitz's (1976) research also focused 
largely on errors, examining all the PL/I programs compiled and executed on the University of 
Maryland's mainframes. 

Characterizing Novices 

Perkins, Hancock, Hobbs, Marin, and Simmons (1986) observed young programmers working in 
LOGO, and based on their observations  classified them as either stoppers or movers. In their 
characterization, stoppers were students who would, while working on a program in class, constantly 
ask for help every step of the way. Movers, on the other hand, would muddle through problems on 
their own, and extreme movers were students who would perhaps pay too little attention to the 
feedback the compiler and programming environment provided, hacking madly with no apparent 
sense of where they had been. At some level, a behavioral understanding and characterization of 
novice programmers should enable us to detect (using Perkins's categorization) stoppers and extreme 
movers automatically. 

2.  Methodology 

We began our work with an automated observation of novice compilation behavior as it naturally 
occurred in classroom tutorial sessions. These sessions met once a week for one hour in a public 
computing lab on campus, are limited to approximately sixteen students, and are overseen by either a 
member of the faculty or graduate teaching assistant; they are typified by a minimum of lecture-style 
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content, and often involve the students working through one or more problems to help illustrate 
concepts from that week's lecture. 

We instrumented the BlueJ programming environment to report at compile-time the complete source 
from students' programming sessions, as well as an assortment of relevant metadata. This data 
included the username reported by the OS1; the research site (e.g. “KENT”); a client-side index 
indicating compilation number in the current sequence, where the first compilation after startup is 
zero, the next is one, etc.; the compilation result (syntax free or an error); the filename of the file being 
compiled; when the client initiated the compile; when the server received the information; the IP 
address and hostname (as reported by the host); the OS name, architecture, and version; the 
compilation result type (error-free, warning, or error); and the line number of any errors. Every time 
students compiled their code, this collection of information was packaged up and shipped to a server 
for storage and later analysis. 

In the classroom, 63 of the 206 students enrolled in our first programming course gave us their 
consent to capture information regarding their programming habits. This sub-population provides us 
with the ability to ask questions that span multiple compile events and multiple sessions—questions 
ultimately leading to whether individuals exhibit detectable patterns of compilation behavior over 
time. 

Population Characterization 

Our sub-population of 63 students appears to be representative of the larger population, given course 
marks from the first term and the available attendance data. 

Course marks 

During the Michaelmas (autumn) term of 2003, the students had four marked assessments;  three were 
take-home coursework, while the fourth piece of coursework was an in-class “exam,” intended to 
provide both the students and instructor a sense of where they stand at this point in the term. 

 
Figure 1: Grade distributions for  assessments 1, 2, 3, and “exam” 

The first pair of box-and-whiskers in Figure 1 represent the distribution of marks on the first 
assessment of the term for the entire class (the first box), and the 63 student sub-population who 
consented to be part of the study (the second box). For both the entire class and the sample population, 
the first quartile, mean, and third quartiles are for all intents and purposes identical. There is no way to 
discriminate between the populations on assessment one. 

In looking at the rest of the assessments, we see that we cannot discriminate between the marks 
reported for the class as a whole and those in our sample population; in the case of all of the 
assessments, we have p < .05 agreement between the two populations. This tells us that our sub-

                                                           
1 Data is only collected in the event that the student agreed to take part in the study. 



  iv 

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org 

population does not perform, on the assessments given, better or worse than their peers. In this 
respect, we can take them to be representative of the class as a whole.  

Attendance 

In the programming courses at Kent, attendance records are kept for the laboratory sessions. The 
absence rate in these laboratory sessions is roughly one class session in eight.  During the time 
observed, the students in the study missed class significantly more often than the coursewide average 
(Figure 2). For the 63 student sub-population, one class in two was missed on average, and only one 
in six students managed to attend seven of the nine recorded class sessions. 

 

It would appear that the sample population attends class less frequently, on average, than the rest of 
the students enrolled in the course. One possible explanation could be that students took part in the 
study hoping it would, somehow, help their overall course grade. Another possible explanation comes 
from the way attendance is taken in our laboratories: while some instructors mark students present or 
absent themselves, it is not uncommon for instructors to pass around t he attendance sheet. This means 
a student can easily mark a friend present, or mark themselves present from weeks previous they may 
have missed---either way raising the apparent attendance figures for the course. The attendance 
figures we present for students who agreed to take part in the study come from their actual interactions 
with the computer in class, and therefore are potentially more accurate. 

3.  Analysis of Results  

To date, we have observed that a minority of different types of syntax error account for the majority of 
errors dealt with by students. Because these errors are relatively simple to fix, the typical 
programming behavior apparently exhibited by the students is one where they write some code, and 
then rapidly fix a sequence of one or more trivial errors; this rapid-fire repair of their code can easily 
lead the casual observer to believe they are ``just letting the compiler do their thinking for them.'' The 
types and distribution of errors encountered provide a window into understanding other aspects of the 
novice programmer's behavior. 
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Figure 2: Attendance of students taking part in the study 
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Error types and distribution 

Figure 3 presents the distribution of the twenty most common of the 1926 errors encountered by 
students using BlueJ during laboratory sessions in the Spring term of 2003; this data can also be found 
in table 4 at the end of the paper. Of the 42 different types of error encountered, the five most common 
errors account for 58% of all errors generated by students while programming: missing semicolons 
(18%), unknown symbol : variable (12%), bracket expected (12%), illegal start of expression (9%), 
and unknown symbol : class (7%). Typically, unknown variable errors are generated by typographic 
errors; unknown class errors are generated for similar reasons, as well as failing to import a package 
containing the class in question. Bracketing errors take into account all types of bracket (‘( )’, ‘{ }’, 
and ‘[ ]’), and illegal start of expression errors are often caused by bracketing and missing semicolons. 

The type and number of syntax errors a student must deal with after compiling their code plays a 
significant role in determining their consequent behavior. These errors are just one example of the 
constantly shifting context in which any one compilation event (or pair of events) take place in. This 
makes characterizing novice programming behavior difficult, as the context is not fixed, but stateful, 
and that state is easily influenced by the students own actions (intentional or otherwise). 
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Figure 3: Distribution of top twenty errors generated by students in the study  

Time between compilation events 

Our first explorations into the behavior of the sample population involved examining the time students 
were spending between successive compilation events, as well as how often those events resulted in 
syntax-error free code. In figure 4, each bar of the histogram represents a ten second window; 51% of 
all compilation events occurred less than 30 seconds after the previous event. At  the same time, we 
can also see that roughly 20% of all compilation events involved more than two minutes of work time 
on the part of the student between compilation events. 

This picture is only partially useful; at first glance, it implies that students tend to spend very little 
time working on their code between compiles. While it is true that students recompile often, there is 
more we can ascertain about why they are doing this, and when in their programming cycle these 
events occur. 

 



  vi 

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org 

Time between comp

0%

5%

10%

15%

20%

25%

10 20 30 40 50 60 70 80 90 100 110 120 130 -
600

10-second bi

 
Figure 4: Time between compiles, 10 second intervals 

The view of time between compiles presented in figure 4 is context-free: given a measure of the time 
between two compilation events, it tells us nothing about the result of of the first compilation, or the 
result of compiling any changes they then make. Did the student begin with a syntax error, and end up 
with code that was error-free? Did they have a missing semicolon error, and end up fixing it, only to 
find yet another error waiting for them?2  

If a compilation event ends in a syntax error, we'll label it F; if it is error-free, we'll call it a T event. 
Now, each pair of compilation events can be characterized in one of four ways, as illustrated in table 
1. 

 

Table 1: Distribution of compilation event pairs 

 T F 
T 30% 10%
F 16% 44%

 

Reading from left to right, we see that 30% of all pairs of events were successful, followed by another 
successful event (T→T). Similarly, 44% of all events were a syntax-error followed by another syntax-
error (F→F). Because there are several ways to invoke the compiler in BlueJ, some of which 
recompile all files in a given project, it is possible that the T→T case is over-represented, and 
therefore we are skeptical of this number at this time; we have left it out of figure 5 for this reason. 
The F→T case represents the last syntax error students fix in a given sequence of errors (although, 
because BlueJ only reports one error at a time, they would have no way of knowing this in advance of 
compiling their code). T→F is perhaps the most revealing of these categories, as it represents the first 
compile a student makes after they know they have syntactically correct code. 

 Figure 5 tells us something very important about when students recompile their code quickly, and 
when they do not. When students have just encountered a syntax error, they are likely to recompile 
quickly. When students have just compiled their code successfully, 60% of the time they follow it by 
spending more than two minutes working on their code. While we do not know exactly what takes 
place in those two minutes, we can say that one-third of all compilation events that occurred more than 
two minutes after a successful compile involved substantial edits in the source code (100+ characters 

                                                           
2 The developers of BlueJ believe, as a matter of pedagogic principle, that only one error should be presented at a time to beginning 

programmers. 
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modified). We use the word “substantial” in comparison to the amount of work conducted by students 
correcting “missing semicolon” errors (one or two characters inserted, removed, or modified). 

Time between events as a function of error type 

We have reason to believe that despite the fact that students are recompiling very quickly most of the 
time, they are not doing substantial work in that time. The majority of their code modifications seem 
to be coming on the heels of successful compilation events (figure 5). What are they doing when they 
recompile 12 seconds after their previous compilation event? 

We can look at the time and number of characters changed for each of the three most common error 
types: missing semicolon, unknown symbol : variable, and bracket expected. What we find is that, for 
the three most common classes of error encountered by students, very little time is spent fixing those 
problems, and a minimum of characters must be added, deleted, or changed in their source to enact 
those changes. Tables 2 and 3 summarize the number of seconds and number of characters changed 
(respectively) that follow the most common syntax errors encountered by students. 
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Figure 5: Time between compiles for three types of compilation pairs 

(F indicates syntax error, T indicates no syntax error) 

In the case of both time and characters changed, we can see that the mean is easily affected in 
significant ways by one or two large outliers (as given by the “max” value). In the case of characters 
changed, for example, we see that the mean always lies well outside the third quartile, telling us that 
the majority of all compilation events following a given error type is very tightly clustered around the 
median, and not the mean. Based on this, we can say that the most common syntax errors encountered 
by students are typically handled in less than thirty seconds, and require adding or removing only a 
few characters. 
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Table 2: Time spent after the three most common syntax errors 

 Min 1
Q 

Median Mean 3
Q 

Max 

missing ; 1 5 8 20 16 265 

unknown 
var 

2 13 22 39 41 346 

bracket 3 8 14 25 25 350 

 

Table 3: Characters changed after the three most common syntax errors 

 Min 1
Q 

Median Mean 3
Q 

Max 

missing ; 1 1 1 5 2 148 

unknown 
var 

1 1 3 8 7 191 

bracket 1 1 2 7 2 254 

 

4.  Discussion 

Our eventual goal is to determine if there are different, characteristic compilation behaviors exhibited 
by students learning to program. As can be seen, we can infer interesting things about our students  
programming behavior in the classroom using the BlueJ. This analysis of the all of the students who 
took part in our study sets the stage for future explorations examining the behavior of individuals as 
opposed to the population as a whole.  

It would appear that the typical behavior of students in our study is to make a significant number of 
changes, and then come back and correct all the syntax errors that resulted from the most recent 
addition of code. The majority of the errors the students encounter represent a minority of the total 
possible number of errors they might encounter: students are typically adding in missing semicolons, 
correcting spelling mistakes and typographic errors, and correcting unbalanced parentheses or 
brackets.  

In framing our work in terms of behavior, we can now begin to think about questions regarding the 
shaping of that behavior. Can we modify the environment in such a way as to change programmer 
behavior—perhaps encouraging them to make fewer “missing semicolon” errors, or be more attentive 
to the various kinds of brackets used to delineate code? For example, we might introduce improved 
highlighting of bracket pairs, or perhaps highlight places where semicolons  should be when they are 
missing. Then, we would observe how student behavior changes with this modified version of BlueJ: 
a simple, single-case experimental design (Leslie, 2002). 

Even if changes like those proposed appeared to “improve” novice programmer behavior in some 
way,  we don't want to condition students the way Tom Schorsch (1995) and his colleagues did in 
1995 at the United States Air Force Academy. They developed CAP (Code Analyzer for Pascal), a 
tool that enforced institutional programming style and pointed out many common programming errors. 
Schorsch describes an unwanted side-effect of requiring all students to use CAP: 
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 “We also wanted students to learn to use a correct programming style as a matter of habit. We assumed 
that with CAP continually telling the students to fix their programming style, eventually they would 
learn to do it correctly from the beginning. Unfortunately, we believe that many students began using 
CAP as a crutch to merely get by. Rather than incorporating the required programming style rules into 
their programming habits, some students ignore style altogether knowing that CAP will annotate their 
code with all the corrections that are necessary” (Schorsch, 1995).  

We want our students to be able to graduate from any initial programming tools we use in the 
classroom. Computer science educators like think that students who really learn to program can later 
learn to program in any programming language. Our goal is that nay behaviors our students learn in an 
initial, pedagogic environment improve their programming practice in the absence of such 
scaffolding—for example, in commercial tools they might encounter outside of the classroom. 

Regardless of how we consider shaping novice programming behavior, we must always remember to 
ask whether our actions are in the students' best interest. In behavioral terms, we still do not have a 
way of determining when we are observing “good” or “bad” programming behavior. Is it “good” or 
“bad” that novices seem to be programming in long spurts followed by a rapid sequence of relatively 
simple syntax-error corrections? It it isn't, what programming behaviors should we encourage instead? 

5.  Future Work 

We have presented an overview of some broad analyses applicable to our subjects and their behavior. 
From this analysis, a rough sketch of our novice's behavior in the classroom has begun to emerge, and 
from even this outline we can begin to ask questions about the effect of the environment they are 
using and its effect on their behavior. We have not, however, begun to unravel the question of whether 
different students exhibit different programming behavior, and what we can observe to detect those 
differences, if they exist. 

 

 
Figure 6: Distribution of session lengths on a per-student basis 

Figure 6 shows the distribution of session lengths from the entire population on a per-student basis. A 
“session” represents the sequence of compiles from one class period. A typical student compiles (on 
average) 10 times per session. This collection of box-and-whisker plots supports that analysis, as the 
mean number of compilations per session for many of the students are centered around 10. It also tells 
us, at a glance, that there are also a few students who do not fit this typical behavior who merit further 
examination. We might, from this graph, infer three types of behavior based only on the number of 
times a given student compiles their code while programming in-class: 
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Normal behavior While there is variation between students, we can quickly see that most 
students compile between four and 18 times per session; there is significant overlap in this region for 
most students. 

Deviant behavior Only four students have extreme outliers: Dave (6), Adria (11), Noel (13), and 
Jesus (29). These students are, at a glance, different in that they have apparently “normal” behavior 
within the population, but one session where they compiled their code many more times than at any 
other point in time. 

Different behavior  Three students clearly compile more often than the rest of the students: Clarisa 
(43), Sirena (62), and Rosana (63). In addition to these students who compile more than most other 
students, it is clear that there are some who only compile a few times in a given session, and they are 
very, very consistent in this; by inspection, Daisy (9), Florence (26), and Fidel (28) are examples of 
students that fall into this class of behavior. 

A collection of box-and-whiskers plots like this is a crude visualization that allows us to quickly 
determine what kind of variance exists in our data on a per-subject basis. Based on these kinds of 
visualization, we can see that it might be worth examining the distribution of errors each of these 
“interesting” students generated individually, or examine how much time they spent between 
compilation events. We did not begin with this kinds of analyses, as they are expensive—students 
cannot be easily reduced to a single number for comparison, and therefore require visually comparing 
histograms, scatter plots, star charts, and other visual tools for exploratory data analysis before we 
know what (if anything) is significant in our search for distinctive compilation behavior in novice 
programmers. 

 

Table 4: Tabular summary of figure 3, distribution of errors encountered by subjects. 

Rank Error Type Ratio Rank Error Type Ratio 
1 semicolon .1833 22 unreachable statement .0078 
2 unknown variable .1199 23 else without if .0073 
3 bracket expected .1173 24 package does not exist .0057 
4 illegal start of expression .0867 25 missing body or abstract .0042 
5 unknown class .0717 26 unclosed comment .0031 
6 unknown method .0659 27 method ref. in static context .0026 
7 incompatable types .0436 28 file I/O .0026 
8 class or interface expected .0421 29 no return for void method .0021 
9 identifier expected .0405 30 dereferencing error .0021 

10 .class expected .0286 31 loss of precision .0016 
11 not a statement .0260 32 empty character literal .0016 
12 missing return .0192 33 unclosed character literal .0016 
13 op application error .0182 34 inconvertible types .0016 
14 private access violation .0166 35 illegal escape character .0005 
15 method application error .0130 36 protected access violation .0005 
16 [   uncharacterized ] .0114 37 type mismatch .0005 
17 illegal start of type .0109 38 cannot assign to final .0005 
18 possible uninitialized variable .0104 39 class public in file .0005 
19 return type required .0099 40 bad modifier combination .0005 
20 previously defined variable .0088 41 illegal character .0005 
21 unexpected type .0083 42 array dimension missing .0005 
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