
In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 21-32

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

A first look at novice compilation behavior using BlueJ
Matthew C. Jadud

Computing Laboratory
University of Kent

matthew.c @ jadud.com

Keywords: POP-II.A. novices, POP-III.D. pedagogic IDEs, POP-V.B. observation, POP-IV.E. CS-Ed research

Abstract

Syntactically correct code does not fall from the sky; for beginning programmers, the process that
leads to a student’s first executable program is not well understood. We have begun to explore the
behaviors that students exhibit while authoring code by focusing on when and what they choose to
compile. By examining these compilation behaviors, we have determined the most common errors
encountered in-class by students using BlueJ in our introductory course on object-oriented
programming at Kent, how they tend to program when in supervised laboratory sessions, and
identified future directions of study driven by our initial observations. Our goal is to apply this
research to the future development of BlueJ and instructional methodologies involving it’s use in the
classroom.

Introduction

This paper presents a first look at novice compilation behavior of students learning object-oriented
programming using the BlueJ pedagogic programming environment. The goals of our explorations of
observable programmer behavior are to help inform the teaching of programming and the
development of pedagogic programming environments. In this paper, we explore some gross
behavioral characteristics exhibited by a population of first-year students learning Java while utilizing
BlueJ, a pedagogic integrated development environment for programming in Java. We begin by
presenting related work in this area in section two, our data collection methods in section three, in
section four an analysis of the data collected during the autumn term of 2003, a discussion of our work
in section five, and close with future research directions based on these analyses.

1. Previous Work

Bits and pieces of research in the areas of computer science education research, the psychology of
programming, and human-computer interaction contribute to our current understanding of compilation
behavior. At the least, studies regarding novice programming, syntax errors and error rates, compiler
and error message design, debugging, pedagogical programming environments, pedagogic
programming languages, and language subsets all have some measure of relevance. Typically, these
studies explore the cognitive psychology of novice programmers, probing what they understand. Very
few of these studies explore the programmer's behavior, or how we might shape that behavior to
improve programming practice.

Misconceptions, Planning

Studies regarding logical, run-time (post-syntactic) errors and “misconceptions” represent one class
of cognitive research (Spohrer et. al. 1985; Spohrer & Soloway 1986a, 1986b). Characterizing the
planning process, problem-solving process, and comprehension of written programs are yet other
themes in the research (Brooks 1983; Rist, 1986; Klahr & Carver 1988; Mayrhauser & Vans 1994;
Ramalingam & Wiedenbeck 1997). This type of research typically sheds little or no light on our own
explorations, as the researchers have already decided that there is nothing interesting about the process
students go through in developing a program that is syntactically correct. These studies typically begin
with the students' first syntactically correct programs, ignoring the observable behavior of novice
programmers, or focus on extrapolating cognitive explanations for the behaviors observed.

 ii

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Pedagogic Integrated Development Environments

There is a growing body of literature regarding programming languages designed for novices and
environments to support those languages (Freund & Roberts, 1996; Findler et. al 1997; Allen et. al.
2002; Patterson et. al. 2003). There are few studies regarding the use of these kinds of environments
by students; from them, we know they tend to appreciate the simpler interfaces, errors tend to persist
over fewer compiles with “reduced” or “subsetted” languages, and the students clearly interact with
the pedagogic environments differently than professional integrated development environments
(DePasquale 2003; Heeren et. al. 2003). This is a young area of study, however, and a great deal
more work needs to be done.

Green and Petre (1996) provide a model for evaluating programming environments in their analysis of
two visual programming languages, LabView and Prograph, and their associated programming
environments. A primary goal of their work was to provide an example of the use of Green's cognitive
dimensions framework as a non-specialist tool for evaluating whole environments. In the course of her
Ph.D. work, Linda McIver (2001) evaluated a number of programming languages using the cognitive
dimensions framework, although this evaluation was not carried out as an empirical investigation, and
did not take into account the environment in which the programming might take place—an important
part of the novice's programming experience.

Types and rates of error occurrence

Although not strictly labeled as behavioral studies, research into error message design and syntactic
errors in programming languages are pertinent to our work.(Brown 1983; Schorsch 1995) Gannon's
(1975) work evaluating TOPPS and TOPPS II (a pair of statically and dynamically typed languages
developed at the University of Maryland for teaching programming and studying the design of
programming languages) provide a starting point for the systematic comparison of two different (but
syntactically similar) programming languages. These studies provide models and ideas for analyses of
the process students go through while programming, as well as approaches to analyze the programs
generated themselves.

Several studies have been carried out that are methodologically similar to ours, with interesting
results. In evaluating the effectiveness of their new computing center, Moulton and Muller (1967)
provide some numerical and anecdotal reports on error rates and programmer behavior at the
University of Wisconsin. Litecky and Davis (1976) carried out a study of 73 novices programming in
COBOL, focusing entirely on the syntax errors generated. Zelkowitz's (1976) research also focused
largely on errors, examining all the PL/I programs compiled and executed on the University of
Maryland's mainframes.

Characterizing Novices

Perkins, Hancock, Hobbs, Marin, and Simmons (1986) observed young programmers working in
LOGO, and based on their observations classified them as either stoppers or movers. In their
characterization, stoppers were students who would, while working on a program in class, constantly
ask for help every step of the way. Movers, on the other hand, would muddle through problems on
their own, and extreme movers were students who would perhaps pay too little attention to the
feedback the compiler and programming environment provided, hacking madly with no apparent
sense of where they had been. At some level, a behavioral understanding and characterization of
novice programmers should enable us to detect (using Perkins's categorization) stoppers and extreme
movers automatically.

2. Methodology

We began our work with an automated observation of novice compilation behavior as it naturally
occurred in classroom tutorial sessions. These sessions met once a week for one hour in a public
computing lab on campus, are limited to approximately sixteen students, and are overseen by either a
member of the faculty or graduate teaching assistant; they are typified by a minimum of lecture-style

 iii

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

content, and often involve the students working through one or more problems to help illustrate
concepts from that week's lecture.

We instrumented the BlueJ programming environment to report at compile-time the complete source
from students' programming sessions, as well as an assortment of relevant metadata. This data
included the username reported by the OS1; the research site (e.g. “KENT”); a client-side index
indicating compilation number in the current sequence, where the first compilation after startup is
zero, the next is one, etc.; the compilation result (syntax free or an error); the filename of the file being
compiled; when the client initiated the compile; when the server received the information; the IP
address and hostname (as reported by the host); the OS name, architecture, and version; the
compilation result type (error-free, warning, or error); and the line number of any errors. Every time
students compiled their code, this collection of information was packaged up and shipped to a server
for storage and later analysis.

In the classroom, 63 of the 206 students enrolled in our first programming course gave us their
consent to capture information regarding their programming habits. This sub-population provides us
with the ability to ask questions that span multiple compile events and multiple sessions—questions
ultimately leading to whether individuals exhibit detectable patterns of compilation behavior over
time.

Population Characterization

Our sub-population of 63 students appears to be representative of the larger population, given course
marks from the first term and the available attendance data.

Course marks

During the Michaelmas (autumn) term of 2003, the students had four marked assessments; three were
take-home coursework, while the fourth piece of coursework was an in-class “exam,” intended to
provide both the students and instructor a sense of where they stand at this point in the term.

Figure 1: Grade distributions for assessments 1, 2, 3, and “exam”

The first pair of box-and-whiskers in Figure 1 represent the distribution of marks on the first
assessment of the term for the entire class (the first box), and the 63 student sub-population who
consented to be part of the study (the second box). For both the entire class and the sample population,
the first quartile, mean, and third quartiles are for all intents and purposes identical. There is no way to
discriminate between the populations on assessment one.

In looking at the rest of the assessments, we see that we cannot discriminate between the marks
reported for the class as a whole and those in our sample population; in the case of all of the
assessments, we have p < .05 agreement between the two populations. This tells us that our sub-

1 Data is only collected in the event that the student agreed to take part in the study.

 iv

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

population does not perform, on the assessments given, better or worse than their peers. In this
respect, we can take them to be representative of the class as a whole.

Attendance

In the programming courses at Kent, attendance records are kept for the laboratory sessions. The
absence rate in these laboratory sessions is roughly one class session in eight. During the time
observed, the students in the study missed class significantly more often than the coursewide average
(Figure 2). For the 63 student sub-population, one class in two was missed on average, and only one
in six students managed to attend seven of the nine recorded class sessions.

It would appear that the sample population attends class less frequently, on average, than the rest of
the students enrolled in the course. One possible explanation could be that students took part in the
study hoping it would, somehow, help their overall course grade. Another possible explanation comes
from the way attendance is taken in our laboratories: while some instructors mark students present or
absent themselves, it is not uncommon for instructors to pass around t he attendance sheet. This means
a student can easily mark a friend present, or mark themselves present from weeks previous they may
have missed---either way raising the apparent attendance figures for the course. The attendance
figures we present for students who agreed to take part in the study come from their actual interactions
with the computer in class, and therefore are potentially more accurate.

3. Analysis of Results

To date, we have observed that a minority of different types of syntax error account for the majority of
errors dealt with by students. Because these errors are relatively simple to fix, the typical
programming behavior apparently exhibited by the students is one where they write some code, and
then rapidly fix a sequence of one or more trivial errors; this rapid-fire repair of their code can easily
lead the casual observer to believe they are ``just letting the compiler do their thinking for them.'' The
types and distribution of errors encountered provide a window into understanding other aspects of the
novice programmer's behavior.

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7

Class sessions attend

Figure 2: Attendance of students taking part in the study

 v

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Error types and distribution

Figure 3 presents the distribution of the twenty most common of the 1926 errors encountered by
students using BlueJ during laboratory sessions in the Spring term of 2003; this data can also be found
in table 4 at the end of the paper. Of the 42 different types of error encountered, the five most common
errors account for 58% of all errors generated by students while programming: missing semicolons
(18%), unknown symbol : variable (12%), bracket expected (12%), illegal start of expression (9%),
and unknown symbol : class (7%). Typically, unknown variable errors are generated by typographic
errors; unknown class errors are generated for similar reasons, as well as failing to import a package
containing the class in question. Bracketing errors take into account all types of bracket (‘()’, ‘{ }’,
and ‘[]’), and illegal start of expression errors are often caused by bracketing and missing semicolons.

The type and number of syntax errors a student must deal with after compiling their code plays a
significant role in determining their consequent behavior. These errors are just one example of the
constantly shifting context in which any one compilation event (or pair of events) take place in. This
makes characterizing novice programming behavior difficult, as the context is not fixed, but stateful,
and that state is easily influenced by the students own actions (intentional or otherwise).

Error type distribution (all errors

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

se
mico

lon

un
kn

ow
n-v

ari
ab

le

bra
ck

et-
ex

pe
cte

d

ille
ga

l-s
tar

t-o
f-e

xp
res

sio
n

un
kn

ow
n-c

las
s

un
kn

ow
n-m

eth
od

inc
om

pa
tib

le-
typ

es

cla
ss

-or
-in

ter
fac

e-e
xp

ec
ted

ide
nti

fie
r-e

xp
ec

ted

.cl
as

s-e
xp

ec
ted

no
t-a

-st
ate

men
t

miss
ing

-re
tur

n

op
-ap

pli
ca

tio
n-e

rro
r

pri
va

te-
ac

ce
ss

-vi
ola

tio
n

meth
od

-ap
pli

ca
tio

n-e
rro

r

un
kn

ow
n-u

nk
no

wn

ille
ga

l-s
tar

t-o
f-ty

pe

po
ss

ibl
e-u

nin
it-v

ari
ab

le

ret
urn

-ty
pe

-re
qu

ire
d

pre
vio

us
ly-

de
fin

ed
-va

ria
ble

Error type

Figure 3: Distribution of top twenty errors generated by students in the study

Time between compilation events

Our first explorations into the behavior of the sample population involved examining the time students
were spending between successive compilation events, as well as how often those events resulted in
syntax-error free code. In figure 4, each bar of the histogram represents a ten second window; 51% of
all compilation events occurred less than 30 seconds after the previous event. At the same time, we
can also see that roughly 20% of all compilation events involved more than two minutes of work time
on the part of the student between compilation events.

This picture is only partially useful; at first glance, it implies that students tend to spend very little
time working on their code between compiles. While it is true that students recompile often, there is
more we can ascertain about why they are doing this, and when in their programming cycle these
events occur.

 vi

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Time between comp

0%

5%

10%

15%

20%

25%

10 20 30 40 50 60 70 80 90 100 110 120 130 -
600

10-second bi

Figure 4: Time between compiles, 10 second intervals

The view of time between compiles presented in figure 4 is context-free: given a measure of the time
between two compilation events, it tells us nothing about the result of of the first compilation, or the
result of compiling any changes they then make. Did the student begin with a syntax error, and end up
with code that was error-free? Did they have a missing semicolon error, and end up fixing it, only to
find yet another error waiting for them?2

If a compilation event ends in a syntax error, we'll label it F; if it is error-free, we'll call it a T event.
Now, each pair of compilation events can be characterized in one of four ways, as illustrated in table
1.

Table 1: Distribution of compilation event pairs

 T F
T 30% 10%
F 16% 44%

Reading from left to right, we see that 30% of all pairs of events were successful, followed by another
successful event (T→T). Similarly, 44% of all events were a syntax-error followed by another syntax-
error (F→F). Because there are several ways to invoke the compiler in BlueJ, some of which
recompile all files in a given project, it is possible that the T→T case is over-represented, and
therefore we are skeptical of this number at this time; we have left it out of figure 5 for this reason.
The F→T case represents the last syntax error students fix in a given sequence of errors (although,
because BlueJ only reports one error at a time, they would have no way of knowing this in advance of
compiling their code). T→F is perhaps the most revealing of these categories, as it represents the first
compile a student makes after they know they have syntactically correct code.

 Figure 5 tells us something very important about when students recompile their code quickly, and
when they do not. When students have just encountered a syntax error, they are likely to recompile
quickly. When students have just compiled their code successfully, 60% of the time they follow it by
spending more than two minutes working on their code. While we do not know exactly what takes
place in those two minutes, we can say that one-third of all compilation events that occurred more than
two minutes after a successful compile involved substantial edits in the source code (100+ characters

2 The developers of BlueJ believe, as a matter of pedagogic principle, that only one error should be presented at a time to beginning

programmers.

 vii

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

modified). We use the word “substantial” in comparison to the amount of work conducted by students
correcting “missing semicolon” errors (one or two characters inserted, removed, or modified).

Time between events as a function of error type

We have reason to believe that despite the fact that students are recompiling very quickly most of the
time, they are not doing substantial work in that time. The majority of their code modifications seem
to be coming on the heels of successful compilation events (figure 5). What are they doing when they
recompile 12 seconds after their previous compilation event?

We can look at the time and number of characters changed for each of the three most common error
types: missing semicolon, unknown symbol : variable, and bracket expected. What we find is that, for
the three most common classes of error encountered by students, very little time is spent fixing those
problems, and a minimum of characters must be added, deleted, or changed in their source to enact
those changes. Tables 2 and 3 summarize the number of seconds and number of characters changed
(respectively) that follow the most common syntax errors encountered by students.

0%

10%

20%

30%

40%

50%

60%

70%

10 20 30 40 50 60 70 80 90 100 110 120 600

10-second bins

F -> T

F -> F

T -> F

Figure 5: Time between compiles for three types of compilation pairs

(F indicates syntax error, T indicates no syntax error)

In the case of both time and characters changed, we can see that the mean is easily affected in
significant ways by one or two large outliers (as given by the “max” value). In the case of characters
changed, for example, we see that the mean always lies well outside the third quartile, telling us that
the majority of all compilation events following a given error type is very tightly clustered around the
median, and not the mean. Based on this, we can say that the most common syntax errors encountered
by students are typically handled in less than thirty seconds, and require adding or removing only a
few characters.

 viii

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Table 2: Time spent after the three most common syntax errors

 Min 1
Q

Median Mean 3
Q

Max

missing ; 1 5 8 20 16 265

unknown
var

2 13 22 39 41 346

bracket 3 8 14 25 25 350

Table 3: Characters changed after the three most common syntax errors

 Min 1
Q

Median Mean 3
Q

Max

missing ; 1 1 1 5 2 148

unknown
var

1 1 3 8 7 191

bracket 1 1 2 7 2 254

4. Discussion

Our eventual goal is to determine if there are different, characteristic compilation behaviors exhibited
by students learning to program. As can be seen, we can infer interesting things about our students
programming behavior in the classroom using the BlueJ. This analysis of the all of the students who
took part in our study sets the stage for future explorations examining the behavior of individuals as
opposed to the population as a whole.

It would appear that the typical behavior of students in our study is to make a significant number of
changes, and then come back and correct all the syntax errors that resulted from the most recent
addition of code. The majority of the errors the students encounter represent a minority of the total
possible number of errors they might encounter: students are typically adding in missing semicolons,
correcting spelling mistakes and typographic errors, and correcting unbalanced parentheses or
brackets.

In framing our work in terms of behavior, we can now begin to think about questions regarding the
shaping of that behavior. Can we modify the environment in such a way as to change programmer
behavior—perhaps encouraging them to make fewer “missing semicolon” errors, or be more attentive
to the various kinds of brackets used to delineate code? For example, we might introduce improved
highlighting of bracket pairs, or perhaps highlight places where semicolons should be when they are
missing. Then, we would observe how student behavior changes with this modified version of BlueJ:
a simple, single-case experimental design (Leslie, 2002).

Even if changes like those proposed appeared to “improve” novice programmer behavior in some
way, we don't want to condition students the way Tom Schorsch (1995) and his colleagues did in
1995 at the United States Air Force Academy. They developed CAP (Code Analyzer for Pascal), a
tool that enforced institutional programming style and pointed out many common programming errors.
Schorsch describes an unwanted side-effect of requiring all students to use CAP:

 ix

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

 “We also wanted students to learn to use a correct programming style as a matter of habit. We assumed
that with CAP continually telling the students to fix their programming style, eventually they would
learn to do it correctly from the beginning. Unfortunately, we believe that many students began using
CAP as a crutch to merely get by. Rather than incorporating the required programming style rules into
their programming habits, some students ignore style altogether knowing that CAP will annotate their
code with all the corrections that are necessary” (Schorsch, 1995).

We want our students to be able to graduate from any initial programming tools we use in the
classroom. Computer science educators like think that students who really learn to program can later
learn to program in any programming language. Our goal is that nay behaviors our students learn in an
initial, pedagogic environment improve their programming practice in the absence of such
scaffolding—for example, in commercial tools they might encounter outside of the classroom.

Regardless of how we consider shaping novice programming behavior, we must always remember to
ask whether our actions are in the students' best interest. In behavioral terms, we still do not have a
way of determining when we are observing “good” or “bad” programming behavior. Is it “good” or
“bad” that novices seem to be programming in long spurts followed by a rapid sequence of relatively
simple syntax-error corrections? It it isn't, what programming behaviors should we encourage instead?

5. Future Work

We have presented an overview of some broad analyses applicable to our subjects and their behavior.
From this analysis, a rough sketch of our novice's behavior in the classroom has begun to emerge, and
from even this outline we can begin to ask questions about the effect of the environment they are
using and its effect on their behavior. We have not, however, begun to unravel the question of whether
different students exhibit different programming behavior, and what we can observe to detect those
differences, if they exist.

Figure 6: Distribution of session lengths on a per-student basis

Figure 6 shows the distribution of session lengths from the entire population on a per-student basis. A
“session” represents the sequence of compiles from one class period. A typical student compiles (on
average) 10 times per session. This collection of box-and-whisker plots supports that analysis, as the
mean number of compilations per session for many of the students are centered around 10. It also tells
us, at a glance, that there are also a few students who do not fit this typical behavior who merit further
examination. We might, from this graph, infer three types of behavior based only on the number of
times a given student compiles their code while programming in-class:

 x

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Normal behavior While there is variation between students, we can quickly see that most
students compile between four and 18 times per session; there is significant overlap in this region for
most students.

Deviant behavior Only four students have extreme outliers: Dave (6), Adria (11), Noel (13), and
Jesus (29). These students are, at a glance, different in that they have apparently “normal” behavior
within the population, but one session where they compiled their code many more times than at any
other point in time.

Different behavior Three students clearly compile more often than the rest of the students: Clarisa
(43), Sirena (62), and Rosana (63). In addition to these students who compile more than most other
students, it is clear that there are some who only compile a few times in a given session, and they are
very, very consistent in this; by inspection, Daisy (9), Florence (26), and Fidel (28) are examples of
students that fall into this class of behavior.

A collection of box-and-whiskers plots like this is a crude visualization that allows us to quickly
determine what kind of variance exists in our data on a per-subject basis. Based on these kinds of
visualization, we can see that it might be worth examining the distribution of errors each of these
“interesting” students generated individually, or examine how much time they spent between
compilation events. We did not begin with this kinds of analyses, as they are expensive—students
cannot be easily reduced to a single number for comparison, and therefore require visually comparing
histograms, scatter plots, star charts, and other visual tools for exploratory data analysis before we
know what (if anything) is significant in our search for distinctive compilation behavior in novice
programmers.

Table 4: Tabular summary of figure 3, distribution of errors encountered by subjects.

Rank Error Type Ratio Rank Error Type Ratio
1 semicolon .1833 22 unreachable statement .0078
2 unknown variable .1199 23 else without if .0073
3 bracket expected .1173 24 package does not exist .0057
4 illegal start of expression .0867 25 missing body or abstract .0042
5 unknown class .0717 26 unclosed comment .0031
6 unknown method .0659 27 method ref. in static context .0026
7 incompatable types .0436 28 file I/O .0026
8 class or interface expected .0421 29 no return for void method .0021
9 identifier expected .0405 30 dereferencing error .0021

10 .class expected .0286 31 loss of precision .0016
11 not a statement .0260 32 empty character literal .0016
12 missing return .0192 33 unclosed character literal .0016
13 op application error .0182 34 inconvertible types .0016
14 private access violation .0166 35 illegal escape character .0005
15 method application error .0130 36 protected access violation .0005
16 [uncharacterized] .0114 37 type mismatch .0005
17 illegal start of type .0109 38 cannot assign to final .0005
18 possible uninitialized variable .0104 39 class public in file .0005
19 return type required .0099 40 bad modifier combination .0005
20 previously defined variable .0088 41 illegal character .0005
21 unexpected type .0083 42 array dimension missing .0005

 xi

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Acknowledgements

Many thanks are due the BlueJ team at the University of Southern Demnark, Deakin University, and
the University of Kent; in particular, to Ian Utting and Damiano Bolla at Kent for providing
compilation callbacks in the BlueJ extensions archetecture, thus making this research possible. Thanks
also to David J. Barnes and Mathieu Capcarrere for making their course availble for study, to David
Barnes, Sally Fincher, and Bob Keim for their continued conversation and feedback on this work, and
to Dr. Richard Little at Baldwin Wallace College for his time and input regarding the statistical
assumptions made herein. All errors remain my own.

References

�Allen, E., Cartwright, R., and Stoler, B. (2002). DrJava: a lightweight pedagogic environment for
Java. In Proceedings of the 33rd SIGCSE technical symposium on Computer Science Education,
pages 137–141. ACM Press.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs. International
Journal of Man-Machine Studies, 18(6):543–554.

Brown, P. J. (1983). Error messages: the neglected area of the man/machine interface.
Communications of the ACM, 26(4):246–249.

DePasquale, P. J. (2003). Implications on the Learning of Programming Through the Implementation
of Subsets in Program Development Environments. PhD thesis, Virginia Polytechnic Institute and
State University.

Findler, R. B., Flanagan, C., Flatt, M., Krishnamurthi, S., and Felleisen, M. (1997). DrScheme: a
pedagogic programming environment for scheme. Programming Languages: Implementations,
Logics, and Programs, 1292:369–388.

Freund, S. N. and Roberts, E. S. (1996). Thetis: an ANSI C programming environment designed for
introductory use. In Proceedings of the twenty-seventh SIGCSE technical symposium on
Computer Science Education, pages 300–304. ACM Press.

Gannon, J. D. and Horning, J. J. (1975). The impact of language design on the production of reliable
software. In Proceedings of the International Conference on Reliable Software, pages 10–22.

Green, T. R. G. and Petre, M. (1996). Usability analysis of visual programming environments: a
’cognitive dimensions’ framework. Journal of Visual Languages and Computing, 7(2):131–174.

Heeren, B., Leijen, D., and van IJzendoorn, A. (2003). Helium, for learning Haskell. In Proceedings
of the ACM SIGPLAN Workshop on Haskell, pages 62–71. ACM Press.

Klahr, D. and Carver, S. (1988). Cognitive objectives in a LOGO debugging curriculum: instruction,
learning, and transfer. Cognitive Psychology, 20:362–404.

Leslie, J. (2002). Essential Behaviorism. Hodder Headline Group.

Litecky, C. R. and Davis, G. B. (1976). A study of errors, error-proneness, and error diagnosis in
Cobol. Communications of the ACM, 19(1):33–38.

M. Kolling, B. Quig, A. P. and Rosenberg, J. (2003). The BlueJ system and its pedagogy. Journal of
Computer Science Education, 13(4).

McIver, L. (2001). Syntactic and Semantic Issues in Introductory Programming Education. PhD
thesis, Monash University.

Moulton, P. G. and Muller, M. E. (1967). DITRAN: A compiler emphasizing diagnostics.
Communications of the ACM, 10(1):45–52.

 xii

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Perkins, D., Hancock, C., Hobbs, R., Martin, F., and Simmons, R. (1989). Conditions of Learning in
Novice Programmers. Lawrence Erlbaum Associates.

Ramalingam, V. and Wiedenbeck, S. (1997). An empirical study of novice program comprehension in
the imperative and object-oriented styles. In Papers presented at the Seventh Workshop on
Empirical Studies of Programmers, pages 124–139. ACM Press.

Rist, R. (1986). Plans in programming: definition, demonstration, and development. Empirical Studies
of Programmers.

Schorsch, T. (1995). CAP: an automated self-assessment tool to check Pascal programs for syntax,
logic and style errors. In Proceedings of the twenty-sixth SIGCSE technical symposium on
Computer Science Education, pages 168–172. ACM Press.

Spohrer, J. and Soloway, E. (1986a). Analyzing the high-frequency bugs in novice programs.
Empirical Studies of Programmers.

Spohrer, J. C. and Soloway, E. (1986b). Alternatives to construct-based programming misconceptions.
In Proceedings of the SIGCHI conference on Human Factors In Computing Systems, pages 183–
191. ACM Press.

Spohrer, J. C., Soloway, E., and Pope, E. (1985). Where the bugs are. In Proceedings of the SIGCHI
conference on Human Factors In Computing Systems, pages 47–53. ACM Press.

von Mayrhauser, A. and Vans, A. (1994). Program understanding – a survey. Technical report,
Colorado State University.

Zelkowitz, M. V. (1976). Automatic program analysis and evaluation. In Proceedings of the 2nd
international Conference on Software Engineering, pages 158–163. IEEE Computer Society
Press.

