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Abstract 

Learning to program is difficult for many students. Although several factors that affect learning to 
program have been identified over the years, we are still far from a full understanding of why some 
students learn to program easily and quickly while others flounder. Two constructs that may affect 
learning to program are self-efficacy and mental models. Self-efficacy is the individual’s judgment of 
his or her ability to perform a task in a specific domain (Bandura 1986). A mental model is a person’s 
internal (mental) representation of real world objects and systems (Norman 1983). Separate research 
on self-efficacy and mental models has shown that both are important to knowledge acquisition and 
transfer. Using a path-analytic approach, this research investigates the joint effects of self-efficacy, 
mental model, and previous experience on learning to program in an introductory course. The results 
show that self-efficacy for programming is influenced by previous programming experience, and 
student self-efficacy increases substantially during an introductory programming course. Furthermore, 
students’ mental models of programming influence their self-efficacy, and both the mental model and 
self-efficacy have a direct effect on overall success in an introductory course. 

Introduction 

The dropout and failure rates in introductory programming courses at the university level are evidence 
to the fact that learning to program is a difficult task. One source suggests that the dropout and failure 
rate is as high as 30 percent (Guzdial & Soloway, 2002). Decisions about majoring in computer 
science and related fields are often determined by a student’s success or failure in the introductory 
course. If a student drops out, fails, or passes with a struggle, that student is unlikely to enroll for a 
follow-on course. In spite of research on factors that influence the enrolment and success of novices in 
introductory programming, it is still not fully understood what makes an introductory programming 
course positive and successful for some, but difficult and frustrating for others.  

Several factors that may influence novices’ success in an introductory university-level programming 
course have been discussed in the literature. The most frequently mentioned factor is previous 
computer programming experience, usually in secondary school (Bunderson & Christensen, 1995; 
Byrne & Lyons 2001; Hagan & Markham 2000; Sacrowitz & Parelius 1996; Taylor & Mounfield 
1989; Wilson & Shrock 2001). These studies provide converging evidence that prior programming 
experience has a positive effect on success in an introductory university course. Other factors that may 
affect course success have been less well investigated. Two recent studies have shown a positive 
relationship of mathematics or science background to computer programming success (Byrne & 



  ii 

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org 

Lyons 2001; Wilson & Shrock 2001). A relationship between student learning styles and learning to 
program has been found by both Byrne and Lyons (2001), and Thomas, Woodbury, and Jarman 
(2002). Other intriguing factors that have been addressed in recent studies include student attributions 
of success to oneself or to outside forces (Wilson & Shrock 2001), students’ course outcome 
expectations (Rountree, Rountree & Robins 2002), and self-efficacy (Wilson & Shrock 2001). A 
factor of potential interest that has been studied in basic computer training, but not to our knowledge 
in computer programming, is computer playfulness during training (Martocchio & Webster 1992; 
Potosky 2002). Finally, there is a body of research on the student’s mental model of programming in 
relation to success in specific programming tasks (Cañas, Bajo & Gonzalvo 1994; Corritore & 
Wiedenbeck 1991; Soloway & Ehrlich 1984; Wiedenbeck, Ramalingam, Sarasamma & Corritore 
1999). 

In summary, there is a substantial literature on factors affecting success in the initial programming 
course. However, more research is needed to determine which are the key factors, how they interact 
with each other, and how they combine to affect course outcomes. We are interested in creating and 
testing models that incorporate factors that appear to be important on theoretical or empirical grounds. 
Two important constructs in cognitive and social cognitive theory of the past 20 years are mental 
models and self-efficacy. Our goal in this research is to study self-efficacy and mental models of 
beginning programmers, explore the relationship between these concepts, and investigate their 
combined influence on course performance. 

Background on Self-Efficacy and Mental Models 

Self-Efficacy and Its Role in Learning 

Bandura (1986, p. 391) defines self-efficacy as “people’s judgments of their capabilities to organize 
and execute courses of action required to attain designated types of performance.” Self-efficacy beliefs 
are a key element in human performance over a very broad range of situations, for example, efficacy 
for work tasks, for physical activities, for personal relationships (Bandura 1977, 1986; Gist & Mitchell 
1992). Self-efficacy is important in learning activities because learning involves more than just 
acquiring skills. As Bandura says, “competent functioning requires both skills and self-beliefs of 
efficacy to use them effectively” (1986, p. 391). In learning situations, self-efficacy influences the use 
of cognitive strategies while solving problems, the amount of effort expended, the type of coping 
strategies adopted, the level of persistence in the face of failure, and the ultimate performance 
outcomes (Bandura 1986; Gist & Mitchell 1992; Zimmerman 1995). According to self-efficacy theory 
(Bandura 1977, 1986), judgments of self-efficacy are based on four sources of information: the 
individual’s performance attainments, experiences of observing the performance of others, verbal 
persuasion, and physiological reactions that people use partly to judge their capableness and 
vulnerabilities. Of these four sources, the most important is performance attainments, that is, the 
individual’s evaluation of the outcomes of his or her direct attempts to perform an activity. 

Educational researchers recognize that, because skills and self-beliefs are so intertwined, one way of 
improving student performance is to improve student self-efficacy. Interventions to improve student 
self-efficacy focus on specific skills or knowledge and target the four sources of information that 
students use to evaluate their self-efficacy, as defined above. Providing students with direct hands-on 
experiences in an activity is critical, since the strongest source of information is performance 
outcomes (Bandura 1977, 1986; Pajares 1996; Zimmerman 1995). Making hands-on experiences 
positive is also important, especially in the early stage of learning, when the task may seem 
overwhelming. Attempts have also been made, with some success, to increase self-efficacy in learning 
by peer modeling of tasks, verbal persuasion, or other types of social influences, such as cooperative 
learning environments (Bandura 1986; Compeau & Higgins 1995; Gist, Schwoerer & Rosen 1989). 
Several studies of self-efficacy in learning to use personal computers or computer applications have 
been carried out (e.g., Compeau & Higgins 1995). However, to our knowledge the only study that has 
directly targeted introductory computer programming students is Wilson and Shrock (2001). This 
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study, contrary to theoretical expectations, did not find a significant effect of student self-efficacy on 
course outcomes. 

Mental Models and Programming 

Norman (1983) defines mental models as predictive representations of real world systems. People 
create internal representations of objects and processes in the world, and they use these mental 
representations to reason about, explain, and predict the behavior of external systems. Mental models 
are critical in debugging a process when things go wrong because the mental model supports the 
person in reasoning about and localizing possible faults (Allen 1997). Mental models have been 
studied in many domains and situations (e.g., Stevens & Gentner 1983). In recent years, the mental 
models concept has been popularized by practitioner magazines and web sites in areas such as human-
computer interaction (e.g., McDaniel, 2003). 

Programming is a cognitive activity that requires the programmer to develop abstract representations 
of a process and express them in the form of logic structures. In the case of creating, modifying, 
reusing, or debugging a program, the programmer must also translate these abstract representations 
into completely correct code using a formal language. Having a well-developed and accurate mental 
model is likely to affect the success of a novice programmer in an introductory programming course. 
A programmer’s mental model could encompass useful knowledge about how programs work in 
general, stereotypical ways of solving common programming problems, and how a particular program 
is structured and functions, as well as knowledge about the syntax and semantics of a specific 
language (Cañas et al. 1994).  

Mental models (also referred to as schemas or plans) have been shown to play an important role in 
program comprehension (Soloway & Ehrlich 1984; Littman, Pinto, Letovsky & Soloway 1986; Nanja 
& Cook 1987; Pennington 1987; Corritore & Wiedenbeck 1991; Wiedenbeck et al. 1999) and also in 
comprehension-related tasks, such as modification and debugging. For example, Littman and his 
colleagues (1986) found strong effects of mental model formation in a program modification task. 
Participants were asked to modify a program but were not given any explicit instructions about how to 
approach the task. The results showed that programmers who first attempted to systematically read 
and comprehend the program were much more successful in doing the modifications than 
programmers who jumped immediately into making modifications. The difference in performance 
between programmers who built a mental model of the program and those who did not was especially 
great in modifications that involved interactions with code in other parts of the program. Similar 
results were reported by Nanja and Cook (1987) in a comparison of novices and experts debugging a 
program. A conclusion that can be made from these studies is that novices’ success in programming 
tasks may be increased by greater attention to building a good mental model of the program. These 
studies of mental models in programming do not deal directly with the issue of success in introductory 
programming courses. However, the relationship between a good mental model and success in 
programming tasks suggests that having a good mental model may be an important contributor to 
course outcomes. 

Model of Factors Affecting Performance in Introductory Programming 

This study proposes a model of performance of novice programmers based on their previous 
programming experience, self-efficacy for programming, and mental model. Our model is represented 
in Figure 1. The ovals represent factors, or variables, that may affect success in introductory 
programming. The arrows represent predicted relationships between the variables. These relationships 
are directional, as shown by the arrow heads. Multiple links into an oval indicate that an oval is 
affected by more than one factor. Multiple links out of an oval indicate that the factor represented by 
the oval affects more than one other factor. With respect to terminology, if variable A points to 
variable B, then in that relationship A is referred to either as the independent or the predictor variable, 
and B is referred to as the dependent or response variable. 
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Figure 1 – Proposed model of factors affecting student performance in an introductory programming 

course 

In line with the considerable existing research (Byrne & Lyons 2001; Bunderson & Christensen, 
1995; Hagan & Markham 2000; Sacrowitz & Parelius 1996; Taylor & Mounfield 1989; Wilson & 
Shrock 2001), we expect previous experience to be important to success in an introductory 
programming course. Our hypothesis is that previous experience acts as a significant predictor of both 
students’ self-efficacy and mental models of programming, which in turn predict course performance. 
Based on self-efficacy theory (Bandura 1977, 1986), we expect that students’ self-efficacy will 
increase as a result of instruction and continued hands-on exposure to programming, so post-self-
efficacy should be higher than pre-self-efficacy. We also hypothesize that students’ mental models of 
programming will have a significant effect on their self-efficacy beliefs. That is, having a clear mental 
model of what programs do and how they do it will increases students’ feelings of efficacy about 
programming. Finally, it is expected that both mental model and self-efficacy will explain a significant 
amount of course performance. In keeping with Bandura, students’ knowledge content and 
organization, as represented in the mental model, and their self-beliefs will be intertwined in 
successful course outcomes.  

Our model includes the concept of mediation of the effect of variables. A variable may not affect 
performance directly, but instead may affect it indirectly through another variable. This is seen in the 
pre-self-efficacy variable, which is hypothesized to affect performance indirectly through its effect on 
post-pre-self-efficacy. Therefore, pre-self-efficacy does not have a direct effect on performance, but 
its effect is mediated by the intervening variable, post-self-efficacy. Likewise, the previous experience 
variable’s effect on performance is indirect and mediated through several other variables. The model 
also suggests that one variable may affect another variable both directly and indirectly. For example, 
the mental model variable is shown as having a direct effect on performance, and also an indirect 
effect on performance via its effect in strengthening post-self-efficacy. 

Methodology 

Participants 

Seventy-five students took part in the study. The students were enrolled in four sections of an 
introductory C++ programming course at a large public university in the United States. The four 
sections were taught by four different instructors who coordinated with each other to cover the same 
material. Twenty-five of the participants were female and 75 were male. The average age of the 
participants was 20 years. The majority of the participants were second or third year undergraduates. 
The participants came from a wide variety of majors, ranging from computer science to agricultural 
studies. The majority were not computer science major, but were taking the course as a requirement of 
their major or for personal interest. 
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The participants had low experience in computer programming. Based on their self-reports, it was 
found that on average they had taken 1.27 programming courses in secondary school and had been 
exposed to 1.37 programming languages. Aooroximately half of the participants had not previously 
studied programming. 

Materials 

The materials included a background questionnaire, a self-efficacy scale, and two instruments to 
measure mental models.  

The background questionnaire used five questions measuring the breadth of participants’ prior 
computer and programming background: number of courses taken that used computer applications as 
a mandatory part of course work (e.g., spreadsheets, databases), number of programming courses 
taken, number of programming languages used, number of programs written, and length of the 
programs written.  

Self-efficacy was measured using the Computer Programming Self-Efficacy Scale (Ramalingam & 
Wiedenbeck 1998). This validated instrument was used previously by Wilson and Shrock (2001) in 
their research on success factors in introductory computer science courses. The scale consists of thirty-
three items that ask students to judge their capabilities in a wide range of programming tasks and 
situations. Based on self-efficacy theory, four categories of questions are included in the scale:  

� Simple programming tasks (9 questions, e.g., “I would be able to write a program that 
computes the average of 3 numbers”) 

� Complex programming tasks (11 questions, e.g., “I would be able to comprehend a long, 
complex multi-file program”) 

� Independence and persistence (8 questions, e.g., “I would be able to find ways of overcoming 
the problem if I got stuck at a point while working on a programming project”) 

� Self-regulation (4 questions, “I would be able to find a way to concentrate on my program, 
even when there were many distractions”).   

Responses were marked on a 7-point Likert scale ranging from “not confident at all” to “absolutely 
confident.” 

The students’ mental models were evaluated by using two measurements, program comprehension and 
program recall. The program comprehension booklet consisted of six short C++ programs (each 15-20 
lines long). The programs consisted of a class definition, a constructor, a member function of the class, 
and a main function. (See Appendix A for an example.) Each of the programs was followed by a list 
of five true/false questions covering each of the information categories developed by Pennington 
(1987) to measure the mental model of programmers: elementary operations, control flow, data flow, 
program function, and program state. These categories have been used in more recent research on 
mental models (Good & Brna in press), including object-oriented programming (Wiedenbeck et al. 
1999).  

Program recall has been used as a measure of mental organization or mental models in past 
programming research, e.g., Shneiderman (1976). Recall is usually measured as the number of lines 
recalled correctly. Our program recall booklet, modeled on Shneiderman’s, contained a C++ program 
that dealt with temperature conversions. The program consisted of 27 lines of code.  

Procedure 

The study was carried out over the course of a fifteen week semester in two parts. The first part took 
place in the second week of the semester, and the second part in the thirteenth week of the semester.  

The first phase of the study involved collecting the student programming background information and 
having students complete the self-efficacy scale, which yielded the pre-self-efficacy score.  
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The second part of the study involved completion of the two programming tasks designed to assess the 
student’s mental model and a repetition of the same self-efficacy scale used in the first part. The 
participants were given a program comprehension booklet containing the six programs and associated 
questions. For each of the six programs, they had 1.5 minutes to study the program and two minutes to 
answer the questions. The participants were not allowed to look back at the programs while answering 
the questions. After completing the program comprehension booklet, participants were given the recall 
booklet. They had five minutes to study the program, then closed the booklet and had five more 
minutes to recall and reproduce the program from memory, as best they could. The participants also 
completed the self-efficacy scale, yielding the post-self-efficacy score. 

The performance measure was the student’s final course grade and was obtained from the instructor at 
the end of the semester. For the purposes of the experiment a participant’s course grade (given as a 
letter grade: A, B, C, etc.) was translated to a numerical scale of 0-9, where 0 represented failure in the 
course and 9 represented the highest level of achievement.  

Results 

Self-Efficacy of Novice Programmers 

The alpha-reliability of the self-efficacy scale was .98, indicating a highly reliable scale. The mean 
pre-self-efficacy score was 94.63 and the mean post-efficacy score was 163.37 out of a maximum 
possible score of 231 (see Table 1). Participants’ self-efficacy increased significantly over the course 
of a semester of instruction (t = 12.78, p<.0001). The mean increase in self-efficacy was 68.75.  

 

 Mean StdDev Min Max 
Pre-SE 94.63 49.51 33 219 
Post-SE 163.37 41.36 52 229 

Table 1 – Self-efficacy data (N=75) 

To understand better the changes in self-efficacy over the course, we divided the participants into 
quartiles of equal size based on their pre-self-efficacy scores (Table 2). Change in self-efficacy was 
calculated as the difference between post-self-efficacy and pre-self-efficacy scores. The data were 
analyzed with a one-way ANOVA. The ANOVA was significant, F(3,71) = 12.83, p<.0001. The 
results show significant effects of time of measurement (pre vs. post), quartile, and the interaction 
between time and quartile. The ANOVA was followed by a Tukey range test to determine specifically 
how the groups differed from one another. The results indicate that the group with the highest pre-self-
efficacy (Q4, group mean = 165.05) experienced the least increase in self-efficacy. This group 
differed significantly (p<.05) from groups Q1-Q3, which experienced much larger increases in 
efficacy (Table 2). Groups Q1, Q2, and Q3 did not differ significantly from one another. 

 
 Pre-SE 

Mean 
Post-SE 
Mean 

Change
Mean 

Change 
StdDev 

N 

Q1 46.47 134.42 87.95 46.68 19 
Q2 66.39 159.94 93.56 32.01 18 
Q3 99.11 170.05 70.95 31.98 19 
Q4 165.05 188.89 23.84 40.25 19 

Table 2 – Descriptive data for the four quartiles grouped on pre-self-efficacy 
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Analysis of the Model 

The correlations of variables in the model are shown in Table 3. Significant correlations exist between 
a number of pairs of variables. The correlations are suggestive but do not identify causalities, nor do 
they identify the effects of multiple independent variables on dependent variables, including the 
ultimate dependent variable, course performance. A major goal of this study was to evaluate whether 
the data was consistent with our model as a whole. To this end, we used path analysis (Kerlinger & 
Pehazur 1973). 

 

 Previous 
experience 

Pre-self-
efficacy 

Post-self-
efficacy 

 Mental model Performance 

Previous 
experience 

1.00     

Pre-self-
efficacy 

.63** 1.00    

Post-self-
efficacy 

.61** .51** 1.00   

Mental   
model 

.16 .05 .32** 1.00  

Performance 

 

.25* .10 .36** .48** 1.00 

Table 3 – Correlation of variables (*p<.05, **p<.01) 

Path analysis consists of a series of multiple regressions used to analyze the relationships of variables 
in a model (Kerlinger & Pehazur 1973). Path analysis and other similar techniques, collectively 
known as structural equation modeling, have been used widely in educational research to study the 
relationship of multiple variables to each other and to educational outcomes (e.g., Horn, Bruning, 
Schraw, Curry, & Katkanant 1993; Zimmerman, Bandura & Martinez-Pons 1992). In the computer 
domain path analysis techniques have been used to study the learning of end-user applications 
(Compeau & Higgins 1995), data modeling skills (Ryan, Bordoloi & Harrison 2000), and instrinsic 
motivation in computer training (Davis & Wiedenbeck 2001; Martocchio & Webster 1992).  

In our model (Fig. 1) each arrow represents a possible relationship of a predictor (independent) 
variable on a response (dependent) variable. A guideline for the number of subjects needed in a path 
analysis is 10 subjects per path in the model (Kerlinger & Pehazur 1973). Our N of 75 falls within this 
guideline. Figure 2 shows the results of the analysis. The strengths of each relationship are depicted as 
“path coefficients,” or standardized regression weights, which vary between 0 and 1 (shown on the 
arrows in Figure 2). A significant path coefficient indicates that there is indeed a reliable causal 
relationship between the predictor and response variable. All paths predicted in the model were 
significant (p<.05) except for the path from previous experience to mental model. The R2 value 
associated with each dependent variable indicates how much of the variance in the variable is 
explained by the predictor variables feeding into it. As Figure 2 shows, the variance explained is 
moderate to high (Cohen, 1977), except for the effect of previous experience on mental model. 
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Figure 2 – Results of the analysis of relationships in the model (*p<.05) 

In addition to analyzing the individual relationships, path analysis is concerned with analyzing the fit 
of the overall model with the data. This is done using a Chi-square test. The non-significant path from 
previous experience to mental model was eliminated for this analysis. The Chi-square test of this 
reduced model with four degrees of freedom yielded χ2=1.35, p>.85. Contrary to the usual 
interpretation of the p-value, in this analysis the non-significant result represents an adequate fit. The 
non-significant p-value literally means that our model, which contains a theory-based subset of all 
possible paths, is as good a predictor of performance as a model containing every possible path. 
Consequently, this more parsimonious subset of relationships adequately represents the important 
influences on student performance among these variables. 

Based on the results of the path analysis and the test of the fit of the model we revised the model, 
eliminating the path from previous experience to mental model. The revised model is shown in Figure 
3 and is discussed in the following section. 

 
Figure 3 – Revised model of factors affecting student performance in an introductory programming 

course (eliminating non-significant path) 

Discussion 

Self-Efficacy, Mental Models, and Programming Performance 

The self-efficacy of students increased significantly over the course of a semester of instruction. This 
is consistent with self-efficacy theory. Learners evaluate their ability to perform based on direct 
experience with tasks. A semester of concentrated programming instruction coupled with frequent 
hands-on programming tasks is likely to increase self-efficacy, unless the tasks are much too difficult 
for the learners. Our results also support the proposition that individuals’ changes in self-efficacy are, 
at least in part, a function of their pre-self-efficacy. This is shown in the quartiles analysis. The three 
lower quartiles showed a significant increase in efficacy, with group 2 registering the greatest 
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.40* 
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increase. However, the group with the highest initial self-efficacy experienced the least increase in 
efficacy as a result of a semester of instruction in C++ programming. This is a sensible result because 
a strong sense of self-efficacy is not easily changed, but weak self-efficacy is more malleable 
(Bandura, 1986).  Thus, the result is consistent with self-efficacy theory.  

The highest quartile is different from the other groups in another way as well. The standard deviation 
for this group was almost double its mean change in self-efficacy (Table 2). This implies that some 
students in the group increased in efficacy, but others decreased. Further analysis showed that slightly 
more than one-fifth of this group experienced a decrease in self-efficacy. This suggests that these 
students overestimated their ability to cope with the challenges of the introductory course. This 
underlines the volatility of self-efficacy when measured in an early stage of learning.  Students who 
have low knowledge and experience in a task may not be able to accurately gauge their level of 
capableness. They may base self-efficacy judgments on tasks that are not particularly relevant to 
programming (e.g., using computer applications) or on generalized self-beliefs (“I can excel in most 
academic situations”), which may lead to some readjustment of self-beliefs once the student engages 
actively in programming. 

Our results show (Fig. 2) that previous experience is a strong predictor of pre-self-efficacy, as 
expected from prior research. The relationship is positive: students with higher previous experience 
have higher pre-self-efficacy. Interestingly, previous experience also predicts post-self-efficacy. This 
indicates that students’ prior secondary school experience continues to affect their perceptions of their 
capabilities even near the end of a semester of programming instruction. If a student continues to 
study programming, it seems clear that at some point this previous secondary school experience will 
lose its predictive value, i.e., students will base their self-beliefs on their more recent programming 
experiences. However, at this early stage, beliefs that arise from prior experience still have weight. An 
interesting question is how long the prior secondary school experience persists in affecting students’ 
self-beliefs.  

Contrary to our original expectations, the previous secondary school experience did not affect 
student’s mental models of programming. Our initial prediction was that the previous programming 
knowledge and skills of incoming students would correlate well with the student’s mental model at a 
later point in the course. This was not the case. An explanation of this result might be that students in 
secondary school do not gain too much in terms of  mental models of how programs work. This may 
be affected by a number of factors: the intensity and rigor of the prior course, the types of 
programming activities, the amount of hands-on practice, and the programming language used. In 
terms of research follow-up, a first need is to replicate the result. If the result is replicated, a goal for 
future research is to pinpoint why students’ previous secondary school experience does not directly 
affect their mental models measured later in their university course. Based on the current findings, it 
appears that the contribution of students’ previous experience is most reflected in self-beliefs.   

The results also show that having developed a strong mental model increases beliefs of self-efficacy, 
as seen in the post-self-efficacy measure. Students who are able to develop a stronger mental model in 
the programming domain express higher beliefs about their capability to carry out a range of 
programming tasks. This fits with self-efficacy theory. Students’ ability to carry out tasks, such as 
comprehending or modifying a program, strengthen their self-efficacy beliefs. 

Finally, both what student know, as represented by their internal mental model, and what they believe 
about themselves, as represented by their self-efficacy, affect their performance in the course. Both 
factors have a substantial influence on the course outcome. Together they account for 30 percent of 
the variance in the course grade, a high amount in behavioral research (Cohen, 1977). Instructors have 
always recognized the importance of what students know. The results of this study underline the 
parallel importance of students’ self-beliefs on course outcomes. 

Limitations of This Study 

Several limitations of this study should be acknowledged and ultimately addressed in future reseach. 
First, the study took place in a relatively short time span of a 15 week semester. The results might be 
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quite different in a full year course. It would be very informative to track changes in student self-
efficacy and mental models, and their effects on performance at mid-year and end-year intervals. 
Second, the diversity of the students in the population of the current experiment raises questions that 
cannot be answered with the existing data. A portion of the participants were computer science 
majors, but the rest came from a variety of disciplines. We would like to investigate computer science 
students separately from other students whose interests and motivations may be more similar to end-
user programmers; however, the number of students in the current study is not sufficient to analyze 
subgroups. Additional cohorts are needed to do this. Third, the self-reporting of previous experience is 
a limitation, since students may have difficulty remembering details about their previous experience 
accurately. They may also interpret questions differently than expected. To address this problem it 
would be advisable to directly inventory the skills of students at the beginning of the study by having 
them carry out quantifiable tasks that yield a prior experience score. Fourth, the measure of 
performance based only on the final course grade is not an ideal measure of success.  Final grades are 
a rather blunt instrument, and it might be worthwhile to consider additional means of measuring 
student achievement. Fifth, our results do not agree with Wilson and Shrock’s (2001) study that failed 
to find a significnt relationship of self-efficacy to course outcomes. The methodologies of the two 
studies were very different, and this is a possible explanation. Nevertheless, the conflicting results are 
a compelling reason for further study. 

Finally, we believe that an important, and as yet unstudied, area of research is the study of students 
who fail to complete the introductory programming course. Introductory programming courses 
justifiably have a reputation of high drop-out rates. If students drop out before completing a 
longitudinal study such as ours, we fail to capture information that would help us to understand the 
problems they face.  When designing interventions to help student succeed, we may be missing the 
students most at risk. 

Conclusion 

Pedagogical Interventions in Intorducotry Programming Courses 

This research evaluated a model of factors affecting student success in an introductory programming 
course.  A theory-based model such as ours can provide a basis for future interventions. Based on this 
research, we see two paths of intervention, one focused on students’ mental models and the other on 
self-efficacy. 

Computer science educators appear to be familiar with the mental models concept and its value in 
student learning. This study of students in an introductory programming course confirms the 
importance of the student’s mental model in programming. The mental model affects success directly, 
and also strenghtens self-efficacy, which is another factor in overall success. This implies that 
teaching should pay close attention to development of the students’ mental model. The goal of 
building good mental models could be approached by instruction that engages the student in hands-on 
learning tasks that make conceptual ideas concrete. Cañas et al. (1994) advise doing this through 
tracing the logic of programs. They found that students who have help creating a mental model using a 
tracing mechanism gain a better understanding of the semantics of a program. Important programing 
tasks, including program debugging and modification, often involve tracing activities. Therefore, they  
appear to be possible tasks to develop the student’s mental model. Such tasks involving both program 
comprehension and writing code have the advantage of being realistic, while also strengthening the 
mental model through reasoning about consequences of actions. 

Our study also supports the importance of student self-efficacy in introductory programming. Self-
efficacy interventions have been carried out in other fields with success, and that increases the 
likelihood that similar interventions, adapted for programming instruction, would also be successful. 
A first issue of concern is supporting students’ self-efficacy rather than undermining it. Self-efficacy 
can be undermined if instruction and practice are too far in advance of students’ current feeling of 
capableness. Students should be challenged, but they are likely to give up if they are overwhelmed.  
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Interventions to support and increase self-efficacy follow from self-efficacy theory. According to 
Bandura (1986), these include performance successes, observation of the performance of peers, social 
persuasion, and the monitoring of one’s physiological state. The need for performance successes 
indicates that students must steadily carry out tasks of increasing difficulty, until they have a history of 
solid attainments. Frequent but small hands-on programming activities would be likely to build the 
history of success more than less frequent, large assignments. For students to monitor their 
capableness, timely and sufficient feedback is necessary. Observing the perforamnce of peers has also 
been successful as a self-efficacy strengthening intervention (Bandura 1986; Compeau & Higgins 
1995). Peer modeling appears to be successful because the student recognizes the model as similar to 
him or herself, that is, not an expert who has all the answers. In programming courses, peer modeling 
could be “live” in a classroom with a peer working through a problem while other students watch, or it 
could be done by students viewing a video of a peer successfully planning and executing a 
progrmming task. In peer modeling it is important that the viewers see the model confronting difficult 
situations and overcoming them. The modeling should not be scripted to eliminate struggle because 
the point is for students to see how obstacles are overcome. Social persuasion as a method of 
improving self-efficacy is related to work groups. Students working together, especially if they have 
different levels of self-efficacy, are in a position where social persuasion takes place. An instructor 
can facilitate social persuasion in the classroom or online by forming work groups of students with 
different levels of capableness and giving them tasks that promote interaction of group members. 
Lastly, students monitor their own physiological state to infer their capableness. Students who are in 
an ongoing state of anxiety about their programming course feel less efficacious. To support their self-
efficacy, instructors can strive for a classroom that is calm and non-competitive. Making ample help 
availabe and student errors recoverable also aids in creating comfort.  
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Appendix A: Example Program Used in Mental Models Task 

#include <iostream.h> 

class Car 

{ 

private: 

 int Passengers, Speed; 

public: 

 Car(int p, int s); 

 void check_speed_limit(); 

}; 

Car::Car(int, int) 

{ 

 Passengers = p;  

 if (p == 0) 

      Speed = 0; 

 else 

      Speed = s; 

} 

void Car::check_speed_limit() 

{ 

 if (Speed >= 55) 

      cout << "Over the limit! Slow Down!!! \n"; 

} 

int main() 

{ 

 Car mycar(1, 25); 

 mycar.check_speed_limit(); 

 return 0; 

} 

Questions 

1. Is the speed of mycar set to 25? (operations) 

2. Is the output statement executed before the speed is checked? (control flow) 

3. Does the value of Passengers affect the value of Speed? (data flow) 

4. When the cout statement is reached, is the value of Speed less than 55? (state) 

5. Does the program compare the speed of two cars? (function) 


