
Rating expertise in collaborative software development

Sallyann Bryant

IDEAS Laboratory, University of Sussex.
S.Bryant@sussex.ac.uk

The literature on expertise is wide-ranging, both across many domains and within software
development, however when findings from these are contrasted with literature on experience in
pair programming, some startling differences become apparent. For example, knowledge seems to
be a key feature in obtaining expertise, however there is little mention of core programming
knowledge as a measure of expertise in the pair programming literature. This paper discusses these
discrepancies, along with findings on the reliability of various types of rating, to provide context
for the presentation of data from a survey of commercial pair programmers which aims to help
clarify what factors are considered good indicators of pair programming expertise by different
groups.

Keywords: Pair programming, expertise, rating, self-rating

1. Introduction

Research has addressed the concept of expertise across many different fields. While this paper is
primarily focused on collaborative software design, it begins by considering expertise across various
domains, including medicine, table-waiting, chess, physics and law. Although expertise has been seen
to depend on many factors, it has been shown that experts tend to have similar goals and perspectives
(Lawrence 1988) and therefore it would seem that building up a rich picture of some of the common
factors in expertise is not only possible, but desirable. Having considered expertise in general, expertise
in software development and then specifically in pair programming is considered. Section three of this
paper looks at studies on the rating of expertise. For example, considering the relative accuracy of
ratings of self, peer and supervisor. Section four presents the results of a survey of 45 pair
programmers, comparing their own expertise ratings with those of their peers/superiors and considering
which factors most influenced these ratings. Finally, the paper concludes by identifying key factors in
the recognition of collaborative programming expertise, and their relative importance according to rater
type.

2. Expertise

Here the literature on general, software development and pair programming expertise is used to
ascertain common themes that may be useful to identifying and assessing expertise.

2.1 Expertise in other domains

While the generalizations and comparisons in this section assume a standard concept of expertise,
one should not forget that each of the contributory studies relates to a specific subject group doing a
specific task.

 2.1.1 General approach
Experts seem to have a distinct approach to their work. They recover more gracefully from mistakes

(Johnson 1988) let the story unfold around them and are prepared to do nothing or to settle for good
enough (Eraut and du Boulay 2002). This may stem from an underlying confidence in their ability,
suggesting that self-confidence plays a prominent role in expert behaviour.

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 19 - 29

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

 2.1.2 Knowledge and practice
Studies have identified some common characteristics regarding the nature, amount and organization

of information in expert’s memory, the schema by which they are accessed and the representations
which are made. Experts have been shown to maintain more detailed information in chunks in long-
term memory (Ericsson and Polson 1988). Schmidt (1993) tells of ‘encapsulated knowledge’ where the
expert has ‘compiled knowledge’ which does not need to be understood in depth to be accessed at the
highest level. Kintsch (1998) voices the popular view that in short term memory chunks of knowledge
are stored and accessed hierarchically, with higher levels being easier to access.

The method by which expert knowledge is accessed has also been the focus of a number of studies,

amongst which Larkin (1983) finds that expert schema for accessing knowledge are much more
complex than those of novices. In fact, experts have been shown to often identify meaningful patterns
(Chi 1988) and then arrive at a solution without the need for a time-consuming and exhaustive search
of their knowledge. Similarly Lawrence (1988) finds that judges focus on patterns in order to minimise
their workload, and are excellent at identifying ideas of what to look for or follow up. This implies that
certain selection rules are triggered by certain items. Chase & Ericsson’s (1982) skilled memory theory
states that experts use long-term memory more efficiently to remember detailed information that can
then be retrieved by the appropriate cue. In a variety of studies, this meaningful addressing mechanism
is known as a beacon, focal line, clue, trigger or condition. Gick and Holyoak (1985) state that
analogies helpful in problem solving might be found by abstracting the problem to a suitable structure
that can be used as a retrieval cue, presumably a solution might be found in the same manner.

This research suggests that knowledge and its organisation and access are key issues in defining

expertise. Thus one might assume that the pre-requisites for obtaining and organising information in
the most expert manner are exposure to that knowledge and practice in its use. This in turn suggests
that length of tenure performing the activity in question may be key.

 2.1.3 Strategy
Lesgold et al (1988) suggest that experts very quickly identify the right problem space. Similarly

Kintsch (1998) suggests that experts find the appropriate category and then use the problems
peculiarities to ascertain what is special about it. One might assume that this allows the expert to either
further pare down the information they have to find that which is appropriate, to detail the differences
between this and previously encountered cases, or to identify and suggest values for variables which
are not yet specified (Voss and Post 1988). This accords with findings by Trafton, Marshall et al (2002)
and Freedman and Shah (2002) that whilst novices ignore anomalies (on graphs) experts actually focus
on them.

Significant work has also addressed the issue of the production of mental models of the problem and
potential solution. Voss and Post (1988) mentions that expert problem solving is much more like
comprehension, with problem structuring and categorization playing a larger role than finding a
solution. He also notes that experts are skilled in structuring ill-structured problems. Similarly, Chi
(1988) find that experts spend more time building representations and that these are more detailed than
those made by less expert colleagues.

Finally, work on distributed cognition (Hutchins 1995) has shown that tricky problems are often
solved through the interaction of individuals, tools and artifacts rather than by an individual working
in isolation. In particular, Hutchins (1995) cites maritime navigation as a complex task achieved within
a complex ecology of cognition, some of which is embedded in the environment, tools and techniques
that are used.

 2.1.4 Metacognition
Meta-cognitive insight has been widely observed in experts. For example, Chi (1988) shows that

experts self-monitor more, Eraut & du Boulay (2002) state that they are aware of their own biases and
Suwa & Tversky (2002) mention that expert architects are aware of the cycle of using external
representations for the production of ideas. Ericsson & Polsom (1988) showed that an expert waiter
was aware of the ‘memory tricks’ he used when encoding information. This implies that experts are
more able to identify and comment on the approach and tools they take in problem solving in a way
that novices do not. It might also suggest that those who are more expert are also more likely to give an
accurate rating of their ability than those with less experience.

Bryant

PPIG 2005 Sussex University www.ppig.org

 2.1.5 The practice-strategy-knowledge-metacognition model
It appears that several different factors interplay in the concept of expertise and that at a very high

level, expertise could be considered as a function of the four key elements of Practice, Strategy,
Knowledge and Meta-cognition.

Section 2.2 will explore each of these in relation to expertise in software development.

2.2 Expertise in software development

2.2.1 Knowledge
Soloway, Adelson et al. (1988) noted that expert programmers have two types of knowledge:

Programming plans (syntactical knowledge) and rules of discourse (over-arching rules on how to use
that knowledge usefully) and showed that experts performed well on plan-like problems but the same
as novices on unplan-like problems. Chi (1988) indicates that experts form a much more detailed
problem representation than novices, which Adelson (1984) identifies as an internal model through
which the expert can run simulations. Petre & Blackwell (1999) further define this model as being
particularly rich and stoppably dynamic. These findings are consistent with general studies in expertise
across domain, in that knowledge is considered key. Detienne (1990) describes the two main schools of
thought regarding programming knowledge – those which focus on schema-based knowledge
(semantic knowledge about what the program does) and those focusing more on control-flow
knowledge (syntactical knowledge about how the program works). She goes on to note that there is
good evidence for the existence of both, and that their importance may be seen as relative to the
language, task, environment and the programmer herself.

2.2.2 Strategy
While acknowledging that knowledge plays a role, Gilmore (1990) suggests that strategy is more

important than knowledge in programming expertise and that experts have the ability to select the most
appropriate strategy according to the situation, the task characteristics and the requirements of the
language. Chi (1988) shows that experts categorise more ‘deeply’ than novices, focusing on semantics
or principals, rather than surface features and syntax. This categorization and refinement fits neatly
with the top down processing model. As mentioned by Adelson & Soloway (1988), it makes intuitive
sense for aspects of a solution to be at roughly the same level of definition if a simulation is to be
performed and Voss and Post (1988) agrees that experts need to be skilled in decomposition. However,
there are some exceptions, for example Davies (1991) shows that opportunistic jumps sometimes take
place particularly where the subject is familiar with the problem domain. Early in the process these
jumps tend to take place between the same levels of abstraction, but later vertical jumps are more in
evidence. Adelson (1984) show experts managing these jumps by noting them down and then
continuing their top-down processing which accords with the expert meta-cognitive abilities discussed
above.

Expert software developers’ use of tools appears to differ considerably from that of novices. Davies
(1993) shows that experts use tools more strategically than novices and Detienne (1997) finds that
experts in system design choose their strategy according to the problem. These studies imply that
experts are selective about their use of tools and are able to make decisions based on the features and
applicability of a particular tool, rather than taking a prescriptive approach.

With regards to distributed cognition, software development has traditionally been considered as a
type of ‘disembodied’ process or solitary task performed by an individual. However, more recently,
studies have begun to consider that this approach may only tell part of the story (Flor and Hutchins
1991)

Again, the strategy by which developers store and access information and participate with the
environment around them is seen to be a key factor in the development of programming expertise.

2.2.3 Practice
Adelson (1984) quotes occasions where software experts do not appear to have access to a detailed

representation of how they come to know what they do. Presumably this is a symptom of having
practiced a skill to such an extent that access of a detailed step-by-step model is not required.
Moreover, performing ‘automatically’ might assume that where a skill is well-practised it may be
performed almost ‘on auto-pilot’. In studies of object-oriented programmers, Pennington, Lee and
Rehder (1995) found that experts were so well practiced that they were able to identify the classes

Bryant

PPIG 2005 Sussex University www.ppig.org

required directly from the problem domain without resorting to the gradual refinement of detail
required by novices.

2.2.4 Metacognition
Petre (2002) notes that on occasions experts perform ‘automatically’ or ‘intuitively’ but are able to

retrospectively reason about how they have reached a decision. In these cases there must be awareness
of their knowledge (Payne, 1988) even thought they do not appear to have gone through a linear,
logical process of deduction. This seems similar to the ability to reference certain key pieces of
knowledge by recognizing the relevant pattern or trigger to access it and, alongside the selective use of
tools discussed above, suggests that experienced software developers are aware of their approach to
problem solving and can select tools that are suitable to this approach.

2.2.5 The practice-strategy-knowledge-metacognition model
The different aspects of practice, strategy and knowledge are clearly referenced in the literature on

the psychology of programming, in particular where programming expertise is considered. As such, at
a high level, this model seems as applicable to expertise in software development and expertise in
general.

2.3 Expertise in pair programming

2.3.1 Knowledge
Considering the literature on pair programming in extreme Programming, it quickly becomes

apparent that much is written about interpersonal and attitudinal skills, rather than on programming
knowledge. For example, Dick and Zarnett (2002) consider Communication, Confidence and Comfort
pair programming are the three most important factors when selecting pair programming personnel,
and Williams and Kessler (2003) suggests seven habits of effective pair programmers, surprisingly
none of which relate to technical skills and knowledge. This might be due to the pair programming
community making assumptions about programming expertise, and simply considering the additional
skills required. This is not surprising when we consider that it is not possible to be an expert pair
programmer without also being considered an experienced programmer, although the reverse is
certainly true. However, this makes it unclear what is means when pair programmers consider
‘novices’ – are these novices inexperienced at programming in general or simply not yet expert at
pairing? Auer and Miller (2002) suggests that the benefits of pair programming include all design
decisions involving at least two brains and spreading knowledge throughout the team, however little
attention is paid to what this means in cognitive terms, how it might be achieved, nor indeed where this
knowledge comes from in the first place.

2.3.2 Strategy
It is often stated that when pair programming the driver (who currently has control of the keyboard)

and the navigator (who contributes verbally) work at different levels of abstraction (e.g. (Beck, 2000).
This suggests that working with two different strategies assists in developing quality code, and is an
interesting contrast with findings by Chi (1988) discussed above, which suggests that focusing on
semantics, rather than syntax is a more expert strategy. However, a pilot study (Bryant, 2004) suggests
that this might not be indicative of the interactions that might be observed when a pair program
together – in fact one might question how it would even be possible for two people working at different
levels of abstraction to successfully sustain a conversation at all.

Influenced by the work of Hutchins (1995), studies of experienced pair programmers ‘in the wild’
have shown software development as taking place within a rich ecology of distributed cognition
composed of the programmers themselves working amongst and overhearing other members of their
team and making use of a wide variety of tools and artifacts within the environment in which they work
(Bryant, 2005).

2.3.3 Practice
Little importance seems to be given to amount of practice in the extreme Programming literature,

although reference is often made to the ‘experienced’ and ‘inexperienced’, without qualifying whether
this refers to experience pairing, experience programming, experience within a particular technical
environment or experience in the relevant problem domain and what would quality one to be

Bryant

PPIG 2005 Sussex University www.ppig.org

considered ‘experienced’ in any of these measures. One can only assume that length of time
programming or pair programming might certainly play a role.

2.3.4 Metacognition
Very little has been written regarding pair programming and meta-cognition. However, within

extreme Programming reference is often made to software development as a ‘reflective practice’
(Schon, 1983) and one often finds references to Myers-Briggs personality tests on pair programmers
blogs and websites. Myers Briggs types have even been investigated as a method of choosing
compatible pairs in education (Katira, Williams et al. 2004). As previously mentioned, confidence has
been considered a key factor in successful pair programming. One might assume that without a
reasonable level of confidence the exposure of ones work and methods required when working
collaboratively would be uncomfortable at very least. Similarly, lack of confidence on either partner’s
part might lead to an ‘unbalanced pair’ in which the less confident partner is retiscent, or indeed
unwilling to contribute. Further investigation is required in order to ascertain the role of meta-cognition
in successful pair programming and whether a deeper understanding of ones own working style,
perhaps bia Myers Briggs or similar inventories, might assist.

2.3.5 The practice-strategy-knowledge-metacognition model
The different aspects of practice, strategy, knowledge and meta-cognition are much less clearly

referenced in pair programming literature. In fact, strategy in terms of communication and the
mechanics of working together seems to be the main aspect of focus. Perhaps one assumes a certain
level of programming competency when considering ability to pair program, or alternatively maybe
interpersonal skills and attitude are considered so important that programming skills are considered
only secondary.

3 Rating expertise

This section will consider different manners in which expertise might be rated – either by self, peer
or superior. It draws on literature from psychology to suggest some expected characteristics of each
kind of rating.

3.1 Self-rating

Studies by Dunning and Kruger (1999) across three domains (humour, logical reasoning and
grammar) suggest that those who are less skilled are more likely to grossly over-estimate their ability
and experts are more likely to underestimate theirs. Their studies suggest that novices lack the
experience - and therefore the insight - to recognise their own limitations, while experts do not under-
estimate their own performance, but rather over-estimate that of their peers. This concurs with findings
which suggest that those who are experienced have greater meta-cognitive skills than those who are not
– that is, expert pair programmers may be more aware of the limitations in their knowledge, but more
able to compensate for them and select tools and techniques accordingly. Novice pair programmers
will over-estimate their skill-level because, not only are they unclear about the skills required, they lack
insight into their own performance. Note that when exposed to the work of their peers, experts are
more likely to re-assess their rating favourably, bringing it more closely in line with their actual
performance. This suggests that experts are not under-rating their own abilities, but rather assuming a
higher level of competence from their peers.

3.2 Peer and superior rating

Amongst studies on rater bias, Holzbach’s (1978) survey of 107 managerial and 76 professional
employees in a manufacturing company found that self-ratings were more lenient (i.e. significantly
different to the ratings from different sources) than either peer or supervisor ratings, whilst peer and
supervisor ratings did not differ appreciably either from other such ratings of the same type or across
groups. However, peer and supervisor ratings were more likely to be global judgements, whereas self-
ratings were more likely to differentiate between rating items. Love (1981) compared peer
nominations, ranking and ratings of 145 police officers and 33 supervisors. His findings showed that

Bryant

PPIG 2005 Sussex University www.ppig.org

the ratings showed significant reliability, and therefore were not significantly biased by friendship etc.
Given the studies by Dunning and Kruger (1999) discussed above, these findings suggest that peer and
supervisor ratings achieve a more accurate result than self-rating.

4. Rating and collaborative programming

This section discusses a study of rating and pair programming in light of the literature discussed
above. First, it considers whether patterns in self-rating according to expertise follow those generally
found when contrasted with peer or supervisor rating. Second, it considers how self and peer/supervisor
ratings relate to experience in terms of length of tenure (a direct measure of ‘practice’ from the
practice-strategy-knowledge model) and confidence (one of the measures from the pair programming
literature).

4.1 Hypotheses

Evidence provided from the studies on rating discussed above lead us to the following predictions:

Prediction 1: The self-assessments of experience of pair programmers rated high ability by others

will be considerably lower than the ability rating attributed to them.

Prediction 2: The self-assessments of experience of pair programmers rated low ability by others

will be considerably higher than the ability rating attributed to them.

Prediction 3: The pair-programming ability ratings of peers/supervisors will more accurately reflect

the length of time software developers have been pair programming than their own ratings of their
experience.

Prediction 4: Given findings on self-efficacy, one would expect that pair programmers’ own

experience rating reflected the confidence rating they were assigned by their peers/supervisors.

4.2 The study

These predictions were explored in a study across four commercial software development projects.
In each study participants were asked to rate their own pair programming experience level and the
amount of time they had spent pair programming. A colleague or supervisor was then asked to rate
their level of pair programming ability and their level of confidence. In total 43 software developers
responded. As peer and supervisor assessments have been seen to be more reliable than own ratings,
they will be considered the ‘benchmark’ rating, therefore when pair programmers are said to be ‘high’,
‘medium’ or ‘low’ ability this will refer to their supervisor/peer assessment.

4.3 Self, peer and supervisor assessments

Following prediction 1, and in line with findings on expertise and meta-cognition, ‘high ability’ pair
programmers’ (as rated by peer or superior) were expected to rate themselves as medium or low
experience. Similarly, according to prediction 2, ‘low ability pair programmers’ were expected to rate
their own experience level as either medium, or high. The actual findings regarding peer/supervisor
ability ratings and own experience ratings are given in the table 1 below.

Peer/supervisor rating
 High ability Medium ability Low ability
High experience 6 1 0
Medium experience 15 9 2 S

el
f-

ra
ti

ng

Low experience 8 1 2

Bryant

PPIG 2005 Sussex University www.ppig.org

Table 1 – Self, peer and supervisor ratings of pair programming ability and experience

As can be seen from in Table 1, the study findings are in line with the first prediction, as 79% of

‘high ability’ pair programmers under-rated their level of experience compared to the rating of their
peer or supervisor. Regarding the second prediction, only fifty percent of ‘low ability’ rated pair
programmers rated themselves higher than they were rated by others. One possible explanation for this
might be that the improved feedback and confidence gained by working in pairs may help to
compensate for the lower ability pairer’s overconfidence. That is, insight into the complexities and
skills involved in attaining competence in pair programmers are rendered visible through working with
a partner. Alternatively, experience alone may not have been considered the most key factor in rating
ability.

4.4 Length of tenure and ability rating

In our third prediction we suggested that ability ratings made by peers or supervisors would closely
relate to the amount of time an individual had been pair programming commercially (their ‘length of
tenure’ as a pair programmer). Exposure to a variety of pair programming experiences and time in the
job are often considered important factors in gaining experience in pair programming. In particular, one
of the benefits of pair programming that is often cited is its facilitation of ‘learning by doing’ and
‘learning through observation’ (e.g. Williams and Kessler, 2003, p.5). As such, one would expect
length of tenure to have a strong impact on abilty rating by peers and supervisors.

As shown in Figure 1, findings from the study do not concur with predictions. Perhaps most

surprising is the fact that, of 27 programmers with less than one year pairing, 19 were already
considered to be highly able. This would seem to relate more to their time programming in general (15
had been programming more than five years and all longer than two) than the time spent pair
programming. This fits with the general literature on expertise, in terms of repetition and gaining,
storing and accessing information than with the attributes considered important in pair programming.

Figure 1 – Peer rating of ability and length of tenure

When compared with the impact of length of tenure on self-rating of pair programming experience

(Figure 2) it is interesting to see that the amount of time spent pairing had greater impact on self-rating
than on peer or supervisor. In fact, most programmers with over two years pairing considered
themselves highly experienced, all of the ‘medium duration’ pairers rated their experience as medium,
and even those with less than a year’s pairing rated themselves more consistently than their peer or
supervisor ability ratings. Thus, length of time pairing would seem to be a more important factor when
self-rating than for rating others, where general programming tenure seems more important. This is
surprising, as length of pair programming tenure is perhaps a more easily quantifiable ‘fact’ on which a
reliable rating could be based. This suggests that in the case of pair programming either self-ratings are

Bryant

PPIG 2005 Sussex University www.ppig.org

more reliable than peer or supervisor ratings or length of tenure alone is not a reliable indicator.
Evidence in other areas, as previously discussed, suggests that it is unlikely that self-ratings are more
reliable. Therefore, it would seem that, although it is often used, length of tenure alone is not a ‘good’
(i.e. reliable) indicator of ‘expertise’ in this case.

Figure 2 – Self-rating of experience and length of tenure

4.5 Confidence and self-rating

According to the theory of self-efficacy, one would expect that pair programmers of a high level of
confidence were more likely to be successful and therefore more likely to consider themselves more
experienced at pair programming. In order to thoroughly consider this prediction, it is necessary to
ascertain the level of congruence between own rating of experience and peer/supervisor rating of
confidence. This may allow us to start to differentiate between high or low self-rating (which could be
considered a good measure of self-confidence) and high or low confidence assessment from a third
party (measuring perceived self-confidence). As seen in figure 3 below, there are discrepancies
between these two forms of confidence rating in the study results.

Figure 3 – Self-rating of experience vs Peer rating of confidence

As seen in figure 3, participants in the ‘low’ and ‘medium’ confidence rated groups rated their own

level of experience quite consistently with the confidence rating of their peer or supervisor. However,
those considered highly confident by others usually did not consider themselves highly experienced.
This is consistent with the data discussed under length of tenure, where a high self-rating was less
evident than a high peer-rating. Perhaps this also concurs with Dunning and Kruger’s (1999)
suggestions that those with high ability tend to over-estimate the ability of those around them. Perhaps

Bryant

PPIG 2005 Sussex University www.ppig.org

indeed, this encourages them to ‘raise the benchmark’ of what they consider highly able, in some cases
so high that it reaches a level they can no longer attain.

5. Conclusion

Knowledge, strategy and practice can clearly be identified from the literature as some of the key
components in attaining expertise across a number of domains. however they are referenced
surprisingly rarely in the literature on pair programming. Discussions of pair programming expertise
are generally limited to ‘more’ and ‘less’ experienced individuals, without clarification of what is
meant by these classifications and by whom they are rated. Rather the pair programming literature
considers communication and attitude related skills much more dominantly. The survey of commercial
pair programmers discussed in this paper showed that, consistently with cross-domain studies, pair
programmers considered highly able by others tended to under-rate their level of experience, whereas
50% of those rated low ability over-rated themselves in comparison. This is perhaps due to the rather
poor definition of what makes an experienced pair programmer. Thus two further variables were
considered: Length of tenure and confidence.

It was somewhat surprising that self-ratings related more closely to the amount of time spent pair

programming than ratings by peers or supervisors. This implies that despite not being present in the
literature on pair programming, practice is considered a relevant indicator of expertise to pair
programmers when rating themselves. Conversely, confidence rating was not a good indicator of self-
rated experience in highly able pair programmers, despite being highlighted as an important factor in
the pair programming literature. This implies that there are very different rating models being used by
peers and supervisors than by pair programmers self-rating. Further studies are required to ascertain in
more detail what these models are and how they relate to the key factors of knowledge, strategy and
practice.

References

Adelson, B. (1984). "When novices surpass experts: the difficulty of task may increase with expertise."
Journal of experimental psychology: Learning, memory and cognition 10(3): 483-495.

Adelson, B. and E. Soloway (1988). A model of software design. The nature of expertise. M. Chi, R.
Glaser and F. MJ. Hillsdale, New Jersey, Lawrence Erlbaum Associates: 185-208.

Auer, K. and R. Miller (2002). Extreme Programming Applied. Indianapolis, IN, USA, Addison-
Wesley.

Beck, K. (2000). Extreme programming explained: Embrace change, Addison Wesley.

Bryant, S. (2004). Double Trouble: Mixing quantitative and qualitative methods in the study of
extreme programmers. Visual languages and human centric computing, Rome, Italy, IEEE COmputer
Society.

Bryant, S. (2005). Distributed cognition in pair programming. In preparation.

Chase, W. G. and K. A. Ericsson (1982). "Skill and working memory." The psychology of learning and
motivation 16: 1-58.

Chi, M. (1988). Introduction. The nature of expertise. M. Chi, R. Glaser and M. Farr. Hillsdale, New
Jersey, Lawrence Erlbaum Associates: 185-208.

Davies, S. (1991). "Characterizing the program design activity: Neither strictly top-down nor globally
opportunistic." Behaviour & Information Technology 10(3): 173-190.

Davies, S. (1993). Expertise and display-based strategies in computer programming. People and
Computers VIII - HCI '93 conference.

Bryant

PPIG 2005 Sussex University www.ppig.org

Detienne, F. (1990). Expert programming knowledge: A schema-based approach. Psychology of
Programmin. J. Hoc, T. Green, R. Samurcay and D. Gilmore. London, Academic Press: 205-222.

Detienne, F. (1997). "Assessing the cognitive consequences of the object-oriented approach: A survey
of empirical research on object-oriented design by individuals and teams." Interacting with Computers
9: 47-72.

Dick, A. and B. Zarnett (2002). Paired programming and personality traits. Third International
Conference on eXtreme Programming and Agile Processes in Software Engineering.

Dunning, D. and J. Kruger (1999). "Unskilled an unaware of it: How difficulties in recognizing one's
own incompetence lead to inflated self-assessments." Journal of personality and social psychology
77(1999): 1121-1134.

Eraut, M. and B. du Boulay (2002). Developing the attributes of medical professional judgement and
competence: a review of the literature. Cognitive science research papers, University of Sussex.

Ericsson, K. and P. Polson (1988). A cognitive analysis of exceptional memory for restaurant orders.
The nature of expertise. M. Chi, R. Glaser and M. Farr. Hillsdale, New Jersey, Lawrence Erlbaum
Associates.

Flor, N. and E. Hutchins (1991). Analyzing distributed cognition in software teams. Empirical studies
of programmers: Fourth workshop, Ablex publishing corporation.

Freedman, E. and P. Shah (2002). Towards a model of knowledge-based graph comprehension.
Diagrammatic representation and inference. M. Hegarty, B. Meyer and Narayanan: 18-30.

Gick, M. and K. Holyoak (1985). Analogical problem solving. Cognitive Modelling. A. Aitkenhead
and J. Slack. Hillsdale, New Jersey, Lawrence Erlbaum Associates.

Gilmore, D. (1990). Expert programming knowledge: A strategic approach. Psychology of
programming. J. Hoc, T. Green, R. Samurcay and D. Gilmore. London, UK, Academic press: 224-234.

Holzbach, R. L. (1978). "Rater bias in performance ratings: Superior, self- and peer ratings." Journal of
applied psychology 63(5): 579-588.

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA, The MIT Press.

Johnson, E. (1988). Expertise and decision-making under uncertainty: Performance and progress. The
nature of expertise. M. Chi, B. Glaser and M. Farr. Hillsdale, New Jersey, Lawrence Erlbaum
Associates: 209-228.

Katira, N., L. Williams, et al. (2004). On understanding compatibility of student pair programmers.
SIGCSE technical symposium on Computer science education.

Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cambridge, UK, Cambridge
University Press.

Larkin, J. (1983). The role of problem representation in physics. Mental models. D. Gentner and A.
Stevens. Hillsdale, New Jersey, Lawrence Erlbaum Associates.

Lawrence, J. (1988). Expertise on the bench: Modelling magistrates judicial decision making. The
nature of expertise. M. Chi, B. Glaser and M. Farr. Hillsdale, New Jersey, Lawrence Erlbaum
Associates: 229-260.

Lesgold, A., H. Rubison, et al. (1988). Expertise in a complex skill: Diagnosing x-ray pictures. The
nature of expertise. M. Chi, B. Glaser and M. Farr. Hillsdale, New Jersey, USA, Lawrence Erlbaum
Associates: 311-342.

Bryant

PPIG 2005 Sussex University www.ppig.org

Love, K. G. (1981). "Comparnison of peer assessment methods: Reliability, validity, friendship bias
and user reaction." Journal of applied psychology 66(4): 451-457.

Payne, S.J. (1988). Methods and mental models in theories of cognitive skill, in "Characterizing the
prgram design activity: neither strictly top-down nor globally opportunistic", Davies, S.P. (1991),
Behaviour and Technology 10(3): 173-190.

Pennington, N., Lee, A. and Rehder, B. "Cognitive activities and levels of abstraction in procedural and
object-oriented design", Human-Computer Interaction 10: 171-226.

Petre, M. (2002). Mental imagery, visualisation tools and team work. Second program visualisation
workshop, Hornstrup centret, Denmark.

Petre, M. and A. Blackwell (1999). "Mental imagery in program design and visual programming."
International Journal of Human-Computer Studies 51: 7-30.

Schmidt, H. (1993). "Problem-based learning: An introduction." Instructional Science 22(4): 247-250.

Schon, D. A. (1983). The reflective practitioner: How professionals think in action. USA, Basic Books,
Inc.

Soloway, E., B. Adelson, et al. (1988). Knowledge and processes in the comprehension of computer
programs. The nature of expertise. M. Chi, B. Glaser and M. Farr. New Jersey, USA, Lawrence
Erlbaum Associates: 129-152.

Suwa, M. and B. Tversky (2002). External representations contributing to the dynamic construction of
ideas. Diagrammatic representation and inference. M. Hegarty, B. Meyer and N. Narayan: 341-343.

Trafton, J., S. Marshall, et al. (2002). Extracting explicit and implicit information from complex
visualisations. Diagrammatic representation and inference. M. Hegarty, B. Meyer and N. Narayan:
206-220.

Voss, J. and T. Post (1988). On the solving of ill-structured problems. The nature of expertise. M. Chi,
B. Glaser and M. Farr. Hillsdale, New Jersey, USA, Lawrence Erlbaum Associates: 261-286.

Williams, L. and R. Kessler (2003). Pair programming illuminated. Boston, Addison-Wesley.

Bryant

PPIG 2005 Sussex University www.ppig.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

