
Short-Term Effects of Graphical versus Textual
Visualisation of Variables on Program Perception

Seppo Nevalainen and Jorma Sajaniemi

University of Joensuu, Department of Computer Science,
P.O.Box 111, 80101 Joensuu, Finland,

seppo.nevalainen@cs.joensuu.fi ,
WWW home page:http://www.cs.joensuu.fi/˜snevalai/

Abstract. The empirical evaluation of program visualisation has been based
mostly on observations of long-term effects of the program visualisation tools,
while possible short-term effects of the visualisations and their relation to the
long-term effects have been elided. In order to study short-term effects of visual-
isation of variables in a context where the long-term effects are already known,
we conducted a controlled experiment, in which we investigated how a person
targets her visual attention and what kind of a mental model she constructs, when
variables are presented either textually or graphically. The results indicate clear
differences in the targeting of visual attention between the visualisation tools:
With the graphical tool, the participants targeted their visual attention to vari-
ables much more than with the textual tool. With the graphical tool, the increase
of visual attention to variables increased the proportion of high-level information
in program summaries and decreased the proportion of low-level code-related
information.

1 Introduction

Learning to program is a difficult task for many students. One reason for this is that
programs deal with abstract entities—formal looping constructs, pointers going through
arrays etc.—that have little to do with everyday issues. Methods and techniques that
help students to better understand and conceptualise these abstract entities and their
behavior can be used to enhance learning elementary programming. Visualisations can
be used for this purpose, e.g., to illustrate expert programmers’ reasoning processes to
the novice [1] or to make programming language constructs and program constructs
more comprehensible [2, 3].

What, then, should be chosen as the focus of a visualisation, and how it should
be presented to the viewer? Variables are central to the comprehension of computer
programs. Programs consist of variables, operations on variables, and larger program
constructs, such as functions, classes, and modules. In one study [4], information about
variables was the most frequent information need type among professional maintenance
programmers. Several taxonomies and frameworks [5–9] have been presented to aid
designers and evaluators of software visualisation tools and visual programming envi-
ronments in identifying the essential aspects of visualisations. This information can be
utilised in searching answers for the question how information should be presented in

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 77 - 91In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 77 - 91

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

order for a visualisation to be effective. Our emphasis will be on issues concerning the
visualisation of program variables.

To verify the effectiveness of a visualisation tool, it needs to be properly evaluated.
Empirical evaluation of program visualisations has been based mostly on post-tests or
pre- versus post-tests of participants’ performance. These evaluations have resulted in a
body of evidence suggesting that visualisations can have beneficial long-term effects on
learning, when designed and used properly [2, 10–12]. Evaluation of post-test or pre-
versus post-test performance of participants does not, however, provide clear insight
into the possible short-term effects of visualisations and their relation to the long-term
effects.

In order to study these issues more rigorously, we conducted an experiment, in
which we studied two different visualisation tools for presenting program variables and
their execution-time behavior. The first tool, PlanAni program animator[13], presents
pictorial metaphors for variables, operations on variables are animated, and informa-
tion concerning the roles of the variables [14] is incorporated into the visualisation. The
second tool, Turbo Pascal programming environment, provides textual representations
of variables, operations on variables simply replace the value of the variable in the rep-
resentation, and no role information is present. Previous studies [13, 15] have reported
the differences in long-term effects of the use of these two tools.

Visualisation can be effective only if it gets viewers’ visual attention. In order to
determine the level of viewers’ visual attention on program code and on visualisation of
variables with the two visualisation tools, the locations of the participants’ gaze on the
screen were measured. Possible differences in the participants’ mental models of the
studied programs between the two visualisation tools were investigated by analysing
participants’ program summaries. In order to control possible individual differences
between the participants, field-indepence of each participant was also measured.

This paper is organised as follows. First, we provide some background by reviewing
the literature on visualisation of variables in existing program visualisation tools in
Section 2. Section 2 also includes an introduction to the roles of variables and their
visualisation. In Section 3, the experiment is described, and its results are presented and
discussed. Section 4 contains the conclusions.

2 Background

In this Section, we will discuss different manners of representation of variables in pro-
gram visualisation. First, we will take a look at the visualisation of variables in general
and then we will focus on the representation of variables in the graphical environment
of PlanAni, which is paired with the textual environment of Turbo Pascal in our exper-
iment.

2.1 Visualisation of Program Variables

Visualisation can be characterised as a formation of a mental image on the basis of
some sensory input [16]. In program visualisation tools, this sensory input often means
pictorial metaphors, i.e., static or animated images. Pictorial metaphors produce mental

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

images that can be helpful, irrelevant, or even harmful in accomplishing the task(s)
being carried out.

What sort of visualisation is suitable for which information and which uses by which
users? This multifaceted question is discussed by Petre et al. [1] who give some idea on
the complexity that the design of a program visualisation tool involves. General frame-
works and taxonomies [5–9] have been presented in order to help designers’ alleviate
this complexity, but they do not provide definite answers for feature selection.

In this paper, the design of visualisation of variables is considered on the following
axes:

– Predefined visualisations versus user-defined visualisations.
– Programming language level visualisations versus visualisations of higher level

programming constructs.
– Targeting of animation on a variable versus on the visualisation of the variable

versus on both.

Program visualisation tools can be divided into two categories: semi-automatic tools
and hand-crafted tools [13]. This division is based on how much a program visualisation
tool allows the user to influence the visual appearance of variables. In semi-automatic
tools, users select visualisations for variables from a set of ready-made visualisations.
In hand-crafted tools, users make choices to reflect the value of a variable by choosing
for example the appropriate size, color, and orientation for the visualisation. Program
visualisation tools can use also predefined visualisations selected by the designer of the
visualisation. The main effect of allowing users to participate in deciding the visual
appearance of the visualisations is the increased interaction between the visualisation
tool and the user; there is no guarantee of the appropriateness of the visualisation.

Many of the current visualisation tools represent variables and operations on vari-
ables in the program or programming language level. That is, they show what variables
a program includes and the change of the values of these variables during program ex-
ecution, treating each variable as an individual having at most programming language
level abstractions (such as the type of the variable). According to Petre and Blackwell
[17], visualisations should not work in the programming language level because within-
paradigm visualisations, i.e., those dealing with programming language constructs, are
uninformative. Instead of treating each variable as a separate entity, expert program-
mers place variables into different classes according to their stereotypic behavior and
use [18]. These stereotypic features of variables are an example of higher level program
constructs that can be utilised in visualisations.

When animation is used in a visualisation, it can be focused on different aspects of
the visualisation. Sajaniemi and Stützle [19] introduce three possible foci: the variable,
the metaphor used as the visualisation of the variable, or combination of the previous
two. The effects of different targeting of animation have not been verified, but possible
effects have been suggested. If the focus is on the metaphor, the animation probably
helps to recognise the metaphor or gives more enjoyment to the viewer. If the focus
is on the properties of the variable, this presumably helps to deepen the understanding
of that variable. If the emphasis is on both the variable and the metaphor, the connec-
tion between the two is emphasised, and the analogy between them may become more
evident.

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

Fig. 1. Two variable roles, most-recent holder (data) and stepper (count), and animations repre-
senting the comparison operation ”some variable > 0”.

2.2 Visualising Roles of Variables

To facilitate teaching introductory programming, Sajaniemi has developed a theory of
the roles of variables [14]. This theory is based on the notion of variable plans, which
represent stereotypic uses of variables [20, 21]. Ten roles are sufficient to cover prac-
tically all variables in novice-level procedural programs. These roles have also been
found to belong to professional programmers’ tacit knowledge [22]. On the basis of this
theory, Sajaniemi and Kuittinen [13] have introduced a program animator, PlanAni.

In Planani, visualisations of variables are predefined: Each variable has a role im-
age which is used also for the animation of operations on the variable. For example,
the role images of two roles, most-recent holder and stepper, and animations represent-
ing the comparison operation ”some variable > 0”, are shown in Figure 1. The role
images represent the salient, stereotypical features of variables’ behavior. Animations
in PlanAni are focused on the target, i.e., role-like behavior of variables. Stützle and
Sajaniemi [23] have evaluated role images of PlanAni empirically and found that the
role images enhanced learning of the roles when compared with neutral control images.

Long-term effects of the visualisation of variable roles have been analysed in a class-
room experiment [24]. Both Sajaniemi and Kuittinen [24], and Byckling and Sajaniemi
[15], have found results suggesting that visualisation of variable roles with PlanAni has
positive long-term effects on learning when compared with textual Turbo Pascal envi-
ronment. Short-term effects and their relation to long-term effects are the focus of this
and our further experiments.

3 Experiment

In order to study short-term effects of variable visualisations, we conducted an exper-
iment where two different visualisation tools for presenting information about vari-
ables and their values during program execution were used. The tools were used in the
classroom experiment [24], in which the long-term effects of the visualisations were
investigated. The current study concentrates on possible differences in the locations of
participants’ visual attention and in participants’ mental models of the studied programs
between the two visualisation tools.

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

For control reasons, the level of field-independence of each participant was mea-
sured. Witkin et al. [25] define field-dependence and field-independence as follows: ”in
a field-dependent mode of perceiving, perception is strongly dominated by the overall
organization of the surrounding field, and parts of the field are experienced as ”fused”.
In a field-independent mode of perceiving, parts of the field are experienced as discrete
from organized ground.” Field-independence has been found to correlate positively with
learning to program [26], especially in computerised text-based and web-based envi-
ronments [27]. Parkinson et al. [28] have shown that the difference in performance
between field-dependent and field-independent learners in computerised text-based and
web-based environments can be diminished by accommodating field-dependence in the
design of the environments.

The experiment consisted of 4 phases. In the first phase, the participants were asked
to perform a test measuring participants’ level of field-independence. In the second
phase, the participants studied a recap material on roles of variables. The third phase
consisted of viewing Pascal programs with the visualisation tools and of writing down
program summaries. In the fourth phase, the participants filled a questionnaire about
the visualisation tools.

3.1 Method

The experiment was a within-subject design with one independent variable (the visu-
alisation tool) and two dependent variables (locations of the participant’s gaze and the
program summary provided by the participant). Locations of gaze were recorded us-
ing an eye-tracking camera [29], and program summaries were analysed using Good’s
program summary analysis scheme [30]. The level of field-independence of the partic-
ipants was measured using Group Embedded Figures Test (GEFT) [25]. The order of
the visualisation tools and the order of the studied programs were counterbalanced.

Participants Twelve participants, 7 male and 5 female, took part in the experiment.
The participants were students who had taken an introductory programming course fa-
cilitating the roles of variables and continued their studies 1-2 years thereafter.

Materials In the first phase, participants’ level of field-independence was measured
using GEFT test set [25].

In the second phase, written material from an earlier experiment [19] was used. The
material consisted of descriptions of all roles and examples of their use. It included also
a practice material consisting of three small Pascal programs with 14 variables, whose
roles participants were asked to determine.

In the third phase, participants studied four simple Pascal programs. The programs
were short (11-29 lines, empty lines omitted) and similar to the more difficult programs
used in the introductory programming course of the earlier classroom experiment [24].
Participants entered predefined inputs for the programs. The use of fixed inputs enabled
a participant to focus her attention to understanding the program, instead of wondering
what inputs would be proper to the programs.

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

The visualisation tools used were the PlanAni programming animator (version 0.55)
and the Turbo Pascal programming environment (version 5.5). In PlanAni (Figure 2),
visualisations are graphical, operations on variables are animated, and information con-
cerning the roles of variables is incorporated into the visualisations. Variable visuali-
sations are located on the right side of the program code. PlanAni displays also notifi-
cations of each program action and has a separate area for input and output. In Turbo
Pascal (Figure 3), visualisations are textual, operations on variables simply replace the
old value of the variable with the new value, and no role information is presented.
Variable visualisations are located below the program code. Turbo Pascal displays no
notifications, and input and output are handled through command prompt. In the Turbo
Pascal environment, watches displaying each variable and its values during execution
were initialised in advance, and they served as textual visualisations of variables. Both
visualisation tools display code and variables and were prepared so that participants
were able to execute each program once, step by step. This limitation was used because
the tools differed in many other aspects and we wanted to minimise differences having
an influence on the participants.

In the fourth phase, participants were asked to evaluate the visualisation tools with
an evaluation form including Likert scale questions and open questions about the tools
and their use. In the Likert scale questions, participants were asked to use a scale of
1-5 (1 = totally disagree, 5 = totally agree) to statements concerning five characteristics
of the visualisations: originality, pleasure, salience, understandability, and usefulness.
For example, the understandability of the visualisations was evaluated by proposition ”I
found this representation easy to understand”. These characteristics were derived from
experiments carried out by Ḧubscher-Younger and Narayanan [31] who used them to
characterise student visualisations of algorithms. In the open questions, participants
were asked to report what issues the two visualisations did and did not highlight. The
evaluation form included also a possibility for free commentary.

Procedure Participants were run individually. Each participant’s level of field-independence
was measured with the GEFT test consisting of three phases that lasted 2 minutes,
5 minutes, and 5 minutes. After this, the participant was given 15 minutes to study
the roles of variables recap material and perform the practice task. Then, after a short
break, the participant was seated in front of a computer monitor that has an eye-tracking
camera embedded in the panels. The procedure of measuring the movement of her eyes
was explained to the participant, and she was advised about the locations of all avail-
able information on the screen for both visualisation tools. The participant had then
an unlimited time to study each program. After the participant had finished studying a
program, the program was dismissed from the screen, and she was instructed to give
a written description of the program. Again, the time to do this was not limited, and
the participant was not instructed in any way on what the program description should
comprise of. The first two programs were shown with one visualisation tool and the
next two with the other tool. The first program with each visualisation tool was used
to familiarise the participant with the tool, and data from the second program only was
analysed. When all four programs had been studied, the participant was asked to evalu-
ate the visualisation tools.

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

Fig. 2. User interface of the PlanAni program animator (Dashed rectangles represent the code
area and the variable visualisation area used in the analysis of gaze locations).

Fig. 3.User interface of the Turbo Pascal programming environment (Dashed rectangles represent
the code area and the variable visualisation area used in the analysis of gaze locations).

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

3.2 Results

GEFT test results of participants’ levels of field-independence are shown in Table 1. In
the GEFT test, higher score means higher level of field-independence, and the theoreti-
cal maximum is 18.

Table 1.Results of GEFT test measuring participants’ levels of field-independence.

n Min Max Mean SD
GEFT score 12 7 18 14.75 3.22

The participants used on an average 26 minutes and 18 seconds to study a program
with PlanAni. Standard deviation was 5 minutes and 58 seconds. With Turbo Pascal,
mean time to study a program was 6.08 (SD 1.57). Due to the difference in the speed
of the animation between the two tools, the minimum time it takes to view the shorter
of the two analysed programs with the tools is 11.30 for PlanAni and 1.00 for Turbo
Pascal.

Table 2.Mean proportions of viewing times on the three areas of the screen.

Code Screen Area Condition
PlanAni Turbo Pascal

Mean SD Mean SD
COD Code *** 20.36 3.27 38.75 2.13
VAR Variables *** 15.43 3.59 3.11 2.38
OTH Other *** 64.21 2.89 58.14 2.52

For the purpose of the analysis, the screen was divided into three areas. The code
area and the variable area were formed by taking the smallest bounding box that in-
cludes the symbols used in the code or the variable visualisations. These areas are illus-
trated by the dashed rectangles in Figures 2 and 3. Other parts of the screen formed the
third area. A two-way within-subject Analysis of Variance was carried out. The ANOVA
on absolute viewing times showed that there was a significant main effect of visualisa-
tion tool (F (1, 9) = 156.956, p < 0.001), and of screen area (F (2, 9) = 78.125,
p < 0.001), and also a significant two-way interaction of visualisation tool and screen
area (F (2, 9) = 55.984, p < 0.001). The mean proportions of viewing times on these
three areas are presented in Table 2. Pairedt-test with Bonferroni correction was used
for follow-up testing. The difference between PlanAni and Turbo Pascal is significant
in the proportional viewing time on code (t = −17.036, df = 11, p < 0.001), variables
(t = 8.721, df = 11, p < 0.001), and other parts of the screen (t = 5.708, df = 11,
p < 0.001).

In order to study participants’ mental models of the studied programs, we used
Good’s program summary analysis scheme [30] that consists of two classifications: one

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

based on information types (IT) and the other based on object descriptions (ODC). The
information types classification is used to code summary statements on the basis of the
information types they contain. Table 3 contains the distribution of information type
statements in each condition. The object descriptions classification looks at the way in
which objects are described. Table 4 contains the distribution of object description state-
ments in each condition. No statistically significant differences between the conditions
were found in information types or object description classifications.

We analysed the distribution of domain versus program information in participants’
program summaries further by using a similar strategy as Sajaniemi and Kuittinen [24].
We sorted program summaries into three types depending on the amount of domain
versus program statements in object descriptions. Summaries with at least 67% do-
main statements (indirect and unclear statements excluded) were calleddomain-level
summaries, summaries with at least 67% program and program only statements were
classified asprogram-level summaries, and all others were calledcross-referenced sum-
mariesbecause they had a more even distribution of domain and program information.
The number of cross-referenced summaries was two in PlanAni condition and four in
Turbo Pascal condition. This difference is not statistically significant (Fisher’s exact
test).

Table 3.Mean proportions of IT categories used in program summaries.

Code Information Type Condition
PlanAni Turbo Pascal

Mean SD Mean SD
FUN Function 14.73 32.96 8.33 21.62
ACT Actions 17.98 18.12 16.08 16.98
OPE Operations 13.16 15.42 10.64 12.83
SHI State-high 4.42 5.15 2.38 5.79
SLO State-low 3.84 5.92 3.68 6.18
DAT Data 36.69 25.56 41.40 25.41
CON Control 3.70 6.35 6.86 10.88
ELA Elaborate 3.45 5.69 8.15 17.34
MET Meta 0.52 1.79 0.38 1.30
IRR Irrelevant 1.13 3.93 1.07 2.62
UNC Unclear 0.00 0.00 0.00 0.00
INC Incomplete 0.00 0.00 0.00 0.00
CUT Continuation 0.00 0.00 0.38 1.30
HIG FUN+ACT+SHI+DAT 73.80 25.54 68.18 24.55
LOW OPE+SLO+CON 21.08 22.97 21.86 19.93
OTH 100-HIG-LOW 5.12 8.86 9.96 17.61
HIP HIG / (HIG+LOW) * 100 77.35 23.78 76.08 22.11

Participants’ evaluation of the visualisation tools is presented in Table 5. The dif-
ference between PlanAni and Turbo Pascal is significant in both originality (t = 7.374,
df = 11, p < 0.001) and salience (t = 4.690, df = 11, p = 0.001).

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

Table 4.Mean proportions of ODC categories used in program summaries.

Code Object Description Category Condition
PlanAni Turbo Pascal

Mean SD Mean SD
PON Program only 0.98 3.41 1.89 6.55
PRO Program 1.96 6.78 2.25 6.56
PRR Program—real-world 18.19 26.10 16.22 18.74
PRD Program—domain 2.19 4.23 1.81 6.26
DOM Domain 74.92 29.41 77.13 22.23
IND Indirect reference 1.78 2.64 0.69 2.40
UNO Unclear 0.00 0.00 0.00 0.00

Table 5. Participants’ evaluation of different characteristics of the two visualisation tools (scale
1-5); the best is 5.

Characteristic Condition
PlanAni Turbo Pascal

Mean SD Mean SD
Originality *** 3.92 0.79 2.00 0.60
Pleasure 2.58 1.00 3.42 1.00
Salience ** 4.00 0.43 3.00 0.74
Understandability 4.25 0.75 3.50 0.91
Usefulness 3.00 1.04 2.50 0.80

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

The correlations between participants’ levels of field-independence and the depen-
dent variables—the proportions of time used for viewing the program variables, and the
proportions of different information types and object description categories in partici-
pants’ program descriptions—were analysed using the Pearson correlation coefficient.
Variables having statistically significant correlation with proportion of time used for
viewing the visualisations of program variables (VAR) are shown in Table 6. There
were no statistically significant correlations between proportion of time used for view-
ing the code and any of the variables.

Table 6.Variables having statistically significant correlation with time used for viewing the visu-
alisations of program variables.

Correlation Condition
PlanAni Turbo Pascal

VAR versus GEFT score 0.688 * -0.071
VAR versus HIP 0.601 * -0.084
VAR versus OPE -0.655 * 0.042
VAR versus SLO -0.725 ** 0.025
VAR versus PRR -0.445 -0.747 **

In PlanAni condition, the Pearson correlation coefficient between proportion of vari-
able viewing and the GEFT-score isr = 0.688, the two-tailed probability for a correla-
tion of such magnitude to occur by chance being statistically significant (t = 3.001,
df = 10, p = 0.0133). In PlanAni, correlation is statistically significant also be-
tween proportion of variable viewing and high-level IT-descriptions (HIP) (r = 0.601,
t = 2.377, df = 10, p = 0.0388), proportion of variable viewing and operation level
IT-descriptions (OPE) (r = −0.655, t = −2.741, df = 10, p = 0.0208), and pro-
portion of variable viewing and state-low level IT-descriptions (SLO) (r = −0.725,
t = −3.331, df = 10, p = 0.0076). In Turbo Pascal, statistically significant corre-
lation occurs between proportion of variable viewing and program—real-world object
descriptions (PRR) (r = −0.747, t = −3.556, df = 10, p = 0.0052).

3.3 Discussion

The purpose of this experiment was to investigate how a person targets her visual at-
tention, and what kind of a mental model she constructs of a computer program, when
the program is presented using a program visualisation tool. The experiment is first in a
series of experiments that will study in detail the effects of the visualisation of roles of
variables in PlanAni. Two completely different visualisation tools were selected for the
current experiment in order to bring forth clearly different effects that different visuali-
sation tools might produce and to provide this way a starting point for a more detailed
investigation in future. Furthermore, the long-term effects of these two tools have been
studied earlier [13, 15].

The results indicate that participants spent more time viewing both the code and the
variables with PlanAni than they did with Turbo Pascal. Part of this can be explained

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

by the difference in the speed of the animation. Another explaining factor may be the
difference in the graphical richness and amount of details between the two tools.

The variable visualisations were viewed proportionately more with PlanAni than
with Turbo Pascal (p < 0.001) which means that the animation tool has an effect on
visual attention. One explaining factor is the location of animation: in PlanAni, most
animations appear within the variable visualisations, whereas in Turbo Pascal they ap-
pear in the code area. The effect of other factors, e.g., the pleasantness of the images
must be studied separately. The other area of the screen was viewed proportionately
more with PlanAni than with Turbo Pascal (p < 0.001). This was probably because
the area was substantially larger in PlanAni, and because it displayed input and output
of the program to the viewer constantly, instead of displaying them only in command
prompt.

Program summaries were used to study the mental models of the participants. No
statistically significant differences were found between the two tools. However, in PlanAni
the proportion of variable viewing correlated positively with high-level information
(r = 0.601) and negatively with operations (r = −0.655) and state-low (r = −0.725)
in program summaries. Thus the increase of visual attention in the variable visualisation
area increased high-level data-related information; and the increase of visual attention
to the code area increased low-level code-related information. In Turbo Pascal these
effects could not be found. Thus either the smaller absolute time increase was not suffi-
cient to cause changes in mental model or the Turbo Pascal interface did not provide the
information required for the high-level mental model because it lacks role information.

In Turbo Pascal, proportion of variable viewing correlated negatively with program-
real world object descriptions (r = −0.747; PlanAnir = −0.445). The program-real
world object descriptions typically contained expressions such as “value” and “num-
ber”, which were used in a similar way as program object descriptions in describing the
low-level operations of the programs. With both tools the increase of visual attention
in variable visualisations decreased the participants use of low-level descriptions of the
programs.

PlanAni has earlier been found to have positive long-term effects on programming
skills and content of mental models [13, 15], but in this experiment such an overall effect
could not be found. In addition to the location of visual attention, a person’s mental
model is influenced by other factors also. Hübscher-Younger and Narayanan [31] have
used six characteristics of visualisation tools and studied their effect on learning. They
found pleasure and salience to be the two most important characteristics influencing
learning. We asked our participants to evaluate both visualisation tools with five of
these characteristics: originality, pleasure, salience, understandability and usefulness.
The evaluation form included also open questions and a possibility for free commentary.
In our experiment, participants judged PlanAni to be more salient (p = 0.001) than
Turbo Pascal, but also more unpleasant (p = 0.096). One possible reason for the small
effect on mental models in this experiment is that even though PlanAni was judged
more salient, it was also found unpleasant to use.

On the basis of the open questions, it is obvious that the unpleasantness of PlanAni
was mostly due to the slowness of the animation. Eight participants commented neg-
atively about the slowness of PlanAni, and four commented positively about the fast

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

use of Turbo Pascal. The salience of PlanAni was contributed mostly to the illustration
of variables’ roles and tasks in the program. These were commented positively by the
participants five times (roles of the variables) and four times (tasks of the variables). In
some of the free commentary by the participants, PlanAni was deemed to be appropri-
ate for teaching elementary programming, not for intermediates. Because we had 2nd
and 3rd year students in the experiment, the programs were easy for the participants and
therefore properties highlighted by animation may have not shown up in the program
summaries. This can also partly explain the unpleasantness the participants felt in using
PlanAni, a tool designed for true novices.

The proportion of variable viewing correlated with the GEFT score in PlanAni
(r = 0.688), but not in Turbo Pascal (r = −0.071). This can be explained by the dif-
ference in graphical richness between the two visualisation tools. Following the textual
visualisation of Turbo Pascal does not require the viewer to be able to separate items
from organised perceptual field in the same way as with PlanAni, which uses color-
ful graphical images and animations. This is consistent with previous experiments [26,
27] that have studied the relationship between field-independence and learning. Thus,
the level of field-independence influenced the targeting of visual attention, which influ-
enced the mental model being constructed. Therefore, the level of field-independence
has direct implications on the usefulness of visualisations.

4 Conclusions

We have studied how a person targets her visual attention, and what kind of a mental
model she constructs concerning a computer program, when the program and espe-
cially its variables are presented using either a textual or a graphical program visualisa-
tion tool. PlanAni program animator uses role images and animations on these images
to highlight program variables, while Turbo Pascal displays variables and their values
textually and without role information.

The results indicate that visual attention of the participants was targeted on the vari-
able visualisations clearly more with PlanAni than with Turbo Pascal. In PlanAni, the
increase of visual attention to variables increased the proportion of high-level data-
related information in program summaries and decreased low-level code-related infor-
mation, thus effecting the mental models of the participants. In Turbo Pascal, these
effects could not be found. Moreover, with PlanAni the proportion of variable viewing
correlated positively with the level of field-independence. Thus field-independent stu-
dents gain more by the graphically rich PlanAni program animator than field-dependent
students.

There exists classifications that could be applied to the detailed investigation of
different graphical factors’ contribution to the overall attractiveness of visualisations
and their effects on visual attention and on mental models. For example, Bertin [32]
has introduced eight visual variables that can be identified in an image; Brown [33]
has introduced an algorithm animation taxonomy; and Sajaniemi and Stützle [19] have
introduced three different possibilities for targeting animation in visualisations. This
experiment established that there exists differences in short-term effects of different vi-

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

sualisations and works as a starting point for further studies, in which we will investigate
the short-term effects of visualisation in more detail.

Acknowledgments

This work was supported by the Academy of Finland under grant number 206574.

References

1. Petre, M., Blackwell, A., Green, T.R.G.: Coqnitive questions in software visualisation. In
Stasko, J.T., Domingue, J., Brown, M.H., Price, B.A., eds.: Software Visualization – Pro-
gramming as a Multimedia Experience, The MIT Press (1998) 453–480

2. Hundhausen, C.D., Douglas, S.A., Stasko, J.T.: A meta-study of algorithm visualization
effectiveness. Journal of Visual Languages and Computing13 (2002) 259–290

3. Mulholland, P.: A principled approach to the evaluation of SV: A case study in Prolog. In
Stasko, J.T., Domingue, J., Brown, M.H., Price, B.A., eds.: Software Visualization – Pro-
gramming as a Multimedia Experience, The MIT Press (1998) 439–451

4. von Mayrhauser, A., Vans, A.M.: Industrial experience with an integrated code comprehen-
sion model. Software Engineering Journal10 (1995) 171–182

5. Myers, B.: Taxonomies of visual programming and program visualisation. Journal of Visual
Languages and Computing1 (1990) 97–123

6. Stasko, J., Patterson, C.: Understanding and characterizing software visualization systems.
In: Proceedings of the 1992 IEEE Workshop on Visual Languages, IEEE Computer Society
Press (1992) 3–10

7. Price, B., Baecker, R., Small, I.: A principled taxonomy of software visualisation. Journal
of Visual Languages and Computing4 (1993) 211–266

8. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: A ’cogni-
tive dimensions’ framework. Journal of Visual Languages and Computing7 (1996) 131–174

9. Ainsworth, S.E., Labeke, N.V.: Using a multi-representational design framework to develop
and evaluate a dynamic simulation environment, Dynamic Information and Visualisation
Workshop (2002)

10. Byrne, M.D., Catrambone, R., Stasko, J.T.: Evaluating animations as student aids in learning
computer algorithms. Computers & Education33 (1999) 253–278

11. Hansen, S.R., Narayanan, N.H., Schrimpsher, D.: Helping learners visualize and compre-
hend algorithms. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning
1 (2000)

12. Kann, C., Lindeman, R.W., Heller, R.: Integrating algorithm animation into a learning envi-
ronment. Computers & Education28 (1997) 223–228

13. Sajaniemi, J., Kuittinen, M.: Visualizing roles of variables in program animation. Informa-
tion Visualization3 (2004) 137–153

14. Sajaniemi, J.: An empirical analysis of roles of variables in novice-level procedural pro-
grams. In: Proceedings of IEEE 2002 Symposia on Human Centric Computing Languages
and Environments (HCC’02), IEEE Computer Society (2002) 37–39

15. Byckling, P., Sajaniemi, J.: Using roles of variables in teaching: Effects on program con-
struction, Accepted to the the 17th Annual Workshop of the Psychology of Programming
Interest Group (PPIG 2005) (2005)

16. Price, B., Baecker, R., Small, I.: An introduction to software visualization. In Stasko, J.T.,
Domingue, J., Brown, M.H., Price, B.A., eds.: Software Visualization – Programming as a
Multimedia Experience, The MIT Press (1998) 3–27

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

17. Petre, M., Blackwell, A.F.: Mental imagery in program design and visual programming.
International Journal of Human-Computer Studies51 (1999) 7–30

18. Sajaniemi, J., Navarro Prieto, R.: An investigation into professional programmers’ mental
representation of variables. In: 13th IEEE International Workshop on Program Comprehen-
sion (IWPC 2005). (2005)

19. Sajaniemi, J., Stützle, T.: Evaluation techniques for animated software visualization
metaphors (Submitted)

20. Ehrlich, K., Soloway, E.: An empirical investigation of the tacit plan knowledge in pro-
gramming. In Thomas, J.C., Schneider, M.L., eds.: Human Factors in Computer Systems.
Norwood, NJ: Ablex Publishing Company (1984) 113–133

21. Rist, R.S.: Knowledge creation and retrieval in program design: A comparison of novice and
intermediate student programmers. Human-Computer Interaction6 (1991) 1–46

22. Sajaniemi, J., Navarro Prieto, R.: Roles of variables in experts’ programming knowledge, Ac-
cepted to the the 17th Annual Workshop of the Psychology of Programming Interest Group
(PPIG 2005) (2005)

23. Sẗutzle, T., Sajaniemi, J.: An empirical evaluation of visual metaphors in the animation of
roles of variables. Informing Science Journal8 (2005) 87–100

24. Sajaniemi, J., Kuittinen, M.: An experiment on using roles of variables in teaching introduc-
tory programming. Computer Science Education15 (2005) 59–82

25. Witkin, M.A.: A Manual for the Embedded Figures Test. Consulting Psychologists Press
(1971)

26. Mancy, R., Reid, N.: Aspects of cognitive style and programming. In Dunican, E., Green,
T., eds.: Proceedings of the Sixteenth Annual Workshop of the Psychology of Programming
Interest Group (PPIG 2004). (2004) 1–9

27. Parkinson, A., Redmond, J.A.: Do cognitive styles affect learning performance in different
computer media? In: The 7th Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2002), Association for Computing Machinery (2002) 39–43

28. Parkinson, A., Redmond, J.A., Walsh, C.: Accommodating field-dependence: A cross-over
study. In: The 9th Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2004), Association for Computing Machinery (2004) 72–76

29. Tobii: User Manual - Tobii Eye Tracker, Clearview Analysis Software. Tobii Technology
AB (2004)

30. Good, J.: Programming Paradigms, Information Types and Graphical Representations: Em-
pirical Investigations of Novice Program Comprehension. PhD thesis, University of Edin-
burgh (1999)

31. Hübscher-Younger, T., Narayanan, N.H.: Dancing hamsters and marble statues: Character-
izing student visualizations of algorithms. In: ACM 2003 Symposium on Software Visual-
ization (SoftVis 2003), Association for Computing Machinery (2003) 95–104

32. Bertin, J.: Semiology of Graphics. University of Wisconsin Press (1983)
33. Brown, M.: A taxonomy of algorithm animation displays. In Stasko, J.T., Domingue, J.,

Brown, M.H., Price, B.A., eds.: Software Visualization – Programming as a Multimedia
Experience, The MIT Press (1998) 35–42

Nevalainen and Sajaniemi

PPIG 2005 Sussex University www.ppig.org

