
Roles of Variables in Experts’ Programming Knowledge

Jorma Sajaniemi1 and Raquel Navarro Prieto2

1 University of Joensuu, Department of Computer Science,
P.O.Box 111, 80101 Joensuu, Finland,
jorma.sajaniemi@joensuu.fi ,

WWW home page:http://www.cs.joensuu.fi/˜saja/
2 Universitat Pompeu Fabra, Estacio de la Comunicacio,

Ocata 1, 08003 Barcelona, Spain

Abstract. Roles of variables capture the dynamic nature of variables, i.e., their
behavior. Only ten roles are needed to cover 99 % of variables in novice-level pro-
cedural programs. Roles were originally identified by studying variables in exist-
ing programs and creating a classification for them. In order to find out whether
roles are a part of experts’ programming knowledge, we conducted a knowledge
elicitation investigation where professional programmers studied programs and
the resulting mental representations were elicited using card sorting and inter-
views. This paper presents the analysis of the results from the point of view of
the role theory. All roles appearing in the materials were identified by partici-
pants. There was some variation in perceiving the nature of behavior from the
lifetime of a variable and in considering the similarity of behaviors. The roles
could however be easily found in the participants’ card sorting results and in the
dendrogram obtained by hierarchical cluster analysis.

1 Introduction

Programming involves the use of abstract concepts at various levels of abstraction. One
such concept is the notion of variable plans, which represent stereotypic uses of vari-
ables [1, 2]. Based on the plan concept, Sajaniemi [3] has developed a theory of the
roles of variables, which characterizes variables as having one of a set of distinctive
roles. The role theory applies to small and large programs, and to different program-
ming paradigms like functional and object-oriented programming. A set of ten roles
covers practically all variables in novice-level procedural programs.

Sajaniemi and Kuittinen [4] have used roles in teaching elementary programming.
Students were divided into three groups that were instructed differently: in the tradi-
tional way with no treatment of roles; using roles throughout the course; and using a
role-based program animator in addition to using roles in teaching. The results indicate
that students are not only able to understand the role concept and to apply it in new
situations but that the roles provide students a new conceptual framework that improves
program comprehension; and that the use of the animator elaborates this knowledge
resulting in a richer set of programming plans and in skilled programming [4, 5].

In another study, Ben-Ari and Sajaniemi [6] tested the understandability and ac-
ceptability of the role concept and of the individual roles as seen by computer science

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 145 - 159

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

educators. The web-based investigation consisted of a short tutorial on roles, a brief
training session on assigning roles to variables, a test evaluating the participants’ ability
to assign roles, and a set of open questions concerning their opinions of roles. Roles
were identified with 85 % accuracy—in typical uses of variables with 93 % accuracy—
and educators’ comments on the role concept in general were mostly positive. Further-
more, the results make it clear that increased teaching experience improves the ability
to assign roles correctly, and they indicate that experts have little problem with the role
concept.

The role set was originally identified by studying all variables in three textbooks
and by creating a classification for them [3]. This method does not guarantee that roles
are a part of experts’ programming knowledge even though the easy learnability of
the roles presents some evidence for this assumption. In order to study whether this is
really the case, we conducted a knowledge elicitation investigation where professional
programmers studied programs and the resulting mental representations were elicited.

Research in the last years by Cañas and al. [7] has provided the theoretical and em-
pirical bases for the utilization and interpretation of the results of knowledge elicitation
techniques. After a series of experiments they concluded that relationship judgments
among concepts were useful to gather knowledge about a user’s conceptual model or
information stored in the long term memory. Nevertheless, the information gathered is
not a complete picture of the conceptual knowledge of the user, but rather a subset that
depends on the information that is used for the particular task in the working memory,
i.e., a short term store used to perform a task. Because of that Cañas and al. recommend
to complete the information obtained from the users’ judgments with other methods.

For knowledge elicitation we used card sorting, or grouping, task. This method has
been used in a wide range of areas to extract the mental knowledge of a specific set of
people. In interaction design it is used to understand users’ mental models [8], in expert
systems design it is used to understand how knowledge providers conceptualize the do-
main elements [9], and in program comprehension it has been applied to understand the
difference between the mental representations of experts and novices. In our case, we
completed the information gathered with the card sorting task with interviews where
the participants explained why they sorted the variables in the way they did. This quali-
tative information about reasons for grouping things together has proven to be valuable
in understanding the criteria used by the participants [10]. Other examples of the use of
interviews to study program comprehension is Pennington’s work (e.g., [11]).

The rest of this paper is organized as follows. Section 2 provides background by in-
troducing the role concept in more detail. Section 3 describes the investigation followed
by its results in Section 4. Section 5 discusses the results from the point of view of the
role theory. Finally, Section 6 contains the conclusion.

2 Roles of Variables

Variables are not used in programs in a random orad-hocway but there are several
standard use patterns that occur over and over again. In programming textbooks, two
patterns are typically described: the counter and the temporary. Sajaniemi [3] has gen-
eralized this idea to the concept of theroles of variables, which he obtained as a result

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

of a search for a comprehensive, yet compact, set of characterizations of variables for
the purposes of, e.g., teaching programming and analyzing large-scale programs. His
work is based on earlier studies on variable use made by Ehrlich and Soloway [1], Rist
[2], and Green and Cornah [12].

Ehrlich and Soloway [1] gave three example roles, which actually describe the goal
that a variable has to fulfill. Rist [2] developed further this idea and defined a plan as a
set of actions that achieve a goal, and a goal as a state to be achieved, e.g., to calculate a
value or a series of values. Sajaniemi’s idea of a role is in these terms the dynamic aspect
of a goal or an invariant that holds for a variable, i.e., how the variable depends on itself
and other variables. Green and Cornah [12] gave a more detailed list of roles in their
proposal for a tool, Programmer’s Torch. Their roles are close to Sajaniemi’s roles but
include also other aspects, e.g., whether a variable is used to control the execution path.
Sajaniemi’s roles are based on the nature of the successive values a variable obtains,
and pays no attention to the way the values are further used.

In Sajaniemi’s role theory [3], therole of a variable characterizes the dynamic
nature—or behavior—of a variable: the sequence of its successive values as related
to other variables and external events. The way the value of a variable is used has no
effect on the role, e.g., a variable whose value does not change is considered to be a
fixed valuewhether it is used to limit the number of rounds in a loop or as a divisor in a
single assignment. Furthermore, as roles describe behavior, they are related to the deep
structure of programs as opposed to the surface structure, e.g., the form of assignment
used to update a variable.

Table 1 lists ten roles that cover 99 % of variables in novice-level procedural pro-
grams [3] and gives for each role an informal definition; exact definitions can be found
in the Roles of Variables Home Page [13]. It should be noted that roles are cognitive—
rather than technical—concepts. As an example, consider the Fibonacci sequence 1, 1,
2, 3, 5, 8, 13, . . . where each number is the sum of the previous two numbers. A math-
ematician who knows the sequence well can probably see the sequence as clearly as
anybody sees the sequence 1, 2, 3, 4, 5, . . . , i.e., the continuum of natural numbers.
On the other hand, for a novice who has never heard of the Fibonacci sequence be-
fore and who has just learned how to compute it, each new number in this sequence is
a surprise. Hence, the mathematician may consider the variable as stepping through a
known succession of values (i.e., astepper) while the novice considers it as agatherer
accumulating previous values to obtain the next one.

Ben-Ari and Sajaniemi [6] have shown that in one hour’s work, computer science
teachers can learn roles and assign them successfully in normal cases. In their exper-
iment, the rolesone-way flag, temporaryandorganizerwere not included in the ma-
terials, but one variable to be recognized was aone-way flag. Participants’ responses
to this variable were totally different from other responses, with a large variety in sug-
gested roles. These results provide evidence that roles are intuitive for computer science
educators and that all the roles are really needed.

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

Table 1.Roles of variables in novice-level procedural programming.

Role Informal description

Fixed value A variable initialized without any calculation and not changed there-
after.

Stepper A variable stepping through a systematic, predictable succession of val-
ues.

Follower A variable that gets its new value always from the old value of some
other variable.

Most-recent holder A variable holding the latest value encountered in going through a suc-
cession of values, or simply the latest value obtained as input.

Most-wanted holder A variable holding the best or otherwise most appropriate value en-
countered so far.

Gatherer A variable accumulating the effect of individual values.

Transformation A variable that always gets its new value with the same calculation
from values of other variables.

One-way flag A two-valued variable that cannot get its initial value once its value has
been changed.

Temporary A variable holding some value for a very short time only.

Organizer An array used for rearranging its elements.

3 Investigation

In order to study expert programmers’ knowledge about variables and to what extent
roles are part of it, a card sorting investigation was conducted. Professional program-
mers were instructed to get acquainted with short programs and then asked to sort
all variables into groups based on their similarity. Participants were also interviewed
about the sorting criterion they used. The interviews were audio recorded. The resulting
groups and the interviews were then analyzed.

Participants: Thirteen programmers with a background between 3 and 24 years of
professional programming (mean 13.7, mode 15) were recruited from software compa-
nies in the Joensuu region in Finland. All participants knew the programming language
C well, had been programming in several procedural or object-oriented languages, and
were unaware of the researchers’ prior work in the area of programming knowledge as
well as the role concept. All participants were male. The participants or their companies
were paid a small fee for participating in the investigation.

Materials: Five C programs having between 19 and 33 non-comment and non-
blank program lines (mean 25.4, mode 22) were prepared. All programs had a different
application domain, e.g., blood hormone testing or day number format conversion. The
beginning comment of each program included an example of the execution of the pro-
gram: input and corresponding output. Each program had an associated modification

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

task; the tasks were designed to be simple and not to require the introduction of new
variables.

There was a total of 30 global scalar variables in the programs; all having the type
int except a singlechar . The variables represented typical deep structures of six
roles. For each role, different surface structures were used by varying operators in as-
signments, forms of assignments, and enclosing control structures. Table 2 lists all vari-
ables, their roles, and surface structures.

In order to avoid too coarse granularity in the sorting task, participants were asked
to form groups consisting of 3 to 8 variables. The programs were designed so that the
group size restriction did not prevent participants from using sorting criteria based on
role, phase in data flow, or form of assignment. If the variables are sorted using role
as the criterion, the result consists of 6 groups containing 4–5 variables each; sorting
based on phase in data flow yields 5 groups containing 3–8 variables; and sorting based
on the form of assignment used in updating a variable yields 5 groups containing 4–7
variables.

For control purposes, several alternative naming conventions were used for the vari-
ables, e.g.,month , smallDigit , pier length , SHIP, INT greatest . (For the
sake of clarity, all variable names are written throughout this paper using a single con-
vention, e.g.,pierLength .) Different naming styles were used within each of the
above theoretical groups. Even though it was possible to use the naming convention as
sorting criterion (5 groups of 4–8 variables), we did not expect anybody to do that. The
materials and theoretical groups can be found at

http://www.cs.joensuu.fi/˜saja/varroles/materials/exp03/index.htm.

In order to be able to compare similarities of groupings, we defined a similarity
metrics. The similarity of two groupings,P1 andP2, is obtained as follows. For each
variablev let G1 andG2 be the groups inP1 andP2 containingv. Divide the number
of variables in the intersection of the groupsG1 andG2 (excludingv) by the the num-
ber of variables in the union of the groupsG1 andG2 (again excludingv). Then, the
similarity value is obtained as the mean of the results of the division operations. Using
this method, the similarity of two identical groupings is 1.00, and the similarity of two
totally orthogonal groupings is 0.00. Table 3 gives the similarity values of groupings
obtained by using the theoretical criteria described above. The largest similarity value,
0.45, is between roles and phase in data flow. This comes from two similar groups in
these theoretical groupings: the role most-recent holder is quite close to input variables,
which start data flow; and the role stepper happens to be the same as the position of
loop counters in the data flow.

Procedure:Participants were run individually. A session started with a background
questionnaire conducted by the researcher. The participant was then given five sheets of
paper, each containing one program and its modification task, and was asked to study
the programs so that he understood them well, and to make the modifications using a
pencil. The programs were laid side by side on a table and their order was systematically
varied. Participants were allowed to study the programs in the order they wanted, but
most of them studied the programs in the given order. There was no time limit for this
phase, and the durations varied between 22 and 99 minutes (mean 45.9, mode 40).

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

Table 2. Variables in the programs used in the investigation.FIX = fixed value,STP = stepper,
FOL = follower, MRH = most-recent holder,MWH = most-wanted holder,GAT = gatherer.

Variable Role Initialization Update
base FIX int base=7
largePowerOfTwo FIX int largePowerOfTwo=65536
monthsToProcess FIX monthsToProcess=12
norm FIX norm=15
pierLength FIX int pierLength=100
currentMonth STP for (currentMonth = 4; for(...currentMonth+=1)
count STP count=10 while ... count−−
month STP month=-1 while ... month++
powerOfTen STP for (powerOfTen = 100000000; for(...powerOfTen=powerOfTen/10)
powerOfTwo STP powerOfTwo = largePowerOfTwo while ... powerOfTwo=powerOfTwo/2
daysToBeginning FOL daysToBeginning=0 while ... daysToBeginning=daysAtEnd
lastShip FOL int lastShip=0 while ... case ... if ... lastShip=ship
preceding FOL scanf(”%d”, &preceding) for ... preceding=previous
previous FOL scanf(”%d”, &previous) for ... previous=current
yesterday FOL while ... yesterday=testRes
command MRH while ... scanf(”%c”,&command)
currDigit MRH while ... scanf(”%d”,&currDigit)
current MRH scanf(”%d”,¤t) for ... scanf(”%d”,¤t)
dayNbr MRH dayNbr=rand()%400 while ... dayNbr=rand()%400
ship MRH int ship=0 while ... case ... scanf(”%d”,&ship)
testRes MRH scanf(”%d”,&testRes) while ... scanf(”%d”,&testRes)
closest MWH closest=testRes while ... if ... closest=testRes
greatest MWH greatest=total for ... if ... greatest=current+previous+preceding
longest MWH longest=0 while ... case ... if ... longest=ship
maxDelta MWH int maxDelta=0 while ... if ... maxDelta=abs(testRes-yesterday)
smallDigit MWH smallDigit=10 for ... if ... smallDigit=

numericValue/powerOfTen%10
numericValue GAT int numericValue=0 while ... numericValue=

base*numericValue+currDigit
daysAtEnd GAT daysAtEnd=0 while ... daysAtEnd=

daysAtEnd+daysInMonth[month]
used GAT int used=0 while ... case ... used+=ship

case ... used-=ship
total GAT total = current+previous+preceding for ... total+=current

The researcher then rearranged the program sheets in the order they were originally
presented to the participant and laid cards representing the variables in the program on
top of each sheet. Each card had the names of the program and the variable written on it.
The researcher asked the participant to sort the cards in groups of three to eight variables
so that “similar variables will go together”, and to apply the same sorting criterion for
all groups. The time used for the sorting task was not limited and it varied between 8
and 35 minutes (mean 17.6, mode 15).

When the sorting task was ready, the participant was asked to give a written expla-
nation for each of his groups. This was followed by an interview where the participant
explained the sorting criterion he had used, the exact contents of each group, and alter-
native sorting criteria he had thought of or might consider to be appropriate.

During the interview, the participant was allowed to move cards between groups.
This occurred often, as some of the programs were complicated and some variables had
for control purposes a bit obscure (but still meaningful) names, resulting in obvious slips
in sorting. For example, in order to avoid superlatives in all names for extreme values,
the variable holding the smallest digit found so far was not namedsmallestDigit
but smallDigit and this resulted in some cases in false recall of the meaning of the

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

Table 3.Similarities of the theoretical criteria.

Role Phase in Form of Naming
data flow assignment convention

Role 1.00
Phase in data flow 0.45 1.00
Form of assignment 0.24 0.18 1.00
Naming convention 0.10 0.10 0.14 1.00

variable. Participants were also asked to further divide groups having more than 8 cards.
In some cases the participant was unable to do that; then the group was left unchanged.

Participants were allowed to put a variable in more than one group by cloning its
card, and to leave variables outside any group. The number of extra cards varied be-
tween 0 and 21. Seven participants used no extra cards; three used 1–2 cards; and the
remaining three participants used 4, 17, and 21 cards. Two participants left one or two
cards outside the groups. The total length of the sessions varied between 58 and 144
minutes.

4 Results

Even though the participants were instructed to use a single sorting criterion for all
groups, it turned out that most of them used several criteria either hierarchically or
mixed in some more complicated way, e.g., a couple of groups based on one criterion
and other groups based on another criterion with subdivision based on yet another crite-
rion. This is in line with the findings of Cãnas and al. [7] who found that in knowledge
elicitation tasks the limits of working memory cause context effects in the selection
between various criteria for judgments.

Figure 1 lists all sorting criterion principles used by the participants or identified in
the interviews as possible alternative criteria the participants had thought of using. The
criterion principles may be organized in four main categories. Domain-based criteria
deal with issues related to the application domain, technology-based criteria deal with
the features of programming languages, execution-based criteria are based on activities
that occur during the execution of a program, and strategy-based criteria have their
origins in the strategies that the programmer applies when working with the program.
Each criterion principle may give rise to several sorting criteria with differences among
details. A detailed treatment of the sorting criteria is outside the scope of this paper and
can be found elsewhere [14].

One participant used the naming convention as his sorting criterion. This was against
our expectations because the materials were carefully prepared so that variables named
using the same convention had nothing in common. The interview revealed that the
participant worked in a company that had a strict naming standard where the form of
variable names tells either data hierarchy or the location of the data element: is it in a
data base or is it a temporary data element. Thus his sorting criterion was actually based
on data hierarchy and scope even though his technique did not work in the current situ-
ation. This participant is discarded from further analysis of the results.

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

Sorting criterionSorting criterion

Domain−basedDomain−based

Technology−basedTechnology−based

Execution−basedExecution−based

Strategy−basedStrategy−based

data relationshipdata relationship

data unitdata unit

data typedata type

scopescope

visibility to uservisibility to user

phase in data flowphase in data flow

phase in control flowphase in control flow

behaviorbehavior

utilizationutilization

contributioncontribution

programming strategyprogramming strategy

testing strategytesting strategy

CategoryCategory Criterion principleCriterion principle

sourcesource

data hierarchydata hierarchy

Fig. 1.Sorting criteria principles found during interviews.

Table 4 presents the mean similarities of participants’ groupings to the groupings
based on the theoretical criteria. The difference between participants’ groupings’ sim-
ilarity to the two best-matching theoretical criteria—role and phase in data flow—is
statistically significant (pairedt test,t = 3.157, df = 11, p = .0091). Because roles
match best the participants’ groupings and the similarity between roles and phase in
data flow is 0.45, it is evident that also phase in data flow gets a high similarity score
with the participants’ groupings.

Table 4.Similarities of participants’ groupings to the theoretical criteria.

Theoretical criterion Mean S.D.
Role 0.51 0.15
Phase in data flow 0.38 0.11
Form of assignment 0.19 0.05
Naming convention 0.11 0.03

In order to obtain a general view of the groups, we applied hierarchical cluster anal-
ysis. This analysis method has been used by several researchers to understand if mental
representations are organized following a significant set of groups (e.g., [15, 16]). We
used the program EZCalc [17] to produce a dendrogram that depicts the frequency of
variables occurring in the same groups. This technique does not allow a variable to be
included in several groups, so the following adjustments were made:

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

fixed valuefixed value

most−recent holdermost−recent holder

followerfollower

most−wanted holdermost−wanted holder

gatherergatherer

stepperstepper

monthsToProcessmonthsToProcess
basebase

pierLengthpierLength
largePowerOfTwolargePowerOfTwo

normnorm

dayNbrdayNbr
currDigitcurrDigit

commandcommand

currentcurrent
testRestestRes

shipship
previousprevious

precedingpreceding

yesterdayyesterday
lastShiplastShip

smallDigitsmallDigit
closestclosest

maxDeltamaxDelta
longestlongest

greatestgreatest
usedused

numericValuenumericValue
totaltotal

countcount
currentMonthcurrentMonth

monthmonth
powerOfTenpowerOfTen

powerOfTwopowerOfTwo

daysToBeginningdaysToBeginning
daysAtEnddaysAtEnd

0.00.0 0.20.2 0.40.4 0.60.6 0.80.8 1.01.0

0.00.0 0.20.2 0.40.4 0.60.6 0.80.8 1.01.0

Fig. 2.Result dendrogram of the hierarchical cluster analysis.

– For the participant with 21 extra cards, multiple occurrences of variables in the
“computing” group were discarded (because the participant said that those should
perhaps have been excluded but “I just started to make it this way and did not want
to start again”).

– The participant with 17 extra cards was excluded totally because we could not find
good reasons to exclude the extra cards in any meaningful way.

– In all other cases with a card in two groups, the variable was excluded from both
groups and marked “the participant does not understand what this card means”—an
option allowed by the analysis program.

Figure 2 depicts the results of the hierarchical cluster analysis. The sooner the
lines emanating from variables at the left hand side of the dendrogram are joined, the
more frequently the variables occur together in the groups formed by the participants.
As seen in the Figure, most of the variables are clustered according to the roles de-
fined in Section 2. The last two variables—daysToBeginning anddaysAtEnd —
were supposed to be a follower and a gatherer, respectively. However, they allow sev-
eral interpretations in the role theory. The supposed way to look at them was to see
daysAtEnd as a gatherer accumulating the lengths of individual months, and to see
daysToBeginning as a follower ofdaysAtEnd . On the other hand, the lengths of

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

individual months are obtained from an array with values listed in the declaration, and
hence the value sequences of bothdaysToBeginning and daysAtEnd are pre-
dictable, and these two variables can be considered as steppers also. And indeed, on the
.35 level they are clustered with other variables that are steppers in the role theory.

5 Discussion

The results show that roles explain the overall behavior of the participants in the card
sorting task well: it was the closest of the theoretical sorting criteria and matched the
result of the hierarchical cluster analysis. This does not, however, necessarily mean that
roles would be part of experts’ programming knowledge. Therefore we will look more
closely at the groups formed by the participants and the descriptions of the criteria they
used. Only if these descriptions support role theory, roles can be argued to belong to
expert programmers’ knowledge.

Roles are based on the behavior of variables. Thus the use of behavior principle
in sorting variables is an indication of role-like thinking. Other sorting principles, e.g.,
utilization of variables, do not support the existence of roles even though they may in
some cases yield the same groups. It is therefore most important to analyze whether
groups are formed using behavior as sorting criterion. In the following we will look
separately at every role in the investigation: its existence in the participants’ groups,
relation to various sorting criteria, and different versions suggested by the participants.

Fixed value: Eleven participants put essentially all fixed values in one group and
referred to it usually as “constant” or “don’t change after initialization”. One participant
called the group “set-up” and another explained:

P09: They are constants [because their value does not change] but also in the
sense that if they have a different value then the execution of the program
changes in a radical way [i.e., there is a change in the control flow]—usually
this also, but not necessarily always.

Thus constants can be described not only by their behavior—no change after
initialization—but also by their common utilization to control a program. On the other
hand, one participant used his testing strategy as his sorting criterion and he sorted
constants together because they do not change and hence need no special attention in
debugging. Thus the same group of fixed values can be obtained by several sorting
criteria: behavior (i.e., role), utilization, and testing strategy.

In Figure 2, the first five variables consist of the fixed values of the programs. The
first, monthsToProcess , is used to control the number of rounds in a loop whereas
the others are “magical values” needed in calculations but with no special control
function. The dendrogram supports the above quotation that there are two subclasses
of fixed values: those controlling execution and those giving, e.g., domain dependent
constants. Thus the main criterion may be based on behavior, utilization, or testing
strategy, but the subcriterion is based on utilization. However, the difference between
the subclusters is small in the dendrogram.

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

Most-recent holder: There were six most-recent holders in the programs. Five of
them are obtained through input whereas one,dayNbr , is obtained from a random
number generator. Four participants identified all these variables as “input”. The inclu-
sion ofdayNbr indicates that their view of the group extended traditional input even
though they had no name for the more general concept.

One participant used the term “current item”, which captures the idea of most-recent
holder perfectly, and divided it into two subgroups: “current item to limit looping” and
“current item [used in some other way]”. Thus he used two sorting criteria simultane-
ously: behavior criterion with a subdivision based on utilization.

Six participants did not putdayNbr in the same group with inputs, and, moreover,
half of them included in the input group two variables,previous andpreceding ,
which get their initial values through input but are thereafter followers. Thus their
groups do not correspond to the idea of most-recent holders but represents pure in-
put. The difference is important: most-recent holders can be recognized by behavior
criterion only whereas pure input can be obtained by several sorting criteria: data flow,
programming strategy, and testing strategy.

In the cluster of Figure 2, the difference between most-recent holder and input is
reflected by the loose connection betweendayNbr and other most-recent holders.
The connection is, however, stronger than any of the between-role connections in the
dendrogram.

Follower: Followers were recognized by four participants who named the group as
“previous values”, “history data”, or “state maintenance”, i.e., who were using behav-
ior as their sorting principle. In Figure 2, the variablesprevious andpreceding
form their own subgroup supposedly because they are first initialized through input—a
behavior not typical to followers. The cluster is, however, clear.

One participant named the group very differently: “important data to be used later”
and included also a gatherer in his group. His criterion was based on the lifetime of
values even though it happens to capture almost the same variables as the follower role.

Most-wanted holder: There were five most-wanted holders in the programs. Three
of them (maxDelta , longest , andgreatest) are looking for the greatest value,
and they form a tight cluster in Figure 2. It seems odd thatsmallDigit , which looks
for the smallest value, is more loosely connected to the above three variables than
closest , which looks for the closest value. However,smallDigit occurs in the
program that the participants reported to be hardest to understand and its name does not
reflect its purpose well. Perhaps some participants did not understand this variable well
enough to sort it correctly.

Four participants sorted most-wanted holders together and referred to the group
as “extreme values” or “greatest etc.”. Thus they based their sorting on the behavior
of the variables. One participant had groups named “largest value of interest” and
“smallest value of interest”. He included in these groups one gatherer and one fol-
lower that limited the current area of interest. Thus he was using a mixture of behavior
and utilization, and his group does not correspond to the notion of most-wanted holders.

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

Gatherer: Three participants identified a group with a name referring to sums.
Their idea was not restricted to a traditional total sum because their groups contained
also eithernumericValue or used , which are not obtained by pure addition. The
variablenumericValue combines the effect of individual digits when reading a num-
ber digit by digit and involves also multiplication. The variableused describes the
amount of pier usage when ships are arriving and departing and is obtained by ad-
ditions and subtractions. Even though this behavior-based notion of accumulation is
vague within the participants, it forms a cluster in Figure 2.

One participant had a group for “intermediate results that are not destroyed but
are gradually constructed” that is a generalization of the gatherer concept. In addition
to gatherers, he put into this group two steppers (powerOfTwo andpowerOfTen)
that are updated using division, and a follower that is following a gatherer. He had
also a phase in data flow-based group “output” containing two gatherers and all
most-wanted holders, and this group had priority over other groups. Had he used
behavior principle only, the output group would probably be combined with the
other group resulting in a large group containing gatherers and most-wanted holders.
This close relationship between the two roles can be seen in the clusters of Figure 2, too.

Stepper: There were five steppers: two loop counters (count and
currentMonth) limiting the number of rounds in a loop, one (month) count-
ing how many times a loop is executed, and two (powerOfTwo andpowerOfTen)
controlling a loop and being updated by division. Three participants recognized
these as a group and used names like “loop variables” and “counters”. Another three
participants excludedpowerOfTwo and powerOfTen from their groups; one of
them however said:

P07: These [powerOfTwo andpowerOfTen] are kind-of counters.

The clusters in Figure 2 demonstrate these subgroups of the stepper role.
It is important to note that the variablemonth , which counts the number of rounds

but does not control the loop, was included in participants’ groups. This demonstrates
that they were using behavior principle (instead of utilization principle) resulting
in the stepper role. One participant used the name “loop counters” and he put the
variablemonth in another group, sums. Thus he was not using behavior principle but
a utilization criterion.

Controversial variables: There are two variables—daysToBeginning and
daysAtEnd —that make up their own cluster in Figure 2. As described in Section
4, they allow several interpretations in the role theory. Thus, their roles can be
understood differently by different persons. In the groups made by the participants of
this investigation, they are clustered with steppers—an appropriate interpretation for
both of them.

Other roles: One participant, who sorted the variables with a criterion that com-
bined behavior and utilization, was asked in the interview whether he could think of
any other groups that he might use if he were sorting variables in his own programs. He
replied:

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

P11: Sometimes you have to store information about errors or error codes, in
case that everything will not go well if it is more complicated [...] and you have
to know that there has been errors ...

This describes one-way flag, one of the four roles not covered in the investigation.

Summary: All the six roles appearing in the materials were identified by at least
some participants. However, there appears to be two sources of variation in the judgment
of roles: what behavior do programmers perceive from the lifetime of a variable, and
what behaviors are considered to be similar. We will look at these separately.

An example of the first source of variation, what behavior is perceived, is given
by the variabledaysAtEnd that accumulates the lengths of individual months given
in an array. One participant sorted it into a behavior-based group titled “intermediate
values obtained through some expression” whereas another participant sorted it into a
behavior-based group titled “intermediate results that are not destroyed but are gradu-
ally constructed”. The latter participant thus perceived that new values of the variable
depend on its old values combined with some new data whereas the first participant
did not see such a connection between the new and old values of the variable. Another
example of differences in perceiving behavior was given in Section 2: a mathematician
may consider a variable that traverses the Fibonacci sequence using addition as stepping
through a known succession of values whereas a non-mathematician may consider it as
an accumulation of previous values. Thus the behavior may be perceived differently by
the two persons even though they look at the same variable, at the same operations on
the variable, and at the same value sequence.

The second source of variation stems from programmers’ different views of what
behaviors are similar. For example, some participants considered repeated division by a
constant to be similar to repeated addition by a constant (and thus sorted them together
in a group corresponding to the stepper role), others considered these to be two differ-
ent behaviors, and some were unsure (“these are kind-of counters”). This variation is
manifested in vague role boundaries and in differences in the granularity of the roles.
For example, one participant had a group for a coarser version of the gatherer role that
contained steppers also.

Roles are defined by the behavior of variables. In many cases, participants’ groups
differed from roles because participants combined two principles, utilization and be-
havior, in their sorting criterion. Usually utilization principle was used to make a sub-
division for a group obtained by behavior. However, roles can be easily found in the
participants’ groups and in the result of hierarchical cluster analysis.

6 Conclusion

Previous studies have shown that roles of variables enhance learning to program and
that computer science educators have little problems in learning the roles and assigning
them to variables. In order to study whether roles actually are part of experts’ pro-
gramming knowledge, we conducted a knowledge elicitation investigation where pro-
fessional programmers studied programs and the resulting mental representations were
elicited by card sorting and interviews.

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

The materials in the investigation consisted of variables representing six different
roles. Each of these roles could be identified in the groups of at least some participants.
There was some variation but the concepts represented by the roles could be easily
recognized in the groups. Two sources of variation were identified: differences in per-
ceiving the nature of behavior based on the lifetime of a variable, and differences in
considering the similarity of behaviors. Because the role theory defines roles as cogni-
tive concepts, roles have no unique definitions and differences among interpretations are
possible. Thus differences among participants do not invalidate the role theory. Roles
could also easily be identified in the result of hierarchical cluster analysis; the only two
exceptions consider variables which clearly have two different interpretations. Thus one
may argue that roles are part of experts’ programming knowledge.

Acknowledgments

This work was supported by the Academy of Finland under grant number 206574.

References

1. Ehrlich, K., Soloway, E.: An empirical investigation of the tacit plan knowledge in pro-
gramming. In Thomas, J.C., Schneider, M.L., eds.: Human Factors in Computer Systems.
Norwood, NJ: Ablex Publishing Company (1984) 113–133

2. Rist, R.S.: Knowledge creation and retrieval in program design: A comparison of novice and
intermediate student programmers. Human-Computer Interaction6 (1991) 1–46

3. Sajaniemi, J.: An empirical analysis of roles of variables in novice-level procedural pro-
grams. In: Proceedings of IEEE 2002 Symposia on Human Centric Computing Languages
and Environments (HCC’02), IEEE Computer Society (2002) 37–39

4. Sajaniemi, J., Kuittinen, M.: An experiment on using roles of variables in teaching introduc-
tory programming. Computer Science Education15 (2005) 59–82

5. Byckling, P., Sajaniemi, J.: Using roles of variables in teaching: Effects on program con-
struction. In: The 17th Annual Workshop of the Psychology of Programming Interest Group
(PPIG 2005). (2005)

6. Ben-Ari, M., Sajaniemi, J.: Roles of variables from the perspective of computer science ed-
ucators. In: The 9th Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2004), Association for Computing Machinery (2004) 52–56

7. Cãnas, J.J., Antoli, A., Quesada, J.F.: The role of working memory on measuring mental
models of physical systems. Psicologica22 (2001) 25–42

8. Robertson, J.: Information design using card sorting.
http://www.steptwo.com.au/papers/cardsorting/ (2001)

9. Cordingley, E.S.: Knowledge elicitation techniques for knowledge-based systems. In Diaper,
D., ed.: Knowledge Elicitation: Principles, Techniques and Applications. Chichester, U.K.:
Ellis Horwood Ltd (1989) 89–178

10. Davies, S.P., Gilmore, D.J., Green, T.R.G.: Are objects that important? The effects of exper-
tise and familiarity on the classification of object-oriented code. Human-Computer Interac-
tion 10 (1995) 227–248

11. Pennington, N.: Stimulus structures and mental representations in expert comprehension of
computer programs. Cognitive Psychology19 (1987) 295–341

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

12. Green, T.R.G., Cornah, A.J.: The Programmer’s Torch. In: Human-Computer Interaction -
INTERACT’84, IFIP, Elsevier Science Publishers (North-Holland) (1985) 397–402

13. Sajaniemi, J.: Roles of variables home page. http://www.cs.joensuu.fi/˜saja/varroles/ (2004)
(Accessed Dec. 22th, 2004).

14. Sajaniemi, J., Navarro Prieto, R.: An investigation into professional programmers’ mental
representations of variables. In: The 13th IEEE International Workshop on Program Com-
prehension (IWPC 2005), IEEE Computer Society Press (2005)

15. Rist, R.S.: Plans in programming: Definition, demonstration and development. In Soloway,
E., Iyengar, S., eds.: Empirical Studies of Programmers, Norwood, NJ: Ablex Publishing
Company (1986) 28–47

16. Robertson, S.P., Yu, C.C.: Common cognitive representations of program code across tasks
and languages. International Journal of Man-Machine Studies33 (1990) 343–360

17. Dong, J., Martin, S., Waldo, P.: A User Input and Analysis Tool for Information Architecture.
http://www-3.ibm.com/ibm/easy/eouext.nsf/Publish/410 (2004)

Sajaniemi and Navarro Prieto

PPIG 2005 Sussex University www.ppig.org

