
Sidebrain: a sidekick for the programmer’s brain

John Sturdy

University of Limerick
john.sturdy@ul.ie

Keywords: POP-V.A. goal structure; POP-V.A. attention investment; POP-V.A. short-
term memory; POP-II.C. working practices; POP-III.D. editors; POP-V.B. protocol
analysis; POP-I.A. distributed teams.

Abstract. It has been observed that the activity of programming is not a linear
progression, but a complex hopping between many threads[1]. It appears that
remembering all the necessary threads, and directing attention appropriately, may
exceed the limits of human working memory[2]. This paper describes work in
progress to design and create a tool which models and supports programmers’
mental activity by external assistance to their working memory, both for gathering
of information and for direction of attention. It presents some initial findings from
the use of a prototypical implementation, and puts forward some suggestions for
experiments based around the tool.

1 Introduction

Programmers are often seen to note down information on paper or electronically, mostly
while debugging but also while developing new code, especially that with many con-
nections with existing code. Three common types of such information are:

– uncompleted tasks to return to after finishing a task
– other tasks to do, thought of while working on current task
– observations made, typically as the end result of a task

Another observation connected with programmers’ handling of working informa-
tion is the common problem of not wishing to leave a piece of work for fear of finding
it harder to pick up again after a break; this can cause various forms of stress.

1.1 An initial survey

To verify these ideas, a pilot survey (presented at the end of this paper) was carried out
among some experienced programmers. The returns from this confirmed the following
observations:

– that programmers’ memory limits[2] are routinely exceeeded and external memory
is necessary

– that this is typically done both on the computer and on paper
– the branching nature of the thought and behaviour patterns during programming

(described as “opportunistic processing”[1] in the context of program comprehen-
sion)

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 215 - 226

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

– that this is one of the drivers of the need for external memory

Typical replies included:

– “Typically branching. Very like web-browsing experience.”
– “If I did need to note a future action I would use notepad or some other electronic

method for recording it.”
– “Generally scribble in logbook - bulletpoints, quick doodles. Nothing formal. Am

fairly rigorous in terms of filing documents, emails etc. in folder hierarchy”

1.2 Developing a tool to help

These findings, and some work on annotating keystroke logging with the start and end
of tasks and subtasks1, led to the idea of writing a tool to organize working information
as:

– a stack of open tasks
– observations (discovered knowledge)
– a queue or pool of pending or suspended tasks

The tool has been named “Sidebrain”, since it is meant to work alongside the pro-
grammer’s forebrain. During implementation and early testing it proved to be a useful
tool, and it also opened up a number of further research questions, many of which may
be explored through the history log that Sidebrain produces.

2 The implementation

The first implementation of Sidebrain was written as an extension to the programmable
editor and development environment GNUemacs[3], which is widely used by software
developers (by reputation, mostly by experienced developers). It would be possible to
implement a similar system in other programmable editors and IDEs, and also to make
a standalone implementation.

As part of the implementation it was decided to use an XML[4] based file format
for its persistent data, to make it possible to exchange data between implementations
written in different languages.

2.1 The data structures

Sidebrain is meant to support the programmer’s working memory, and so must have
data structures that represent a simple model of the parts of working memory that pro-
grammers find limiting.

The main unit modelled and represented in this software we call the “task” – a
simple description of what the programmer is trying to do. This consists of a short

1 The process of annotating work while it was in progress turned out to make the work annotated
more efficient and directed.

Sturdy

PPIG 2005 Sussex University www.ppig.org

piece of text (one line). Tasks can be entered either via the keyboard or, on a suitably
equipped system, by voice.

We model the programmer’s memory of the tasks they are working on as a stack:
while working on one thing, the programmer realises that they are starting a distinct task
within it, at the end of which they will return to the previous activity. For example, in
the information gathering of debugging, the programmer may be looking for the reason
why a routinea is not being called, and find that it is only called when the variablex is
not zero. Finding whyx is set to zero would then be a sub-task of finding whya is not
being called.

The tasks are arranged into a stack of open tasks, onto which the programmer can
push and pop them. The task stack is displayed continuously, typically in a small win-
dow towards the edge of the screen (see figure 1), and is meant to keep the programmer
focused on what they are trying to achieve. Subtasks are displayed above their parent
tasks, with the current task being displayed at the top of the window.

Fig. 1.The task stack display

Attached to the task stack, and displayed just below it, is a collection of observations
entered by the programmer as they go about their information gathering.

To support context switches, Sidebrain provides a queue of things that the program-
mer intends to do, or resume doing, later. The queue is kept as an ordered list, each
entry containing:

– a label naming the entry
– a task stack
– a list of observations

By default, the label is derived from the bottom (most ancestral) task of the task stack,
thus naming the queue entry by the high-level description of what the programmer is
trying to do. Labelling entries allows them to be selected by name in any order, so the
queue can also be used as an unordered set or pool of tasks. Further investigation will
be needed to see whether the ordering of the tasks is important; for example, it may turn
out that they will always be referenced by name, and never picked in order.

Sturdy

PPIG 2005 Sussex University www.ppig.org

For simplicity, the initial implementation includes neither prioritization nor group-
ing of tasks in the queue. It may be useful to provide these in later versions.

The programmer can view the task queue on demand, but, unlike the task stack, it is
not normally continuously displayed. The labels can be used for selecting an entry by
name, or the queue can be presented as a window in its own right, to be browsed with
cursor movements, scrolling and searches.

Another data structure, which the programmer will not normally need to see, is the
task history, into which tasks are transferred when they are completed. This could be
used for Personal Software Process[5] monitoring, or for analysis for psychological
research. To aid such use, in addition to the text string, each task contains the following
data:

– “begin ” and “end ” time stamps
– the time for which this task has been top of the stack
– indications of what the programmer was editing at the time, in the form of filename

and line number

These additional details are not displayed.

2.2 The operations

Sidebrain is operated through a small selection of commands; some of these ask the
programmer to enter some text. For best results, use of these commands should be inter-
leaved closely with commands to the rest of the development environment, particularly
the text editor.

Here we describe the operations by name; in the original implementation, they can
be accessed by name through GNUemacs’ “M-x ” command entry; they could also be
bound to key sequences, or made into menu entries or toolbar buttons, and, where voice
input is available, spoken commands.

The programmer pushes new tasks onto the stack with a “begin task ” com-
mand, which prompts the programmer to enter a description of the task. This can be
done through the keyboard, but is most conveniently done with voice input, which
makes use of Sidebrain similar to talk-aloud, which has been described[6] as a rich
source of information about the working of the programmers’ mind – useful if using a
log of Sidebrain operations for research.

The programmer pops tasks with “end task ”. It is also possible to end several
tasks at the same time, by selecting a level on stack (in the stack display window) and
telling it to end that task and all its subtasks.

Alternatively, the programmer can abandon a task, using “abandon task ”, which
is the same as ending the task, but records it differently in the task history log.

The programmer can add an observation to the observations window using the com-
mand “observation ”, which also prompts for a text string. Sometimes a subtask
may end with making an observation related to the task (particularly when the task was
an information-gathering one), and it might be useful to have a command “end task
with observation ”, which could make the task text available when entering the
observation string.

Sturdy

PPIG 2005 Sussex University www.ppig.org

When a programmer’s work is interrupted, sometimes the interruption needs a new
stack of tasks of its own, which in turn may need to be put aside to go back to the original
stack, or perhaps to another. To support this, Sidebrain allows the programmer to put
the whole stack of tasks aside (along with the associated group of observations), with
the command “suspend task ”. (A possible extension here would be to make this be
usable for part of the stack, provided the interface is not too complicated.) “suspend
task ” moves the task stack into the reminder queue, from where it can be resumed
with the command “resume task ”. All tasks put into the reminder queue are given
labels by “suspend task ” (the programmer is prompted to edit the label should they
wish to), and “resume task ” uses the labels to select the task to resume.

The command “browse tasks ” brings up a buffer containing the list of of sus-
pended tasks, and the programmer can select from there a task to resume by moving on
to it with the cursor and pressing “enter ”.

The programmer can enter a task onto the queue (without having to begin it and sus-
pend it) with the command “reminder ”, and can begin such a task from the reminder
queue with the command “resume task ” or from the tasks browser, just as though
it had been started earlier and then suspended.

2.3 Persistence

One inevitable form of interruption to programming is the intrusion of real life into
the programmer’s world, including some fairly drastic forms such as going home for
the night (or, possibly, for the day), or, for the less dedicated programmer, social activ-
ities. These cause unfortunate breaks in the programmer’s chain (or tree, or graph) of
thought, and to address these occurrences when they are a problem2, Sidebrain provides
persistence via a facility to save its data structures to file, for example at the end of the
session, and to reload them from file.

The saved data encompasses the complete state of Sidebrain:

– task stack
– observations
– task queue
– history

As stated previously, the saved Sidebrain data is in an XML-based format[4] rather
than in GNUemacs’ native Lisp format, for easy interchange with other implementa-
tions of Sidebrain, or with other systems.

The saved XML data can also be passed from one programmer to another with the
handover of programming activities, for example in “Follow-the-sun” development[7].
The initial implementation includes commands for sending selected tasks by email
(from the task browser), and for parsing an e-mail to extract XML tasks from it and
insert them in the task queue.

2 It is not always a problem; getting away from concentrating on something can be the key to
solving it – see also the last question in section 3.3.

Sturdy

PPIG 2005 Sussex University www.ppig.org

2.4 Integration

Sidebrain can read the traditional “todo ” comments from source files, and pick them
up into the task queue, and will also go back to the source file automatically to change
the comment from “todo ” to “ done ” when the tasks concerned are ended – an attempt
to make it as natural as possible for a programmer to use this system, and to make it
easy for those using the system to collaborate with others who are not using it.

The implementation of Sidebrain for GNUemacs integrates fully with its host envi-
ronment, sharing copy-and-paste buffers, latest search string, etc.

3 Research questions

As well as being an experimental tool for exploring a variety of questions concerning
the working memory of programmers, Sidebrain is designed to be a useful everyday
working tool for programmers, and if it succeeds in this it has potential for behavioural
studies with high ecological validity, as its history record is then produced as a side-
effect of the programmer’s normal work.

Some research questions that may be addressed using this tool are listed below, both
concerning how effective this model of supporting programmer activity is, and using it
as a tool for investigating other issues.

3.1 Validity and usefulness

A form of research planned in this project is to release Sidebrain for general use, and
look for feedback from programmers on how well it fits their thought processes[8], and
whether to some extent it affects their way of working. Sidebrain is built on a rather
simple and mechanistic model of parts of the human memory; anecdotal evidence from
conversations amongst programmers suggests that they, perhaps more than other people,
tend to introspect on their mental activities in terms such as “stacks”3, and such a tool
as Sidebrain may to some extent encourage and further this. This may be an interest-
ing point to investigate through subjective questionnaires, although the questionnaires
themselves may have a similar effect.

Also, some more intensive case studies[9] will be appropriate, with the history sec-
tions of the saved XML files being collected and analysed. It should be possible to send
the data gathering program to participants, to extract and return only the information
required for the experiment, so that the participants do not have to send back the whole
record of what they have done.

3.2 Remaining focused on the task

Sometimes, in the complex information-gathering of development or debugging, it is
possible to follow a line of investigation into more and more detail, and eventually lose

3 The author has repeatedly observed programmers using in technical conversation statements
such as “push that” (meaning to remember it to come back to later), or “let’s pop several levels”
(meaning to go back to the topic of discussion from which the current topic had arisen)

Sturdy

PPIG 2005 Sussex University www.ppig.org

track (perhaps being distracted from it by the detail) of the original task. Keeping a
stack of open tasks visible on the screen is meant to serve as a useful reminder not only
of what to return to, but also of why the programmer is trying to find a particular piece
of information, thus helping to keep attention directed to what is relevant.

Research questions in this area needing empirical verification, probably from con-
trolled experiments on complex tasks, include:

– whether being freed from having to remember the things to come back to may free
for other use part of the programmers’ working memory, and allow more attention
to be directed to problem solving

– whether it makes a difference to have the task stack displayed continually, against
having it viewable on demand, or having the newly exposed task displayed briefly
as a side effect of ending its subtask (or, on a suitably-equipped system, spoken
aloud).

– to what extent are parent tasks still relevant when the sub tasks have been com-
pleted? (It appears that the search may evolve during information gathering[10])
This can be derived from the use of “abandon task ” instead of the normal “end
task ”, as seen in the history log.

3.3 Keeping hold of other ideas

According to sources including Letovsky[1], and supported by my initial survey, the
thought sequences needed for programming and debugging are typically not linear; of-
ten, while following one line of thought, something else that is useful, but not connected
to the immediate task, may come to mind. When this happens, the programmer can ei-
ther push what they were doing onto a stack of things to come back to, and follow the
new line of thought, or put the new line of thought aside to come back to later, and con-
tinue the present task. Sidebrain is designed to help with both of these, with its queue
or pool of tasks that are not part of the current stack. Research questions in this area
include:

– Is this facility useful and effective?
– Is the programmer’s mind is particularly stimulated to work on some particular

problem when the attention is notionally directed to some other problem? (This will
probably need manually-assisted analysis of the timestamps on reminders entries
and the history record, to determine which new tasks are related to the task in hand.)
This could be a form of displacement activity[11], perhaps, or possibly simply that
stimulation work on one problem stimulates the mind generally? Something more
than this tool alone would probably be needed to investigate this.

– Does the provision of a task queue memory remove some of the attention-directing
load from the programmer’s working memory, allowing more attention to be given
to problem-solving?

– How often does the programmer note a task to come back to later by making a
reminder for it, compared with how often they make it a subtask and do it im-
mediately? Does this frequency correlate with productivity (or with creativity?),
amongst a population of programmers? Does it correlate with cognitive styles[12][13]?

Sturdy

PPIG 2005 Sussex University www.ppig.org

– How many reminders are generated during various kinds of task?
– How long do tasks stay put aside for? And is there a correlation between the length

of time “on hold” and the pace or nature of work on resuming them?
– Is it useful to give priorities to tasks in the queue? Re-arranging priorities might be

just another opportunity for displacement activity; or setting the priorities might be
an unwanted cognitive burden. The priorities might be ignored anyway – this could
be analyzed automatically from the logs by comparing the priorities assigned on
putting tasks into the queue, with the order in which the tasks are actually taken up.

– Might it be useful to move tasks which have not been active for some time, to the
back of the queue (effectively giving them a low priority implicitly)?

– Is it useful to group tasks in the queue?

3.4 Information-gathering behaviour

Sidebrain in real everyday use should provide an opportunity to follow information
gathering behaviour on significant problems, with a high level of ecological validity.
Particular points which could be investigated here include:

– the typical number of investigative steps between observations, and the variations
in this

– the typical number of investigative steps between changes to the code
– the typical number of observations between changes
– correlation between these and productivity, in a population of programmers

3.5 Suspendability and resumeability

Programmers often become engrossed in a task, and do not wish to put it down, which
appears to be often for fear of losing their train of thought, and not being able to take it
up again (although it may sometimes be from enjoyment of the activity). This appearing
to be a common cause of strain and overwork, it seemed potentially beneficial to de-
velop tools to make it easier to handle interruptions (such as telephone calls, questions
from other programmers, meals, and going home for the night)[14]. Early experience
of using Sidebrain suggests that it may go some way to solving this problem.

This differs from most of the preceding areas, in that it covers longer time spans
than working memory usually covers.

The main research question in this area is whether the availability of saved task
descriptions and observations makes it easier to get back to work after a significant
interruption. This could be measured both through mechanical measurements of pro-
ductivity, and through subjective surveys.

The action of describing the work being suspended, on putting it aside (if it is done
then, which implies lazy “begin task ” usage), might have effects either on the task
being suspended (summarising and clarifying the work that has just been done on it),
or on the handling of the interruption (either reducing distraction from thoughts of the
task it interrrupted, safe in the knowledge that its state has been saved, or increasing
distraction from it by having just summarised it).

Sturdy

PPIG 2005 Sussex University www.ppig.org

3.6 Passing work between programmers

The file format in which Sidebrain stores its task data may also be used for mailing tasks
between programmers, in, for example, follow-the-sun working[7]. This goes beyond
helping the memory of individual programmers, into being a form of communication,
and perhaps a part of the corporate memory[15] of the development team or organiza-
tion.

Research in this area would compare hand-over using this data, against the tech-
niques currently used.

3.7 The value of externalising decisions

Literate Programming[16] is the practice of writing software and its documentation
together, in a combined document which interleaves source code and explanation. The
emphasis is on the natural-language explanation, with the source code being embedded
in it, and typically being a small part of the overall text.

One way of seeing Sidebrain’s annotation of activities through the “begin task ”
command is that it is to the activity of programming as literate programming is to the
resulting code; what the programmer produces is an interleaving of code changes and
explanation of code changes.

It has been observed that one way of improving understanding of a problem is to
explain it to someone else, or even to an inanimate object – sometimes termed the
“Rubber Plant effect” or “ Wooden Indian effect” (as a decorative plant or figurine can
be a convenient object to explain things to4). It is thought that how this works is that to
express thoughts in language, conflicts in the thoughts have to be either resolved or at
least made explicit.

It is not obvious why it should be helpful for programmers to do this through some
medium other than the source code before they write the source code – whether, for
example, it is the speed of expression, or whether this occurs mostly where there is a
poor match between the problem and the technology available to solve it (and, corre-
spondingly, the source code is not concise and clear).

Marking the beginning and end of tasks makes explicit the activities being carried
out, which in the informal experience with this software so far has appeared to increase
productivity. Experiments using varied styles of explanation may yield some clues as to
why this is helpful, and perhaps lead to some helpful further techniques and tools.

For example, use of Sidebrain may be compared experimentally with thepair pro-
grammingof XP[18]. It may also be interesting to compare talking to different targets
while programming – pair programming partners, office plants, people who listen but
do not say anything subject-specific, people who listen but do not say anything, and
perhaps even people who respond but not in a language understood by the programmer
– to explore why such verbalizing helps.

4 The original plant used in this context (as a substitute for a cardboard cut-out of an expert
programmer) was given the name “Dijkstra”, in 1982 at Cambridge University Computer Lab-
oratory[17]

Sturdy

PPIG 2005 Sussex University www.ppig.org

4 Ongoing work

The next stages of work on this project are

– designing details of experiments, and of the data collection needed for them
– completion of the first version of the software (including recording of enough in-

formation for the proposed experiments), and of the documentation for it.

When it is ready, it will be released as open source software, and announced in suit-
able places on USENET and the web, with an invitation to register to help with some
research, by sending back results of running some analysis functions on one’s history
files.

In parallel with release to the public, subjects will be recruited for case studies, in
organisations with which we have research links, and more detailed log data connected
and analysed.

Guided by the results from the initial release, both tool and experiments will be
refined further for further rounds of experimentation.

5 Summary

The first round of informal requirements for a programmers’ working memory support
tool have been gathered, and a prototype of the tool almost completed, and internal
test use and demonstrations suggest that it has potential to be genuinely useful for real-
world use. A number of experiments based around the tool have been suggested, and
public deployment of the tool is expected to lead to further iterations.

Appendix: initial survey questions

This simple qualitative survey was conducted internally, as a pilot study, in the author’s
Department, among academic computer scientists who claimed experience of working
on large projects. Although the results were useful, they also made clear the need to
rephrase some of these questions. The questions for this initial version of the survey
came from the author’s own experience of large-scale software development and main-
tenance.

1. When looking for a piece of information necessary to make a decision about an
action take, do you find that your search is typically linear, or typically branching?

2. When looking for information necessary to take an action, do you typically take
that as your next action, or do you typically realize that some other action (related
or unrelated) is needed, and do that first? Or, if you notice the need for such an
action, do you make a note to go back and do it later? And if so, how do you make
the note (paper? file of such notes? add a comment to the code?)

3. If, for question 2, you find yourself doing some other action first, do you sometimes
find it hard to remember what you were originally trying to do, and perhaps even
lose track of the original action?

Sturdy

PPIG 2005 Sussex University www.ppig.org

4. Do you use any systematic strategy for keeping track of what you are trying to do?
If so, what is that strategy?

5. What kinds of information do you gather, and how do you store them?
6. If your answer to Q4 was “no”, is this because of the lack of a the specific tool or

system for it, or would you not use such a thing anyway? whether your answer to
Q4 was “yes” or “no”, do you regard the extra typing as a problem, and would you
expect to find voice input useful for this?

7. If voice input were available in a suitable form, would you expect it to make storing
such information significantly easier?

Acknowledgements

This research has been supported by the Science Foundation Ireland Investigator Pro-
gramme, B4-STEP (Building a Bi-Directional Bridge Between Software ThEory and
Practice).

The author wishes to thank colleagues for feedback on drafts of this work.

References

1. Letovsky, S.I.: Cognitive processes in programmer comprehension. In: Empirical Studies of
Programmers, Ablex Publishing Corp. (1986) 58–79

2. Miller, G.A.: The magical number seven, plus or minus two. The Psychological Review63
(1956) 81–97

3. Stallman, R.M.: GNU Emacs Manual. GNU Press (2002)
4. W3C: Xml. (Web address http://www.w3.org/XML/)
5. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley (1996)
6. Russo, J., Johnson, E., Stephens, D.: The validity of verbal protocols. Memory and Cognition

(1989)
7. Espinosa, J.A., Carmel, E.: Modelling coordination costs due to time separation in global

software teams. In: International Conference on Software Engineering. (2003)
8. Wohlin, C., Ḧost, M., Henningsson, K.: Empirical research methods in software engineering.

In: Empirical methods and Studies in Software Engineering – Experiences from ESERNET.
(2003) 7–23

9. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool evaluation.
IEEE Software (1995) 52–62

10. Bates, M.J.: The design of browsing and berrypicking techniques for the online search inter-
face. Online Review13 (1989) 407–431

11. Potts, C., Catledge, L.: Collaborative conceptual design: a large software project case study.
Computer Supported Cooperative Work5 (1996) 415–445 Section 6.3, Process obsession as
a displacement activity.

12. Ford, N., Ford, R.: Towards a cognitive theory of information accessing: an empirical study.
Inf. Process. Manage.29 (1993) 569–585

13. Mancy, R., Reid, N.: Aspects of cognitive style and programming. In: Annual Workshop of
the Psychology of Programming Interest Group. Number 16, PPIG (2004) 1–9

14. Stewart, R.: Managers and their jobs. Macmillan (1967)
15. Garvin, D.A.: Building a learning organization. Harvard Business Review on Knowledge

Management (1998) 47–80

Sturdy

PPIG 2005 Sussex University www.ppig.org

16. Knuth, D.E.: Literate Programming. CSLI, Stanford (1992)
17. Wray, S.: Rubber plant effect. personal communication (2005)
18. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case for pair

programming. IEEE Softw.17 (2000) 19–25

Sturdy

PPIG 2005 Sussex University www.ppig.org

