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Software development is necessarily a cognitive process. Software engineers 
(cognitive entities) develop software to maximize productivity while delivering 
quality software on time. In essence, issues in software engineering can be 
conceptualized as a cognitive optimization problem. The utility of this approach 
is illustrated by an example in which a cognitive semantic approach is applied 
in analyzing the relationship between representations used in describing aspect-
oriented programming (AOP) [14]. This approach is applied within the 
framework of distributed cognition such that humans and computers involved in 
the software development are conceptualized as one cognitive system that may 
be optimized. Optimization of the cognitive system involves analyzing the 
human cognition in understanding software and opportunistically offloading the 
identified human cognition onto the computer. The analysis of AOP leads to 
represented-oriented software development (ROSD), in which the problem of 
creating, manipulating and maintaining representations is its main concern. 

Introduction 

Software development is necessarily a cognitive activity. This fact is the 
motivation for applying methodology and concepts from cognitive science in 
designing user interfaces [1,2]. Currently, software engineering [3] is mostly a 
collection of heuristics and no underlying theory exists to analyze and optimize the 
software development process. Much of this characteristics of software engineering 
may be attributed to the fact that a theory of software development has to be based 
some theory of human cognition. To address this shortcoming of software 
engineering, this paper applies concepts such as distributed cognition [4], cognitive 
offloading and conceptual integration [5,6,7] to argue for a cognitive approach to 
software engineering. In order to understand how this cognitive semantic approach 
can solve problems in developing software, it is important to understand particular 
issues in software engineering, such as the problem addressed by an emerging 
software development paradigm called aspect oriented software development 
(AOSD). 
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Aspect Oriented Software Development 

Object oriented technologies are utilized widely in modern software development. 
However, improvements are needed in software practices to handle ever-increasing 
demand on software. Aspect oriented software development (AOSD) [8,9] is an 
approach that attempts to address this issue from several observations made about 
software development. In many cases, developers have to trade-off between clean and 
easy to understand implementation with a clear functional decomposition and 
optimized implementation that are tangled and hard to understand. The code is 
tangled in a sense that the optimized code is the result of merging several functional 
components together, making the code hard to understand and change. Therefore, a 
way of addressing this issue is to create some base code that is easy to understand and 
modify. Then, directives are added to change the base code to optimized code or add 
functionality. Aspect oriented programming (AOP) approaches such as AspectJ [10] 
and composition filters [11] take this modification of base code approach. Demeter 
[12] and HyperJ [13] take another approach in which base code is not required. The 
program is written such that there is no dominant decomposition. In a sense, the 
linguistic features of Demeter and HyperJ provide directives in weaving the object-
oriented code. In all of these AOSD approaches, the main focus is the separation of 
concerns, a different way of modularizing programs. 

For the purpose of this paper, concerns are properties or artifacts of the software 
that may be desirable. The most prototypical concerns in AOP are properties such as 
logging, error handling, performance and persistence. Then, the separation of 
concerns becomes the separation of desired artifacts or properties of the software 
being developed. Essentially, the separation of concern is a vague notion that 
encompasses any type of modularization of the software for the purposes of 
adaptability, maintainability, extendibility, and reusability. This vague definition for 
separation of concern allows for more flexible modularization of programs than with 
OOP in which programs are modularized into class hierarchies. In the end, the goal of 
all AOSD approaches is to allow programmers to define and manage these concerns 
in such a way that software development process is improved. I will argue that this 
goal of separating concerns is part of the human cognition that allows understanding 
to occur. When this is taken within the framework of distributed cognition, the 
problem of designing tools for software development becomes the problem of 
organizing representations for optimizing the distributed cognitive system. 

Optimizing Distributed Cognition 

Hutchins [4] argues for a distributed view of cognition. The complexity of 
navigating a navel vessel requires distribution of cognition such that the crew of the 
ship may safely navigate a ship. The task of navigating a ship is distributed among the 
crew and every member of the crew has a particular task to perform. Specific 
protocols and artifacts facilitate communication for coordinating the distributed 
cognitive system to navigate the ship. Similar to ship navigation, cognition for 
developing software is also distributed. Depending on the software project the 
distributed system could be a single engineer and a computer or a team of engineers 
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and a network of computer systems. Therefore, a distributed cognition view of 
software engineering would construe the various people, computers and environment 
as part of the distributed cognitive system in developing software. For the purpose of 
this paper, the cognitive system is construed as a software developer and a computer, 
with representations playing a crucial role. The understanding of how representations 
are used in software development provides a method for analysis and optimization of 
this cognitive system. 

The conceptualization of the cognitive system as the computer system and the 
developer shifts the priority of the software engineering to the optimization of the 
cognitive system by distributing cognition among the different parts of the cognitive 
system for software development. Any type of optimization requires that one analyze 
the processes for critical paths and find opportunities for minimizing computation and 
memory usage. There exist many methods for analyzing the computation and memory 
usage of computer programs. However, there are no methods for analyzing human 
cognition to optimize the cognitive system as defined above. Latest cognitive science 
research could provide the theoretical foundation for such an analytical method for 
cognition. In particular, conceptual integration theory (CIT) [5,6,7], a theory of 
meaning construction from cognitive linguistics [15,16,17], will provide a method for 
analyzing cognition during software development. CIT provides a method for 
describing and identifying human cognition that may be offloaded onto the computer. 
I am assuming that offloading cognition from the human to the computer in general 
will optimize the cognitive system, i.e. improve software development. 

Conceptual Integration Theory 

Conceptual integration theory (CIT) is a theory of meaning construction arising 
from cognitive linguistics. It describes how humans integrate various information 
from our sensori-motor system to create meaning. Generally, CIT is used to explain 
how we understand language, diagrams and pictures. The explanation takes the form 
of an integration network that describes what is necessary in order to understand the 
linguistic utterances, diagrams, or pictures. Therefore, it does not describe what 
actually happens, but characterize the sort of cognition that would produce the 
observed phenomenon. This is adequate for the purpose of analyzing human cognition 
to optimize the human-computer cognitive system. 

Representations 

Another aspect of CIT that is important for this paper is the fact that CIT may be 
used to analyze not only language, but also other stimuli that may be meaningful. In 
software development, there are many different types of representations used, 
representations such as class diagrams, sequence diagrams, collaborations, etc. The 
definition of representation for this paper is not limited to these program specific 
artifacts. Representations also include other linguistic artifacts such as documentation, 
specification, and requirements. The particular representations analyzed in this paper 
are program code and diagrams that are used in explaining the optimization of an 
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image filter in [14]. Cognitive semantic analysis of understanding the optimization of 
the image filter shows that representations are interrelated and this interrelation as 
described by the conceptual integration network is the result of human cognition. 
Therefore, these interrelations between representations are necessary for the software 
developer to understand the implementation and identify possible optimizations. The 
cognitive process of interrelating is the cognition that we are interested in offloading 
onto the computer. This would make it logical that a purpose of software engineering 
should be to identify, describe, modify and manage these representations used during 
software development to optimize the human-computer cognitive system by 
offloading the cognition required to understand the interrelation between these 
representations. The first step towards this approach in which representations are 
crucial is the short introduction to the conceptual integration theory below.  

Conceptual Integration Theory 

Conceptual integration theory is a theory of how we are able to create meaning 
from various stimuli. It uses concepts such as mental spaces, mental space elements 
and connections to characterize how meaning is constructed. This section introduces 
CIT through the “clipper ship” example from Fauconnier and Turner [7]. In 1993, a 
modern catamaran is attempting to break the record for sailing from San Francisco to 
Boston that was set in 1853 by a clipper ship. A sailing magazine, Latitude, describes 
the progress of the catamaran in this manner:  
 

“As we went to press, Rich Wilson and Bill Biewenga were barely 
maintaining a 4.5 day lead over the ghost of the clipper Northern 

Light, whose record run from San Francisco to Boston they're trying 
to beat. In 1853, the clipper made the passage in 76 days, 8 hours.” -  
"Great America II," Latitude 38, volume 190, April 1993, page 100  

According to the conceptual integration theory, one has to use concepts such as 
mental spaces and connections, in order to describe how one understands this 
particular passage from Latitude. Mental spaces are small conceptual packets that are 
constructed for local understanding and action. In this example, there are two input 
mental spaces (input space) that provide the elements for conceptual integration. The 
first input space contains the clipper ship that made the voyage from San Francisco to 
Boston in 1853. The second input space contains the modern catamaran making the 
same trip in 1993. Between the elements within the two input spaces, there are 
connections that relate them. These connections may be any type of relations that are 
relevant for the analysis, such as over, under, father of, Identity, Representation, etc. 
The relevant connection in this example is Analogy1. There are analogical cross-space 
connections between Boston of 1853 and 1993, the clipper ship and the catamaran, 
San Francisco of 1853 and 1993, and the voyage that the clipper ship and the 
catamaran took. 
                                                             
1  Vital relations as described in [7] are capitalized, following Fauconnier and Turner’s 

convention.  
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Fig. 1. Input Spaces and Connections for the “Clipper Ship” Example 

There could be other elements within the mental spaces, such as the captain of the 
clipper ship or the skipper for the catamaran and an analogical connection made 
between these two elements. Therefore, the elements presented here are not 
exhaustive. The input spaces and the cross-space connections between elements only 
describe the how we are detecting the similarity between the voyage made by the 
clipper ship in 1853 and the voyage made by the catamaran in 1993. It does not 
describe how we understand the catamaran’s voyage as a race against the “ghost” of 
the clipper ship. In order to describe this process, we have to use the concept of 
blended space. Blended spaces are mental spaces in which elements are projected and 
some operations take place. In this example, the cities Boston and San Francisco, the 
year 1993, the catamaran and the clipper ship are projected onto the blended space. 
Notice that many of the elements are fused (such as the city of Boston in 1853 and in 
1993 are treated as one city even though they are very different), not projected (such 
as the year 1853), or ignored (such as the differing sea conditions between the two 
voyages). An important operation that occurs within the blended space is called 
elaboration. Elaboration is a mental space operation that allows for “running” of the 
blend. To understand the statement, “If the catamaran keeps its lead, the catamaran 
will win the race,” we would have to run the blend, i.e. mentally simulate the boat 
race to Boston. The conclusion of the elaboration would result in the assertion that the 
catamaran will win.  

According to the conceptual integration theory, construction of an integration 
network is meaning construction and the integration network consists of input spaces 
that provide elements for conceptual integration, cross-space connections between the 
elements in the inputs spaces, a blended space that contain projected elements from 
the input spaces, and operations are applied to the projected elements in the blended 
space. This integration network is able to explain how we are able to understand the 
race between a modern catamaran and a clipper ship even though the clipper ship took 
the journey a century earlier. The conceptual integration theory described through the 
“clipper ship” example has been a basic introduction and further details of the theory 
should be obtained from [5,6,7]. 
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Fig. 2. Integration Network for the “Clipper Ship” Example 

Optimization of an Image Filter 

In this section, the conceptual integration theory introduced above is applied in 
analyzing the cognition required to understand the image filter optimization example 
in [14]. Kiczales et al. uses this image filter optimization example to show that there 
is a trade-off being made between easy to understand and inefficient code, and hard to 
understand and efficient code. They argue that an aspect oriented code would be both 
easy to understand and efficient. This is achieved by providing linguistic facility that 
describes the way in which the code should be optimized. They call these descriptions 
for transforming the base code, aspects. The motivation for aspects that allow 
separation of concerns is shown by the image filter optimization example. 

The image filter shown in Fig. 3 is the or! filter that loops over each pixel within 
two images to apply the logical OR operator to the corresponding pixels. The 
implementation in Common LISP allocates a new image, then loops over each row 
and column of the image to perform the logical OR operator. 
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(defun or! (a b) 

  (let ((result (new-image))) 

    (loop for i from 1 to width do 

      (loop for j from 1 to height do 

        (set-pixel result i j 

          (or (get-pixel a i j) 

              (get-pixel b i j))))) 

    result)) 

Loop over all  

input image pixels 

Store results
Operation on  

pixels 

 
Fig. 3. Definition of or! Filter from [14] 

 
Using similar loop structure, primitive logical filters can be programmed. From 

these primitive filters, higher level filters, such as horizontal-edge!, can be 
built. The necessary filters to implement the horizontal-edge! filter is shown in 
Table 1.  

Table 1. Filters Necessary for Horizonal Edge Filter from [14] 

 

(defun horizontal-edge! (a) 

  (or! (top-edge! a) 

       (bottom-edge! a))) 

horizontal edge pixels 

(defun bottom-edge! (a) 

  (remove! a (up! a))) 
pixels at bottom edge of a region 

(defun top-edge! (a) 

  (remove! a (down! a))) 
pixels at top edge of a region 

(defun remove! (a b) 

  (and! a (not! b))) 
difference of two images 

written using loop primitive; 

slightly different loop structure 

shift image up, down 

written using loop primitive as or! pixelwise logical operations 

implementation functionality 

 

Functional decomposition 

The above implementation of the horizontal-edge! has a clean component 
structure that is easy to understand. The higher level filters are implemented using the 
more primitive filters. The functional decomposition diagram shown in Fig. 4 below 
shows the functions that are called when horizontal-edge! is called.  
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horizontal-edge! 

or! 

top-edge! bottom-edge! 

down! remove! up! 

not! and! 
 

Fig. 4. Functional Decomposition of horizontal-edge! from [14] 

This functional decomposition could be the result of a conceptual integration 
network. In this integration network, each filter function is contained within a mental 
space. The similarities between the function names create cross-space connections. If 
the functions are organized spatially similarly to the functional decomposition 
diagram, the resultant network has similar structural organization as shown in Fig. 5. 
The difference is that only the function names are shown in the functional 
decomposition diagram and the LISP syntax and method body are left out. 
Furthermore, the integration network diagram organizes the linear code into a two 
dimensional diagram to produce the functional decomposition diagram. Therefore, the 
integration network shown in Fig. 5 describes how the functional diagram could have 
been created from the LISP implementation. 
 

 

(defun or! (a b) 

  (let ((result (new-image))) 

    (loop for i from 1 to width do 

      (loop for j from 1 to height do 

        (set-pixel result i j 

          (or (get-pixel a i j) 

                (get-pixel b i j))))) 

     result)) 

(defun horizontal-edge! (a) 

  (or! (top-edge! a) 

       (bottom-edge! a))) 

(defun top-edge! (a) 

  (remove! a (down! a))) 

(defun bottom-edge! (a) 

  (remove! a (up! a))) 

(defun down! (a) …) 
(defun up! (a) …) 

(defun remove! (a b) 

  (and! a (not! b))) 

(defun not! (a) …) (defun and! (a) …) 

 

Fig. 5. Function Call Integration Network for horizontal-edge! 

There are two things to note from this integration network. First, the structure of 
the functional decomposition diagram can be created from the LISP code. Another 
way of looking at it is that some cognitive process took place that produced the 
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functional decomposition diagram from the LISP implementation. Second, the 
functional decomposition diagram provides a view of the implementation. This means 
that information contained within the functional decomposition diagram is present in 
the implementation and it only needs to be extracted. Therefore, there is no new 
information inherent in the diagram.  

The integration network in Fig. 5 shows how the functional decomposition diagram 
could have been extracted from the LISP code. However, it does not show how we are 
able to understand the relationship between the LISP implementation and the 
diagram. The integration network in Fig. 6, shows how we understand the functional 
decomposition diagram in relation to the LISP implementation. The similarity 
between the function names creates the cross-space connection between the particular 
function definition and the corresponding box. The cross-space connection in this 
case is Representation, which means that the box with a function name represents the 
corresponding LISP implementation. The lines between the boxes in the functional 
decomposition diagram are connected to the cross-space connections between the 
LISP implementation, which are function calls. Therefore, the understanding of the 
functional decomposition diagram requires the integration network shown in Fig. 5 
and Fig. 6. In essence, the integration network in Fig. 5 is the understanding of 
function calls and Fig. 6 is the relation between the function calls and the functional 
decomposition diagram. 
 

 

(defun or! (a b) 

  (let ((result (new-image))) 

    (loop for i from 1 to width do 

      (loop for j from 1 to height do 

        (set-pixel result i j 

          (or (get-pixel a i j) 

                (get-pixel b i j))))) 

     result)) 

(defun horizontal-edge! (a) 

  (or! (top-edge! a) 

       (bottom-edge! a))) (defun top-edge! (a) 

  (remove! a (down! a))) 

(defun bottom-edge! (a) 

  (remove! a (up! a))) 

 
horizontal -edge! 

or! 

top-edge! bottom-edge! 

down! remove!  up! 

not! and! 

 

Fig. 6. Integration Network for Understanding the Function Decomposition in Relation to the  
LISP Implementation of horizontal-edge! function (only part of the network is 
shown) 
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Data Flow Decomposition 

Another way of decomposing the group of functions related to horizontal-
edge! is to decompose it in terms of the data flow. The dataflow graph from [14] is 
shown in Fig. 8 left. In order to understand the data flow graph, one needs to create an 
integration network, in which the original image a, which is passed to the 
horizontal-edge! function, is traced during program execution as shown in Fig. 
7 left. In CIT parlance, the tracing of the image a is an elaboration or a mental 
simulation. During this elaboration, a blended space, shown on the right in Fig. 7 
right, is created to keep track of the operations that are applied to the image a. At 
point (1) in the elaboration, function call to up! is projected onto the blended space. 
The call to not! with the result from up! is projected to the blended space at point 
(2) in the elaboration. This process continues until the elaboration stops at the end of 
the horizontal-edge! function and a conceptual structure that is similar to the 
dataflow graph is in the blended space.  The dataflow graph in the blended space is 
represented as a LISP expression in Fig. 7. However, a diagram could also depict the 
conceptual process. It is important that the conceptual structure is same between what 
is constructed in the blended space and the dataflow graph and not the actual form of 
the representation. 

 
 

(up! a) 

(defun horizontal-edge! (a) 

  (or! (top-edge! a) 

       (bottom-edge! a))) 

(defun bottom-edge! (a) 

  (remove! a (up! a))) 

(defun remove! (a b) 

  (and! a (not! b))) 

(defun not! (a) …) (defun and! (a b) …) 

(defun up! (a) …) 

(not! (up! a)) 

(and! a  

     (not! (up! a))) 

Blended space 

(3)

(1)

(2)(3)

(1)

(2)

 

Fig. 7. Integration Network to Understand Data Flow Decomposition (Only the first three steps 
in constructing the dataflow graph are shown) 

In contrast to the functional decomposition diagram, the dataflow graph is much 
more complex to understand. This is due to the mental simulation or elaboration 
needed within a blended space to keep track of the projected elements, i.e. the 
methods with similar loop structure to the OR filter, visited during the elaboration. 
Despite this difference between the two diagrams, the information in the data flow 
graph is also present in the LISP code, same as the functional decomposition diagram. 
Each of the boxes and the connections present in the dataflow graph can be related to 
the LISP code with more effort. The integration network relating the elaboration in 
Fig. 7 to the dataflow diagram is not shown for space reasons. 
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Optimization 

The implementation of the horizontal-edge! function as described above is 
well modularized and easy to understand. The higher-level filter is implemented using 
more primitive filters. However, this implementation is inefficient in memory usage 
as Kiczales et al. point out. There are several intermediate images that are created just 
to pass the resultant image from one filter to another. This results in frequent memory 
access over large memory space that lead to poor performance. As Kiczales et al. 
observe, “The familiar solution to the problem is to take a more global perspective of 
the program, …”. This global perspective is the data flow diagram in Fig. 8 left. From 
this diagram, it is easy to perceive that the functions up!, down!, or!, and!, and 
not! are neighbors in the data flow and potentially, they could be merged. However, 
only the or!, and! and not! functions share the same loop structure. Therefore, 
these functions can be merged into one function and use the same loop structure such 
that several operations are applied to each pixel at the same time. Thus, this new 
merged implementation would require less memory access and improve performance. 
The data flow diagram showing the neighboring filters having the same loop structure 
and the data flow diagram after the functions are merged is shown in Fig. 8. 

 
 

or!

and! 

not! 

up! 

and! 

not! 

down! 

a

horizontal-edge! 

up! down! 

a 

 
Fig. 8. Data Flow Diagram Before and After Optimization from [14] (dotted box 

indicates neighboring functions with the same loop structure) 
 

An implementation of the optimization is shown in Fig. 9. The optimized code 
only creates three intermediate images. The same loop structure is shared between the 
or, and, and not sub-filters. Notice that this optimized implementation destroys the 
easy to understand functional decomposition and now it is harder to understand. The 
functionality of the sub-filters are ‘tangled’ into the shared loop body. This tangled 
code leads to maintainability problems: “The tangled code is extremely difficult to 
maintain, since small changes to the functionality require mentally untangling and 
then re-tangling it” [14]. Therefore, the understanding of the optimized code requires 
one to create the integration network that leads to the functional decomposition 
diagram from the optimized code. Changes to the functionality requires further step of 
making changes to the unoptimized code and then optimizing the code again. 
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 (defun horizontal-edge! (a) 

  (let ((result (new-image)) 

       (a-up (up! a)) 

       (a-down (down! a))) 

    (loop for i from 1 to width do 

      (loop for j from 1 to height do 

        (set-pixel result i j 

          (or (and (get-pixel a i j) 

                   (not (get-pixel a-up i j))) 

              (and (get-pixel a i j) 

                   (not (get-pixel a-down i j))))))) 

     result)) 

only 3 result  

images are created 

shared loop 

structure 

sub-filter  

operations

 

Fig. 9. Optimized horizontal-edge! Filter from [14] 

The aspect-oriented programming as advocated by [14] solves this problem by 
providing linguistic facilities to automate this optimization process. The linguistic 
features are directives to identify and merge similar loop structure in the program. 
They argue that this approach allows the programmer to maintain the original 
functional decomposition while providing optimized code that minimizes memory 
access. However, the programmer must still mentally tangle the code in order to 
understand how the directives change the code. The solution to this cognitive 
operation of tangling code could be obtained if one notices the role of representations 
in the form of functional decomposition diagram, data flow diagram, and LISP code 
in the image filter example. It is evident that these representations are interrelated 
through the conceptual integration networks as described above. These conceptual 
integration networks in which the function definitions are inputs can characterize the 
creation and understanding of the functional decomposition and data flow diagrams. 
Therefore, it would seem likely that if these cognitive processes of tangling and 
untangling are offloaded onto the computer, it could potentially improve the 
understanding and development of software.  

Relationship Between Representations 

In the previous section, the conceptual integration networks were used to describe 
how we are able to understand the image filter optimization example from [14]. These 
integration networks characterize not only the cognition required in understanding the 
various representations, it also provides a description of how these representations 
could have been constructed. This cognitive semantic analysis exposes several 
properties about the representations and their role in software development. These 
properties are outlined in the conceptual integration theory as three properties of 
integration networks: global insight, unpacking and synchronization. These three 
properties taken within the context of distributed cognition and cognitive offloading 
suggest that a representation-oriented approach to software development would be 
productive. 
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The first notion in conceptual integration theory that is relevant in understanding 
the role of representations in the image filter optimization example is global insight. 
Global insight is the notion that in order to gain a comprehensive understanding, one 
has to know the details and the global view of a particular subject. In this case, one 
has to know the LISP implementation and the functional decomposition diagram at 
the same time. The functional decomposition diagram provides an overview of how 
the functions are connected, while the LISP implementation describes what each of 
the functions contribute towards the overall functionality of the horizontal-
edge! function. Therefore, the two diagrams provide global insight into the LISP 
implementation. Also, the data flow diagram provides global insight, which facilitates 
understanding of the optimized code and characterizes how the optimization could 
have been solved originally. 

The second relevant property of integration networks is the unpacking principle. It 
states that the integration network tends to be constructed in such a way that elements 
contained within the blended space are sufficient to reconstruct the original 
integration network that led to the blended space. In this case, the integration 
networks in characterizing how the two diagrams could have been produced could be 
reconstructed from the diagrams alone. In essence, one should be able to write the 
LISP implementation from the functional decomposition diagram or the data flow 
diagram. Intuitively, this is plausible, since software could be developed in such a 
way that organization of the functionality is designed first then implemented in LISP. 

The last relevant property of integration networks is the propagation of changes. In 
the process of constructing meaning, elements in the blended space could interact in 
such a way that new elements could be brought forth into input spaces and vice versa. 
In the context of representations, some change in one representation could propagate 
to other representations. When the original image filter implementation is optimized, 
the corresponding functional decomposition and data flow diagrams also reflect this 
change in the LISP code. Alternative view is that the change in the data flow diagram 
is propagated to the LISP code and the functional decomposition diagram. Either way, 
the structural similarity between the diagrams and the LISP code is preserved in this 
synchronization process.  

Representation Oriented Software Development 

The three properties, global insight, unpacking and synchronization, of integration 
networks observed in the understanding of the three representations, functional 
decomposition diagram, data flow diagram, and LISP code, show that software 
development is a multi-representation activity. In a sense, software includes these 
representations and others such as code comments, architecture diagrams, 
specifications, requirements, etc. and developers create, manipulate and make sense 
of these representations. From the cognitive semantic analysis presented above, these 
cognitive activities of creating, manipulating and understanding representations can 
be characterized by the conceptual integration networks. If role of conceptual 
integration networks in understanding representations is taken within the context of 
distributed cognition, a new approach to software development emerges. I call this 
approach representation-oriented software development (ROSD). 
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In ROSD, the central issue is the design, manipulation and maintenance of 
representations for optimizing the cognitive system. The cognitive system includes 
representations, humans, computers and other artifacts involved in software 
engineering. All of these elements interact and coordinate in producing software, 
similar to the way a crew of a ship coordinate through artifacts to navigate a ship. 
This view of software engineer reconceptualizes the problem of optimizing software 
development to the problem of optimizing the cognitive system through redistribution 
of cognition. Since computers tend to increase in speed much quicker than humans, it 
would be logical to find opportunities to offload human cognition onto the computer. 
The conceptual integration theory provides a methodology for finding such 
opportunities through its integration networks. These networks characterize the 
cognitive processes required in producing and manipulating representations. 
Therefore, offloading this cognition would entail that software tools should be 
developed to support the developers in designing, manipulating and maintaining these 
representations. 

Conclusions 

The cognitive semantic analysis of understanding the image filter optimization 
from [14] within the context of distributed cognition suggests a representation-
oriented software development approach. This approach puts the representations in 
software and offloading cognition in processing these representations to the computer 
as its main conern. In relation to AOSD, ROSD is more specific in a sense that it 
bases its theoretical framework on distributed cognition and conceptual integration 
theory. This relationship between AOSD and ROSD is reflected in the image filter 
optimization example when the aspect-oriented programming solution in [14] is 
conceptualized as offloading cognition required to optimize the image filter onto the 
computer. Therefore, the linguistic features proposed by [14] are prompts for 
executing the offloaded human cognition. 

This work is complementary to the work done by other cognitive scientists in 
applying distributed cognition to issues in HCI [18], collaborative working [19], 
naturalistic programming [20], and computational aspects of figurative language [24]. 
The main difference is the application of cognitive semantic theories to find 
opportunities for offloading cognition onto the computer. This approach is novel and 
there are many opportunities for further development. For instance, the other aspects 
of distributed cognition, such as material anchors [21] could be explored, or apply 
other cognitive semantic theories such as idealized cognitive models [22] to analyze 
and offload cognitive structures and processes onto the computer. Since idealized 
cognitive models are shown to be observed in classical mechanics [23], it is highly 
likely that software tools that offload cognition in understanding these concepts, 
problems and solutions would facilitate providing software tools for science, 
engineering and other fields. 
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