
Software Authoring as Design Conversation

Andrée Woodcock and Richard Bartlett

Visual and Information Design Research Centre,
The Design Institute

Coventry School of Art and Design
Coventry University,

Coventry, UK
A.Woodcock@coventry.ac.uk

Abstract. The paper outlines a pilot study to investigate whether software
authorship1 could be regarded as a design activity, with special reference to ‘re-
flective practice.’ Verbal protocols collected from software authors undertaking
a ‘real task’ indicated that there was merit in studying programming as a design
activity – that different forms of reflection did take place, and that the collection
of reflections and moments of surprise may lead to a greater understanding of
both design and the nature of software authorship. This could be used to inform
education and the development of software authoring support tools.

1 Introduction

The inspiration for this pilot investigation was on the one hand, my own experience as
an ergonomist (or user champion) employed in the early stages of computer projects
and on the other, as a design researcher interested in understanding the design process
with a view to developing new tools to make such a process more effective. I believed
at the start of the research that looking at programming as a design activity could lead
to new insights into professional practice that could have ramifications for both soft-
ware authoring and design research.
 Whereas it is customary to start projects with a review of previous research in the
field, in order to bring a fresh perspective to the study of programming we have delib-
erately distanced ourselves from previous research regarding nomenclature, novice vs.
skilled programmers, and cognitive psychology. The precedents for this research were
set by Schön’s seminal works on reflective practice [8 and 9] and later in Winograd [7
and 14], and Ericcson and Simon’s [4] use of protocol analysis. These were applied
by Dorst [3] in the study of design activities.

1 Software design, software authorship and to some extent programming are used interchangea-

bly. The focus of interest is on the practitioner who writes and tests the code such as the de-
veloper of shareware.

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 203 - 214

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

 Although programming is sometimes referred to as an ‘art’ or a ‘craft’, this usually
leads to a discussion of programming skills and techniques rather than looking at
problem solving, creativity and professional competencies. From my own art and
design community, there is little interest in software design per se, unless it is part of
creative production. Opportunities for cross over between the two disciplines might
exist, especially in terms of recognition of software design or authorship as a design
profession, but this is not occurring at present.
 The focus of this research is on how software authors move around the design solu-
tion space as they undertake a realistic, complete design task (see section 2.2 for de-
tails), with the aim of addressing four basic questions:

1. Can software authorship be regarded as a design activity?
2. Can design research methods, employed in the study of design activities in other

domains be used to gain new insights into the process?
3. Can programmers or software authors be regarded as reflective practitioners?
4. Would studying programming in this way be of any practical value?

1.1 Similarities between software design and other forms of design

All design progresses from an (un)stated need. It is essentially practical in nature. The
need may be specified in a variety of ways, as formal, informal or evolving briefs or
requirements that may have a loose or tight constraint on design activity. The artifact
designed to meet those needs may take many forms. The designer, no matter in what
domain, applies his skill, knowledge, creativity and experience to bring together a
series of approximate solutions (or concepts). These may be manifest in the form of
sketches, sketch models, or initial code. From these an artifact will be created that
more or less fulfils the initial need.
 The designer in most cases is not the client, and may not even be a representative of
the group that originated the need. For this reason, designers sometimes progress
without a full knowledge of the necessary facts thereby producing designs that are
inappropriate.
 Schön [7] cited Vitruvius, the Roman architecture critic as stating that well designed
buildings should exhibit firmness, commodity and delight. The same principles can be
applied to all cases of design, including software design:

Firmness: A program should not have any bugs that inhibit function.
Commodity: It should be suitable for the purposes for which it was intended.
Delight: The experience of using the program should be a pleasurable one.

As a further example of design, Industrial Design Engineering has been defined as the
“development of durables (mass produced products for people, based on the integra-
tion of the interests of users, industry, society and the environment),” Buijs [1]. Such
artifacts may be large or small, simple or complex. They should be seen as coherent
by both the producers and the users, and should integrate the demands of a variety of
stakeholders, up to the level of society. For industrial, as well as software design, a
number of issues have to be taken into account such as business, technical, ergonomic
and aesthetic issues. The final product is usually a compromise between all of these

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

issues, and is the synthesis of input from diverse and often-conflicting disciplines and
stakeholders that requires in its shaping and production skills beyond the scope of any
one individual. We are only just beginning to understand how such teams should be
managed, and the effects of different forms of knowledge on the final design. Group
design or authorship is outside the remit of this research, however should the pilot
meet it’s initial aims this may be an avenue for later study. Instead, this research will
focus on the conversation a software author has with his design problem.
 Taking the similarities between industrial and software design further. Both are
relatively young professions, with industrial product design only emerging as a field
in its own right within the last 50 years. It is only within the last two decades that
industrial designers have started to reflect on or about what they are doing. Much of
this early reflection was based on rational problem solving [10] and methods adopted
from mechanical engineering eg [12] with a view to managing process. Software
design has borrowed methods from for example, psychology and again rational prob-
lem solving, Both industrial and software design have evolved their processes moving
from the traditional waterfall, through cyclical development to rapid prototyping
whereby design and complexity (as mentioned previously) have to be managed ear-
lier.
 More recently the trend in industrial design has been towards looking at the crea-
tive, social and psychological aspects of designing [2] and looking at design as reflec-
tive practice, i.e. focusing on professional practice rather than theory. This pilot study
applies a similar approach to software design.
 The many parallels to be drawn between the two disciplines, make software design
an appealing area of investigation for design research. Both software and industrial
design evolve very quickly – whereas the industrial or product designer may generate
hundreds of rapid sketches, the software author will often generate hundreds of lines
of code – when searching for the optimum solution to one or more problems. Each
solution will have ramifications for the final solution, and impact on different sub
areas. Software designers spend a lot of time validating and refining their designs
(debugging). “Testing is not just concerned with getting the current design correct. It
is part of the process of refining the design….Even the smallest bit of code is likely to
be revised or completely rewritten during testing and debugging. We accept this sort
of refinement during a creative process like design,” Reeves [11]. Likewise a de-
signer, may draw, rubout and redraw a line on a concept sketch of a car time and time
again, until the curve is perfect. Both activities indicate that the designer is entering
into a conversation with the design. Trapping the verbalizations of software designers
engaged in such activities may lead us to a new understanding of their professional
practice in a similar way to studies undertaken of product designers. Additionally, the
difference in media (written code, as opposed to hand drawn sketches) may make it
easier to understand the underlying processes by the removal of certain ambiguities.
 In answer to the first two questions posed by the research I think that there are suffi-
cient recognized parallels between software authoring and design in general for it to
be amenable to study in a similar way. So, the task is now to determine whether there
is evidence that programmers are reflective practitioners, and if they are, if there is
any benefit in studying them in this way, and in attempting to view software design as
a profession.

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

1.2 Reflective practice and design conversation

Verbal protocols provide rich sources of information for researchers, for example they
can be analysed in terms of recurring patterns, parts of speech, design activity (such
as incubation, design, verification and testing) and goal directed working. If software
authors are reflective practitioners, engaged in a conversation with the design prob-
lem, then periods of reflection should be noticeable – but what will they look like?
 For Schön, all professions are design like in so far as “they all consist in conceptual-
ising, planning, patterning or otherwise establishing cognitive order”, Walks [13] p43.
During the course of design, problems may be experienced, either as a consequence of
previous actions or because of a lack of understanding of the requirements of the
solution. At such times “practitioners apply tacit knowledge-in-action, and when their
methods do not work out, they do not take time out, to reflect or disengage, but reflect
in action using the knowledge of their practice rather than the knowledge of science.”
Walks (op cit), p 44. Design studios are places where such experience and reflection
can be acquired and shared. A reappraisal of software authorship as professional prac-
tice could eventually lead to computer studios as opposed to computer laboratories.
 Protocols of design sessions can be studied to show movement through the design
process in terms of the setting and meeting of goals and subgoals. Although I am
interested in tracing this movement, which can be seen in the transcripts gathered
during this work, for this paper I would like to focus primarily on identifying periods
of reflection. What I would hope to do in subsequent work is to identify the relation-
ship between reflections and the setting of goals and subgoals, to mediate movement
through the solution space [5]
 When a designer makes a move (ie towards generating a solution), that move will
produce a series of results, not just the ones that were specified or hoped for. For
programmers, a piece of code may or may not work in the way it was intended (ie
meet its subgoal) but it may have an effect on other aspects of the program (for exam-
ple by changing the instantiation of variables). Looking at what has happened in de-
bugging and testing may lead the designer to realize that they had made both simple
coding errors, but also might not have fully understood the requirements of the solu-
tion to begin with. So, during debugging the programmer may exhibit reflection –in-
action and enter into a conversation with the design problem. This in turn will lead to
future actions. “This unpredictability is a central attribute of design-it is not necessar-
ily the defining one, but it is important. It means that there is no direct path between
the designer's intention and the outcome” Schön [14]. By entering into a conversation
with design, the complexity becomes clearer. A study of the software design process,
especially debugging may reveal that “sometimes, the designer's judgments have the
intimacy of a conversational relationship, where (s)he is getting some response back
from the medium, (s)he is seeing what is happening-what it is that (s)he has created-
and (s)he is making judgments about it at that level” Schön op cit). This understand-
ing then serves as a “springboard to a new round of problem-solving inventions” or to
put it another way, “as you work a problem, you are continually in the process of
developing a path into it, forming new appreciations and understandings as you make
new moves.” [7]
 Although this may strike resonance with software design practitioners, it is impor-
tant to determine whether such occurrences can be found under ‘experimental’ condi-

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

tions. How these can be captured. Whether there is any variation in their manifesta-
tion, the extent to which these bear similarities to other domains, or may provide new
insights into the study of reflective practice.
 The vagueness of Schön and researchers in reflective practice in defining reflection
has been previously noted (eg [3]). Three types of reflection are recognized:

1. Reflection-in-action. This is associated to the experience of surprise. Sometimes,
we think about what we are doing in the midst of performing an act. When per-
formance leads to surprise-pleasant or unpleasant-the designer may respond by
reflection in action: by thinking about what you are doing while doing it, in such
a way as to influence further doing. The designer is reflecting in action, both on
the phenomena that is being represented (through his drawing) and on his previ-
ous way of thinking about the design problem. Schön described this as ‘backtalk’.
Where you discover something totally unexpected-"Wow, what was that?" or "I
don't understand this," or "This is different from what I thought it would be-but
how interesting!" Backtalk can happen when the designer is interacting with the
design medium. In this kind of conversation, judgments are made such as, "This
is clunky; that is not," or "That does not look right to me," or just "This doesn't
work." The designer's response may be "This is really puzzling," or "This out-
come isn't what I expected-maybe there is something interesting going on here."

2. Stop and think. Here, the designer exhibits a reflection-on-action, pausing to
think back over the activities in the project, and exploring the understanding that
has been brought to bear on the task. This may include a new theory of the case,
reframing the problematic design situation in such a way as to redefine, interac-
tively, both means and ends.

3. Reflection on practice, the designer may surface and may criticize tacit under-
standings that have grown up around repetitive experiences of designing.

A design session may yield instances of all three types of reflection. The pilot study
described below was designed to determine whether any of these types of reflection
would occur.

2 Pilot Investigation

A pilot investigation was conducted in order to determine whether reflective practice
occurs during software design. This necessitated constructing a short task, achievable
in the space of three hours that would engage experienced software authors in design,
development and testing.

2.1 Aims

The overall aims of the investigation were to:

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

1. determine whether periods of reflection in action, reflection on action and reflec-
tion on practice could be found in the verbalizations

2. consider the role of such reflections in mediating movement through the solution
space

3. consider the usefulness of this approach in terms of design research and comput-
ing.

2.2 Task: The Sheepdog Game

Sheepdog is a real time game that can trace its ancestry to the early days of home
computers when the blocky nature of the graphics available did not detract too much
from the enjoyment of the game. The fact that blocky graphics are acceptable make
this game suitable for the experiment, where we do not want authors to spend a lot of
time on graphic design.
 It also a fairly obscure game, compared to say Snake, or Space Invaders, and there-
fore is more likely to be a fresh task to the author, and one where many insights into
the possibilities are likely to become apparent during the design process itself.
 The principle of the game is that several "sheep" need to be herded into the sheep
pen by the "sheepdog". The sheep move around on their own, but are influenced by
the behaviour of the sheepdog, which is controlled by the player. There are different
targets that can be set - e.g. time limits, no sheep to escape from the field, a point
score ... and so forth.

Critical to the design is the way the sheep are programmed to move both in relation
to their environment, and according to their intrinsic properties. At the most sophisti-
cated level, environment that they are aware of could consist of the field edge, the
pen, other sheep (position and velocity) , the dog (position and velocity),
 The authors were encouraged to avoid programming peripheral elements of the
game - e.g. options menus, high score tables etc, and to concentrate on the basic me-
chanics of the game.

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

Fig 1. Representation of the game elements for Sheepdog

2.3 Method and Participants

Participants were required to be proficient in a third generation computer language,
ideally with an interest in games programming. All were recruited locally, inter-
viewed about their level of competence, assessed for their ability to talk out loud and
told the purpose of the study and mature of the trial. Payment was offered.
 Sessions took place in the Usability Laboratory at the Design Institute, Coventry
University, which allowed sessions to be videoed and participants unobtrusively
watched from the observation room. The researcher intervened to provide refresh-
ments and talk to participants and remind them to keep verbalizing.
 Prior to the session necessary applications were uploaded so that the participant
would use a version of the software they were familiar with and provided with a writ-
ten design brief (see section 2.2). They were asked to start thinking abut the task and
develop the game whilst providing a verbal stream of consciousness. A period of
three hours was allocated to the task. Although this would not give sufficient time to
fo the programming of advanced features, it was considered long enough for the me-
chanics of a basic game to be developed in one session. All participants managed to
complete and test the basic functionality of the game in this time.
 The video capture allowed recording of the screen, the face of the participant and
the verbalizations (using the Observer system). Screen events and verbalizations were
transcribed so that the comments could be related to events on the screen – this asso-
ciation will be the subject of subsequent research. The transcriptions were chunked
into meaningful sections on the basis of the topic being addressed (eg sheepdog be-
haviour). Each chunk was then further coded:

1. using an adaptation of the encoding scheme developed by Dorst [3] for descrip-
tion of design as a rational problem solving activity.

2. identifying periods of ‘reflection–in’ and ‘on-action’ and ‘reflection-on-practice’.

A visual representation of the topics addressed by each participant (including the
reflections) was produced using winCmap vsn3.6 (available from the Institute for
Human and Machine Cognition) at http://cmap.ihmc.us).

2.4 Preliminary Results

2.4.1 Reflections
All participants reflected-on-action during the course of their programming. Charting
these using winCmap showed that these occurred throughout the session and were
integral to the activity, ie they did not occur when the participant stepped out of the
activity. One participant did not reflect as much, but this might have been due to the

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

experimental setting – some participants find it easier to produce a verbal stream of
conciousness than others. These reflections were classified as relating to

• Their own ability, eg mathematical reasoning, programming and memory such

as:

“hmm, I kept the wrong thing….I do that a lot, I’m very forgetful…you
can find that takes so long” subject 3 while changing his code

• Elements of the specific task eg game play

• Programming in relation to the task eg errors and coding strategy

“classic copy and paste mistake.” Subject 3 while copying code for
‘sheep behaviour’ to the ‘dog’ and again

“there’s probably nothing as much , that causes so many bugs as cut
and paste”

Given the nature of the investigation it was not anticipated that there would be many
instances of reflection-on-practice that lead to changes in professional practice. This
belief was confirmed. Where such reflections occurred these seemed to be a result of
the experimental setting – more as an aside to the experiment. For example, Subject 1
in his last session made the following reflections regarding his practice. These were
occurring outside of the main activity and were perhaps made solely for the edifica-
tion of the researcher.

Time Transcript
1.15 “again, y’know I…something at the beginning of the whole

project told me what the data structure should do, my gen-
eral knowledge of this type of environment if you like, the
sort of data structure would be useful and they’ve….I’ve
been able to get the up and running and they…..I think
they’ve been sort of

1.30 been useful in establishing um, where the problems are, the
different ideas have given me a feel for the lie of the
land…that acts as a sort of like an impetus for me then to go
forward into pen and paper stage

1.45 Strangely enough I don’t think it would have been worth-
while for me to have gone into pen and paper stage first
because you are committing yourself to ideas there which
might fall apart, um very early on in the process

 Reflections-in-action were the ones most closely associated with movement through
the design solution space. Indeed many of the phrases used were those already cited
such as, “wow”, “oh no”, “why’s it doing that”, “I didn’t expect that…….”, “that
means that,” and laughter. These occurred mainly during debugging or visualization
of the code (in the graphics screen), occasionally when pen and paper were used to
work out mathematics problems. Such surprises could be attributed to production

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

errors (eg syntax, spelling, cut and paste problems), coding imprecision or simply not
understanding the requirements of the solution. The latter two cases show that such
reflections shape the movement through the solution space.

For example, Subject 2 in this section is checking and revising the code, while
looking at the movement of the ‘dog’ on the graphics screen. This shows coding er-
rors, surprises, backtalk, and an increased understanding of the requirements of the
solution through engagement with the problem.

Time Transcript
 <laughs>
7.30 as it gets near the sheep it either vanishes or jumps into the

nearest corner which isn’t ideal
 Oh I forgot to put that in
 One word and it does completely the wrong thing
 Christ… that doesn’t…oh that’s
8.00 Oh…okay
 I was doing greater than
 So if the dog was greater than 50 pixels, I’d say more

whereas what I wanted to say was closer than 50 pixels
8.20 And it doesn’t seem to work
 50 pixels is probably a bit big
8.30 Let’s change it to 20
8.40 Well its still very big
 Can’t actually move anywhere that doesn’t make the sheep

run away from me
8.50 And if you’re in the corner you’re stuck
 Uh
 Let’s just make it something like 10 even
 ‘cos 10s as big as the er actual dog isn’t it
9.20 Why is it doing that?
 Unless I’ve forgotten to put an ‘and’ in somewhere
9.30 Oh so what I need to do is combine these two
9.40 Oh that’s really stupid
9.50 Oh that’s annoying
 What its doing is changing its mind independently
10.15 So it doesn’t care if you are not near….. it depends if you

are in line with the sheep
 So I’ve got to change that
10.40 I have a feeling this is going to get confusing
11.00 This is where bugs come in to programs
 So what I’m doing now is making it a bit more exclusive and

saying don’t do this unless its near on the ‘x’ and ‘y’

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

2.4.2 Parallels with design activity
Although not the primary focus of attention in this paper, the reflections also revealed
evident parallels to other design domains. For example, in using a basic approxima-
tion to a solution as a starting point. For designers this may be a very basic sketch, for
programmers it is rudimentary code as evidenced below.

“okay…here, I’m going to get something, anything at all working as
fast as possible. That way I get a good feeling, and , er, instant gratifi-
cation,” subject 3.

Also, in the necessary toleration of solutions that are not correct, but that allow pro-
gress to be made on other subgoals

“this is going to flicker a lot and I also know how to fix it, but I’m not
going to bother for now…although its probably going to get irritating
very quickly,” subject 3.

2.4 Discussion and Conclusions

This preliminary research has shown that it is possible to use design research methods
to study programming activity and that periods of reflection-in-action, on- action and
on-practice could be found. Not only do the reflections help to solve the immediate
problem, they also mediate movement through the solution space.
 The third aim of the investigation was to look at the verbalizations and in particular
the reflections, to determine whether there is added value in looking at programming
activity in this way. This will be addressed in the final section

3 Added value of this approach

The value of looking at design as reflective practice has made clear contributions to
that discipline in terms of understanding what is means to work in practice, the proc-
ess of single and group activity and the education of designers. Given the early stage
of this work it is not easy to identify what the added value of such an approach may
be. However, the research has identified four areas where contributions could be
made.

• Training. Obviously training identified will be task dependent, but verbalizations
are associated with times when the designer is experiencing problems due to a
short fall in knowledge. In this study there was a clear need for additional training
in mathematics (eg calculus) and help with visualization of ‘x and y’ co-ordinates
and ‘+ and –‘ . All programmers had difficulty with logic in these areas, as evi-
denced by recourse to pen and paper, numerous changes to the code, and relying
on running their programmes to understand where the errors were and when the
code was not doing what was expected. The follow up interviews confirmed a
need for top up training,

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

• Education. During the literature review, very few references to reflection or pro-
gramming as a craft (in the design sense) were found. There may be opportuni-
ties for future research to look at the benefits of reflective practice and computer
studios (as in design studios) where talk back is used more extensively to help the
programmer understand the complexity of the situation. If such work is under-
taken this may have major ramifications for the training of programmers.

• Development of programming support tools. Reframing of the problem occurred
most when the code did not work as expected and all the simple production errors
(eg typo’s) had been identified. More complex errors may require the whole
problem to be reconceptualised. Tools could be developed which supported this
reframing.

• Furthering understanding of reflective practice. Having studied designers reflect-
ing during concept design and programmers working at a similar stage of their
design, it seems easier to understand what is happening in this domain, because it
is text based media. A lot of design is visual, which causes additional problems
for interpretation. The transcripts clearly show that a conversation is being en-
tered into, and the graphics screen and debugging provide a voice for the author
to listen to. This can be very rapid. However, it may provide added opportunities
to study reflections. Examples of contributions from this study include 1) the
scale of the reflections. When talking about reflective practice one can overesti-
mate the importance of the reflections. These were small, they did not contribute
to profound changes in practice, but very clearly effected task progression; 2)
backtalk. The design research community has focused on pairs or groups of de-
signers working together. This research has shown that designers, in this case
software designers, enter a conversation with the design problem, by themselves,
and that this can provide meaningful insights into activity; 3) research in the
community, because it has focused on two-person conversations has not consid-
ered, to a large extent, the experimental effects such a situation may produce –
where the participant may alter their behaviour or provide reflections that are not
actually part of practice, but may be what the experimenter wishes to hear.

4 Reflection

This initial research project had very modest aims and fulfilled these by showing that
it is possible to apply design research methods to software design and study the activ-
ity as reflective practice. Several shortcomings of he work can be identified such as
the nature of the task ,it’s duration, the expertise of the programmers. It has been
difficult to engage the software community in the ideas behind the work, perhaps
because of its novelty and the fact that few researchers are interested in software as
reflective practice. It is hoped that the papers emerging out of this research may
stimulate further research in this area.

It might be self evident that software authors are reflective practitioners in much
the same way that everyone engages in reflection as part of their everyday lives, but
few studies have considered this. However, for me one of the surprises has been that

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

reflections do occur so often, they are small but do affect design progress – that the
programme talked back – and given the scope of the project it was possible to capture
some of these. Future analysis will look in more depth at the way the reflections me-
diated this movement.

Acknowledgements

The research was funded by the Arts and Humanities Research Board (AHRB) Small
Grants in the Creative and Performing Arts, entitled Programming as Reflective Prac-
tice.

References

1. Buijs, J.A.: Design Education at the Faculty of Industrial Design Engineering, in Achten,
H.H. (ed), Design Education in the Netherlands, TU Eidhoven (1997)

2. Cross, N.G.: Modelling the Creative Leap, Third International Round Table Conference on
Computational Models of Creative Design, Heron Island, Australia, 3-7 December (1995)

3. Dorst, K.: Describing Design: A Comparison of Paradigms, PhD Thesis (1997)
4. Ericsson, K.A. and Simon, H.A.: Protocol Analysis: Verbal Reports as Data. MIT Press,

Cambridge, MA, Rev. edition, (1993).
5. Gill, H.: The Nature of Problems, International Conference on Engineering Design, Boston,

(1987) 185-190.
6. Kapor, M.: A Software Design Manifesto, (1996) at http://hci.stanford.edu/bds/ accessed

8/4/2005. reproduced from Winograd, T (ed) Bringing Design to Software, Addison

Wesley.
7. Schön, D.: Reflective Conversation with Materials (1996), at http://hci.stanford.edu/bds/9-

schon.html accessed 8/4/2005
8. Schön, D.A.: The Reflective Practitioner, Basic Books, New York (1983)
9. Schön, D.A.: Educating the Reflective Practitioner, Basic Books, New York (1987)
10. Simon, H.A.: Sciences of the Artificial, MIT Press, Cambridge, MA. (1967)
11. Reeves, J.W.: What is Software Design? C++ Journal, at http://www.bleading-

edge.com/publications/C++ Journal/CpJour2.htm accessed 8/4/2005 (1992)
12. Roozenberg, N.F.M. and Eekels, J.: Product Design: Fundamentals and Methods, Wiley,

Chichester (1995)
13. Walks, L.J.: Donald Schön’s Philosophy of Design and Design Education, International

Journal of Technology and Design Education, 11, (2001), 37-51
14. Winograd, T.: Bringing Design to Software,Addison Wesley, (1996)

Woodcock and Bartlett

PPIG 2005 Sussex University www.ppig.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

