
Empirically Refining a Model of Programmers’

Information-Seeking Behavior during Software

Maintenance

Jim Buckley1, Michael P. O’Brien
1
, Norah Power1

1 Department of Computer Science,

University of Limerick, Limerick, Ireland

{Jim.Buckley, MichaelP.OBrien, Norah.Power}@ul.ie

Abstract. Several authors have proposed information seeking as an appropriate

perspective for studying software maintenance activities. However, there is little

research in the literature describing holistic information-seeking models in this

context. Additionally, in the one instance where an information-seeking model

has been proposed, the empirical evidence presented in support of that model is

extremely limited. This paper presents a small quasi-experiment that serves to

further evaluate and refine this preliminary information-seeking model. Talk-

aloud data, generated by two professional programmers, engaged in real soft-

ware maintenance activities, was captured and then coded. This evaluation

largely validated the model but also suggested several important refinements.

The study, its results and its impact on the information-seeking model are dis-

cussed in this paper.

2 Introduction

Information seeking has been defined as the searching, recognition, retrieval and ap-

plication of meaningful content [17]. Several researchers have argued that information

seeking is a core element of software maintenance [8] [29], [31], [32]. Sim [32], for

example, refers to maintenance programmers as task-oriented information seekers,

focusing specifically on getting the answers they need to complete a task using a vari-

ety of information sources.

Seaman [29] and Singer [31] used questionnaire and interview-based empiri-

cal studies to further probe the information sources used by professional programmers

during maintenance, and the factors that affected the perceived quality of these

sources. They found that programmers relied predominantly on source code, a finding

in agreement with that of [33]. However, other valued sources of information that

these programmers identified were customers, users, the original development team,

other system maintainers, ‘Lessons-learnt’ reports and execution traces (to recreate

software bugs).

Bradac et al [4], and Liu et al. [22] have carried out some related research in

the area of information ‘Blocking’. Blocking arises when progress on a software engi-

neering activity is halted because the engineers cannot get access to the information

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 18 Pages 168 - 182

18th Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006 www.ppig.org

sources they require, when they require it. Both of these studies show that blocking

can consume a large proportion of time, in one case up to 60% of the total time re-

quired during a software engineering activity [22].

While this work identifies information-seeking as a core software mainte-

nance concern, our literature review suggests that limited research has been carried

out to develop a holistic Information-Seeking Model (ISM) for software maintenance

activities. In the absence of such a model, there exists no encompassing framework to

provide guidance for a more complete research program in this area.

To address this concern, O’Brien and Buckley [25] proposed an ISM for

programmers involved in software maintenance. They provided empirical support for

their model in the form of talk-aloud data produced by 2 professional programmers

involved in real-world software maintenance tasks. However, this support can only be

considered provisional as, only two maintenance sessions were assessed and only

selected quotations were taken from the talk-aloud transcripts of the programmers.

This paper reports on a quasi-experiment, carried out to further evaluate and

refine this ISM. Thus it embodies Basili’s assertion that knowledge should be evolved

through ‘modelling, experimenting, learning and remodelling’ [2]. The study reported

on here captured talk-aloud data generated by 2 professional programmers, as they

maintained a large-scale, proprietary software system in vivo [2]. However, in contrast

to O’Brien and Buckley’s initial study, all the talk-aloud data generated during this

study is classified and reported on. Consequently, the results presented here more fully

illustrate the degree to which the ISM is reflected in talk-aloud data.

This paper starts by describing the ISM proposed by O’Brien and Buckley

[25]. Section 3 moves on to characterize the work scenarios within which the empiri-

cal work was performed and discusses the data-collection protocol employed. Section

4 details the data analysis performed and section 5 describes the alignment of this

analysed data with the ISM discussed in Section 2. Section 6 then moves on to discuss

refinements suggested to the ISM by the results with section 7 detailing some threats

to the validity of our empirical study.

2 An ISM For Programmers

ISMs have been proposed for several domains, including science, psychiatry and in-

dustrial engineering [3], [7], [9], [16], [17], [18], [19], [21], [23], [38], [39]. These

models break the information-seeking process into a set of phases and stages, through

which the information seeker must progress in order to address a perceived need [20].

While some of these models focus on specific stages of the information-seeking proc-

ess [9], [10], and others generalize over stages expanded on by others [18], [19], [38],

[39], 2 core phases and 5 constituent stages can be identified [25]. The first phase is

the Problem Oriented phase. This is when the information seeker becomes aware of

the problem and is concerned with refining his or her understanding of that problem. It

consists of 2 stages:

1. Awareness of Problem: Typically, people seek information in order to solve

some perceived problem. This stage refers to when the information seeker

first becomes aware of and forms an initial understanding of the problem;

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 169 www.ppig.org

2. Focus Formulation: The information seeker will attempt to define and under-

stand the problem more fully, thus formulating specific queries to be ad-

dressed in subsequent stages.

The second phase arises when the information seeker moves to address the problem,

and this is called the Solution Oriented phase. It consists of 3 stages:

3. Information Collection: This is the stage where the information seeker identi-

fies, browses and extracts information from various representations, in order

to solve the problem and address the queries identified in the first 2 stages.

Ellis [9] proposes that this stage consists of 3 sub-stages:

o Identify Source and Chain: This sub-stage refers to the obtaining of

information sources. Here the information seeker identifies sources

of information, obtains these sources of information and uses these

sources of information to ‘chain’ (identify) other possible sources of

information.

o Browse and Differentiate: Here the information seeker studies the

individual sources of information and identifies seemingly relevant

knowledge for extraction.

o Extract: Here the information seeker extracts information from the

information sources.

4. Examine Results: When relevant information has been successfully extracted,

the information seeker will assess it in terms of its usefulness towards the ini-

tial problem;

5. Problem Solution: The information-seeking process is complete when the

seeker’s information requirements are sated - that is when the problem has

been solved.

These phases, stages, and sub-stages, are the basis for the ISM proposed for software

maintainers by O’Brien and Buckley (see Figure 1). This model allows the informa-

tion seeker to reflect and retreat to any preceding stage in the model in accordance

with Wilson’s observations on the non-monotonic nature of information-seeking [38],

[39], while also allowing progression through the stages linearly.

3 The Empirical Study

These studies were undertaken in the Management Information Systems Department

of a National Health Authority. In addition to its other activities, this department

maintains a ‘Health in the Community’ Management Information System (MIS) that

was initiated over 20 years ago. The system was approximately 1.4 million Lines Of

Code (LOC) in size and was considered by management in the Health Authority to be

‘fairly stable’. It was written almost entirely in MUMPs, and runs on VAX Alphas.

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 170 www.ppig.org

Reflect/Progress

END

1: Aw areness of
Problem

2: Focus Formulation

Identify Source

and Chain

Browse &

Differentiate

Extract

3: Information

Collection

4: Examine Results

5: Problem

Solution

PROBLEM ORIENTED

SOLUTION ORIENTED

Fig. 1. Preliminary Model of Programmers’ Information-Seeking Behavior [25]

As part of their on-going maintenance of the system, managers assign main-

tenance tasks to programmers periodically. This paper describes the information seek-

ing behavior of two of these programmers whilst performing the maintenance tasks

assigned to them by their managers. Hence both tasks reported on here were highly

representative of their normal maintenance activities.

3.1 Participants

The first participant was a professional programmer (P1) who had been employed by

the Health Authority for the preceding seven years. For 3.5 of those years he was a

payroll officer, becoming a programmer-analyst 3.5 years ago (his current position).

He rated his knowledge of the programming language used (MUMPs) as 3.5/5 (where

1 is novice and 5 is expert). He stated that, while he had worked on the larger, ‘Health

in the Community’ system, he was unfamiliar with the sub-system that he would be

working on for this maintenance task.

This programmer was trying to extract data from one of the system’s tables,

and generate a flat file, that could be used to ‘synchronize’ the MIS system with that

of an external agency. Specifically, his task was to create a batch program that would

detect daily changes on an audit file, and copy the records that had been altered out to

a flat file format. He started the task 2 days before the study took place and he esti-

mated that the task would take him 3-4 days in total.

The second participant was again a professional programmer (P2), employed

by the Health Authority. He had worked as a programmer-analyst in the Authority for

the last 4 years and self-rated his ability in MUMPs as 4/5. He stated that he was

working with the relevant system in an ‘on-going’ basis over the last 4 years. He esti-

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 171 www.ppig.org

mated that his maintenance task would take him 4-5 days (including testing) and stated

that he was on his third day.

The second participant’s session shared many common features with the first.

The system was the same and the task was highly related. Here the programmer’s task

was to ensure that the necessary audit files, to prompt extraction of clients’ records to

the flat file format, were generated when changes were made to clients’ details.

3.2 Protocol

In an initial meeting with the programmers in the Management Information System’s

Department, the authors requested volunteers to participate in empirical studies of

‘software maintenance’. The programmers were told that the aim of this study was to

test an academic model of software-maintenance behavior for validity, but they were

not given any details as to the nature of this model. Two programmers expressed their

willingness to participate in such a study and their managers agreed.

Subsequently, an appointment was made to visit the Management Information

System Department, after the 2 volunteer programmers had been assigned mainte-

nance tasks. On arrival, the experimenter asked the programmers to fill in a short

questionnaire on their previous experience, the system they were maintaining and the

maintenance task they were about to perform. Then the programmers were given a

small voice recorder and were shown how it functioned. They were asked to talk-

aloud, stating everything that came into their mind as they progressed through their

maintenance task. These guidelines are in line with the guidelines suggested by Erics-

son and Simon [12] for capturing valid talk-aloud data: concurrent data capture, cap-

turing mental state (rather than attempting to capture mental processes) and telling the

participant to report on everything that enters their mind. Ericcson and Simon also

suggest prompting the participants when they fall silent but, we chose the less invasive

protocol of leaving the participant in their working environment without an observer.

When the programmers were ready, the voice recorder was set to ‘Record’,

and placed on their person. The experimenter left the office, the programmer started

their task and their talk-aloud data was captured, for later transcription. Roughly 2

hours later, the experimenter returned and, when the programmer next stopped or

paused, the recording was halted. Finally the programmers were asked to provide a

written summary of the maintenance task they had just performed on a post-study

questionnaire. The programmers were each given €100 each for their participation.

4 Results and Data Analysis

Later, the talk-aloud data from both studies was transcribed, generating 43 pages of

transcript. The first author carried out a detailed analysis of this data, naming and

categorizing each statement or utterance made by the programmers. In grounded

theory analysis [35], this procedure is called ‘open coding’ and is carried out without

the aid of a coding manual, the coder effectively creating the categories from scratch.

Accordingly, this coder immersed himself in the transcript data, seeking to gain as

many insights as possible into the information-seeking behavior of the programmers,

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 172 www.ppig.org

and began to create categories based on the contents of portions of the transcripts

being examined. This analysis was performed iteratively, initially on several small

sections of the transcripts. Over time, a number of stable categories began to emerge

with respect to these sections. Those categories were then applied to other sections of

the transcripts and refined by means of merging and renaming categories. Finally, as

the set of categories proved increasingly resistant to change, even when applied to

new sections of the talk-aloud transcript, a final set of 10 categories was established.

In grounded theory terminology, these categories would be termed: ‘satu-

rated’. Saturation is said to occur when a particular concept or code has so much

supporting data associated with it that no significant changes to it can reasonably be

expected, and additional data can no longer contribute to discovering anything new

about it [35]. This determination requires judgment by the researcher, who is said to

be creating a theory from the data. The 10 categories discovered thus are as follows:

• Task Statement: An utterance where the programmers stated the global task

or sub-tasks they needed to perform. (P2) …’so I need to find out what its ac-

tually doing and where its actually doing this particular update…’

• Mechanical-Facilitation: Utterances showing that the programmer is working

with their electronic environment to facilitate their information searching

during maintenance. These utterances do not suggest actual searching or

maintaining, but rather pre-cursors to searching and maintenance. Examples

include going into a file as in the following quotation: (P2) ‘…just going to

load up <program name>’

• Mechanical-Search: Utterances stating that the programmer is performing a

search. These search-statements can identify the TYPE of representation the

programmer is searching (documents, code, the running system, other pro-

grammers), the LARGE-grained item-instance within each type that the pro-

grammer is looking for (the program name, the document name, the pro-

grammer) or the occurrence of some SMALL-grained items within a large-

grained item instance. (P2)’…this particular <data file> has to be updated on

the system… so search for that…’ (LARGE Mechanical Search)

• Found: A statement showing that something has been found, or that some-

thing (which was expected) has not been found. (P2) ‘…to search for that,

ah… I’ve found that particular section of code now…’

• Doing: Utterances stating that a maintenance change will be done, is being

done, has been done or will not be done. (P2) ‘.am going to insert a trigger in

here, to update the <audit file>…’

• Explanation: An utterance showing the programmer’s knowledge of the sys-

tem. (P2) ‘when a client is given a new card number… for the first time… the

card number is kept on the <main client index>…’

• Disruptive-Shifts-in-Focus: These are utterances that reflected the frequent

interruptions suffered by programmers during their work: (P2) ‘the last sec-

tion of code seems to deal with… em… (telephone)… Hello, <programmer>

here how are you doing… she’s looking at it now is she?…’

• Bucket: These are utterances that do not neatly fit into any of the above cate-

gories. (P1). ‘…Its recording now its started…OK…’

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 173 www.ppig.org

Table 1 shows the number of utterances made by each programmer in each category,

during their maintenance sessions.

Table 1. Quantifying the amount of utterances in programmer’s talk-aloud data by inspection

category

Category P1 P2 Total
Task Statement 11 4 15

Mechanical Facilitation 42 84 126

Mechanical Search (Type) 23 5 28

Mechanical Search (Large) 35 34 69

Mechanical Search (Small) 76 121 197

Found 58 149 207

Doing 142 78 220

Explanation 59 87 146

Disruptive Shifts in Focus 5 13 18

Bucket 32 8 40

5 Results Interpretation

Relating the grounded categories presented in section 4 and the ISM described in

section 3 a number of relationships become apparent:

• Task Statement utterances, where the programmer states the global task or

sub-tasks they face, reflect the ‘Problem Oriented’ phase. That is, they reflect

either the programmer’s initial awareness of the problem or their focusing on

that problem. Using an expanded version of the Task Statement example pre-

sented in Section 4.1, we can see both of these sub-stages: (P2) ‘it doesn’t

seem to be updating <the client index>… but it needs to somewhere

(AWARENESS)… so I need to find out what its actually doing (FOCUS

FORMATION) and where its actually doing this (FOCUS

FORMATION)…’

• Mechanical Search utterances referring to searching as they do, relate di-

rectly to the ‘Information Collection’ stage in the model, where the informa-

tion seeker identifies information sources, browses through them and extracts

information from them. In terms of the sub-stages associated with the ‘Infor-

mation Collection’ stage:

o ‘Mechanical Search TYPE’ utterances, where the programmer

comments on the type of information source they are going to use in

their search, would seem to reflect the ‘Identify Source and Chain’

sub-stage: (P1) ‘I’m going to save out this program… because I

need to confer with a programmer (IDENTIFY SOURCE)… to see

if I’m going along the right way…’

o ‘Mechanical Search LARGE’ utterances, where the programmer is

searching for specific large-grained objects like a specified program

or document, also seem to reflect the ‘Identify Source and Chain’

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 174 www.ppig.org

sub-stage: (P2) ‘… OK, the next program I think we need to look

at… is… <program name> (IDENTIFY SOURCE)’

o ‘Mechanical Search SMALL’ utterances where the programmer is

going through the contents of a large scale object and searching for

small grained objects, would seem to reflect the ‘Browse and Dif-

ferentiate’ sub-stage of the ISM: (P2) ‘Just scrolling

down…searching again…and (have found the update line)’

(BROWSE AND DIFFERENTIATE).

From the data however, the difference between ‘Mechanical Search LARGE and Me-

chanical Search SMALL was sometimes unclear. Consider when a programmer is

browsing through the output of a utility that lists all the programs that access a certain

data table (as one did, in order to identify programs relevant to his task). In this in-

stance the programmer is identifying LARGE grained objects (sources) by browsing

and differentiating: (P2) ‘I’m going to the search utility… and searching for the <data

table> (BROWSING)… to make sure that everything is being looked for… this

should bring up any of the programs (IDENTIFY SOURCE) we inserted the trigger

in…’. In this instance an ‘Identify Source’ activity is carried out through ‘Browsing

and Differentiating’ the output of a system utility. As both interpretations were equally

valid, a decision was made to code all ‘MS LARGE’ utterances as reflecting the ‘Iden-

tify Source and Chain’ sub-stage.

• Found statements in the transcripts refer to when the programmer finds in-

formation. Thus, they relate directly to the ‘Extract’ stage of the ISM, where

the information-seeker takes information from an information source. (P2)

‘…OK, I found that point in the program (EXTRACT)…’

• A number of ‘Doing’ utterances made by programmers, where the program-

mers discuss what they propose to change in the system, seem related to the

‘Examine Results’ stage in the ISM. More specifically, if the Doing state-

ments are based on information previously found by a programmer, then they

can be regarded as a result of the programmer examining the information

found. Thus they are reflective of an ‘Examine Results’ process. Such utter-

ances can be illustrated using an extended version of the example given

above: (P2) ‘…OK, I found that point in the program (EXTRACT)…and I’m

now going to insert a trigger underneath it (EXAMINE RESULTS)…’

A refined analysis of the Doing statements was performed, identifying those that were,

in part, based on the programmers’ previous findings. For P1, 95 out of 142 Doing

utterances were found to be finding based and thus reflective of examining the results.

For P2, 63 out of 78 Doing utterances were finding based.

Given this correspondence between the observed categories and the stages of

the ISM, Table 2 presents the number of utterances observed for each stage in the

ISM. It also reports the percentage of total utterances made by each programmer for

each stage. The remaining categories: Mechanical-Facilitation, Explanation, Disrup-

tive-Shifts-In-Focus and Bucket, would not initially seem to be related to any category

in the existing ISM but this will be commented on further in Section 6.

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 175 www.ppig.org

Table 2. Quantifying the amount of utterances in programmers’ talk-aloud data by ISM stage

Category P1 P1 % P2 P2 % Total
Awareness of Problem 3 0.62 1 0.02 4

Focus Formation 8 1.66 3 0.51 11

Identify Source and Chain 58 12.01 39 6.69 97

Browse and Differentiate 76 15.74 121 20.75 198

Extract 58 12.01 149 25.56 207

Examine Results 95 19.67 63 10.81 158

Problem Solution 0 0 0 0 0

6 Evaluation of the ISM

In this section, the results are discussed with respect to the ISM presented in section 2.

Firstly section 6.1 discusses the correctness of the ISM in the light of the data ob-

tained here. Section 6.2 then compares the information-seeking behavior of the 2

programmers and attempts to explain these differences based on the programmers’

tasks and their past experience.

6.1 Evaluating the ISM

In this section the results from the study are used, to comment on various attributes of

the ISM. These attributes include:

• Bloating: Does the data suggest there are unnecessary phases and stages in

the model?

• Completeness: Does the data suggest any extra stages or transitions between

stages, for inclusion within the model?

• Fit: Does the data suggest the replacement of any phases or stages within the

model?

• Iteration: Does the data re-enforce the assertion that the model should be

non-linear?

6.1.1 Bloating in the ISM

No ‘Problem Solution’ and few ‘Problem Oriented’ utterances were made during the

maintenance sessions. However, on reflection, this is hardly surprising given that both

sessions were small segments of bigger maintenance tasks. So, for example, neither

programmer finished their task and thus, neither programmer generated utterances that

could be placed in the ‘Problem Solution’ stage. Likewise, both programmers were 2-

3 days into their maintenance task and focusing on the primary task seemed to be

unnecessary at that stage. In fact, only one utterance, made by P1 at the start of his

session, referred to the global task: (P1) ‘The job that I am required to do is write a

program that will extract the data from the <client index>… this extracts on the basis

of <an audit table>... In other words if you corrected something on the system that the

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 176 www.ppig.org

job that I will be doing will extract <updates> done’. Most of the Problem Oriented

utterances that we found reflected the sub-tasks that the programmers were trying to

achieve instead: (P2) ‘…and just now we are going to have a quick look at… to see if

we need to insert the trigger on the <named sub-system>…’

6.1.2 Completeness of the ISM

The preliminary ISM does not entirely encompass the software maintenance process.

Indeed, this is to be expected: software maintenance, by definition, involves changing

the software system. At first glance, such changes would seem to be beyond the scope

of the ISM.

Previously we incorporated many of the Doing utterances in the model by

stating that they reflected the examination of results. However, it could also be argued

that such changes should be part of the ISM in their own right. In this reading, pro-

grammers interpret the results of their information collection and change the system

Thus they create a new representation for subsequent study, feeding back into the

information-seeking cycle. The execution of updated code, for example, gives a be-

havioral representation of the system that was employed by the programmers: (P2) ‘

…what I need to test is that the program takes that it has been updated… that they all

will put people on the <audit file>… so the best way to test this is to go in and change

people’s details for the programs that were updated…’ Alternatively, the updated code

itself could be the basis for a review by another programmer, allowing directional

information to be obtained: (P1) ‘… to see if I’m going along this the right way, so

I’m just going to print out the program and just ask <other programmer>’

While this type of behavior was not prevalent in the maintenance sessions, it

did exist and it is likely that, as the programmers moved towards completion of their

tasks, the behavior would increase. These observations argue for the inclusion of an

‘Information Prompted Action’ stage in the ISM that feeds back into further informa-

tion-seeking activities.

The data from this study also suggests that the model should accommodate

interruptions. On average, there were 9 disruptive interruptions for each programmer

during their 2-hour sessions. In one programmer’s session alone, there were 13 such

episodes, over the 2 hours. These ranged in duration from a couple of seconds (‘I do

(want)…coffee, yeah’) to the more disruptive interrupts of lunch and requests for

assistance on other systems: (P1) ‘Chinese takeaway… that would be really

good……’, (P2) ‘date of birth, sex, title…<programmer> just wants to ask me a ques-

tion, so hold on…’

Disruptive interruptions have been seldom studied in this area. Most of the

software comprehension studies performed to date have been tightly controlled ex-

periments where disruptions were not allowed [36], [24], [6]. In contrast, this study

suggests that disruptions, and indeed frequent disruptions, are part of every-day life

for programmers involved in maintaining software systems. These disruptions were

sometimes long (one lasted for over 10 minutes in our study) and often made the pro-

grammer spend time re-focusing on their current state-of-play, when they returned to

their maintenance task. These findings, related to the ‘blocking’ work referred to ear-

lier [4], [22] suggest that this would be a worthwhile area of focus for further research.

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 177 www.ppig.org

6.1.3 Fitting the Data to the ISM

As discussed in Section 5, it can be difficult to discriminate between ‘Identify Source

and Chain’ episodes and ‘Browse and Differentiate’ episodes in the data: (P1) ‘the

first (table) I see is the <client index>… this holds a volume of data, the <ID number>

… the surnames, forenames, date of birth (BROWSE)……ah the <health support

table> (EXTRACT) is another <table> that I need to look at… (DIFFERENTIATE or

CHAIN SOURCE) and this holds…’

Ellis’s sub-stages seem to be appropriate for industrial engineers and scien-

tists (Ellis’s original domain), who use journals and white papers. Here the ‘Sourcing

and Chaining’ stage can be explicitly related to identifying journal articles and cross-

referencing them. ‘Browsing and Differentiating’ can be related to reviewing the ab-

stracts of selected articles, looking at content pages and selecting pieces to focus in

on.

However, Marchionini’s [23] model would seem to be more relevant for pro-

grammer involved in software maintenance. Marchionini’s model expressly deals with

electronic environments, the predominant working environment of maintenance pro-

grammers. In this model, the ‘Solution Oriented’ stages involve identifying a search

system, formulating a query for that search system, executing the search and examin-

ing the results. There are many instances indicative of this in the study, where the

programmers explicitly followed many, or all, of these steps. For example: (P1)

‘…just confirming that this one such program has (does not exist) <name of program>

(FORMULATING QUERY)… and its saying to me, I’m loading it up (EXECUTING

SEARCH)… and it came back to me no such program (EXTRACT). So what I’m

going to do … <is create that program>’ (EXAMINING RESULTS). Here the pro-

grammer implicitly identifies a ‘directory-type’ utility as a search system, formulates

his ‘program-name’ search, executes the search and examines his results. Another

example can be seen in section 6.1.5 (starting ‘ I know there is a download…’)

Another advantage of using this model is that it allows incorporation of many

of the Mechanical Facilitation utterances made by programmers, (as these often indi-

cate that programmers are trying to ‘identify a search system’).

In Marchionini’s model, ‘examining the results’ is equivalent to the ‘extract’

stage in Ellis’s model. We propose keeping Ellis’s ‘Extract’ terminology, so that the

stage: ‘Examine Results’ can be used to represent the interpretation of extracted in-

formation. The ease of modeling programmer behavior with this hybrid model argues

for the adoption of these sub-stages in the ‘Solution Oriented’ stage.

6.1.4 The Iterative Nature of the ISM

One of the innovative aspects of the ISM proposed by O’Brien and Buckley is that

information seeking is recognized to be non-monotonic. That is, it allows information

seekers to retreat back to earlier stages in the model if required [25]. The extension of

existing ISMs in this way is supported by the talk-aloud data captured here. While

many of the utterances reflected a sequential process through the stages, there were a

number of occasions when the programmer skipped a stage or where they retreated

back to an earlier stage: (P1) ‘…so <Program> is a routine that inputs the details and

it kills a format file, creating a file called <program name.txt>(EXTRACT)… and

that’s exactly what we need to do… (EXAMINE RESULTS) but different information

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 178 www.ppig.org

we require (FOCUS FORMATION)… so I’m looking at this program (BROWSE

AND DIFFERENCIATE)…’

R e f l e c t / P r o g r e s s / I n t e r r u p t

E N D

A w a r e n e s s o f
P r o b l e m

F o c u s F o r m u l a t i o n

C h o o s e s e a r c h
s y s t e m

F o r m u l a t e q u e r y

E x e c u t e s e a r c h

I n f o r m a t i o n
C o l l e c t i o n

E x a m i n e R e s u l t s

P r o b l e m S o l u t i o n

P R O B L E M O R I E N T E D

S O L U T I O N O R I E N T E D

I n f o r m a t i o n P r o m p t e d
A c t i o n

E x t r a c t

E x t e r n a l R e p r e s e n t a t i o n s
a n d K n o w l e d g e

Fig. 2. Refined Model of Programmers’ Information-Seeking Behavior

6.1.5 Knowledge-Based Information Seeking

The model, as it stands, doesn’t explicitly allow for programmers to obtain infor-

mation from recall, a prevalent feature of all software comprehension models [5],

[13], [37], [26]. There were many episodes in the talk-aloud data where the pro-

grammers demonstrated knowledge (146 ‘Explanation’ utterances were found) that

allowed them localize potential changes in the system. 2 examples from the talk-aloud

data are: (P1) ‘I know there is a download…there is… a…system programming on the

same principles as what we are trying to achieve…so I…do a search (using a system

utility that allows programmers to see each file and their function) within the system

and… at the moment I have come up with the name of a program <program name>’.

(P1) ‘I’m going to ask <programmer> do I need that .. (I know) he is good at that’. In

accordance with this insight we argue that the ISM should explicitly represent internal

as well as external representations as a basis for the information seeking process.

These and the changes suggested above are summarized in our revised version of the

ISM contained in Figure 2.

7 Threats to Validity

There are a number of threats to validity in this study, the primary one being the lim-

ited number of maintenance sessions used to obtain the results. However, given that

these 2 sessions resulted in 43 pages of transcribed talk-aloud data, it would have been

infeasible to perform a larger study and still undertake the detailed analysis of data

appropriate at this stage of the models’ evolution. It is envisaged that, as the model

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 179 www.ppig.org

grows in maturity, this pilot-type study will give rise to more controlled, larger studies

with a tighter coding technique.

The second threat to validity was due to the utilization of the talk-aloud tech-

nique. Even though talk-aloud data provides the ‘richest source of a subject’s mental

state’ [27] and in this case was gathered in line with best practice for capturing valid

data [12], we did not prompt the participants when they fell silent, as suggested by

Ericsson and Simon. While this lessened the invasiveness of the protocol, it is possible

that we missed out on certain types of episodes that could have impacted on the

model. Also, despite our best efforts, the participants were continually made aware of

their participation in the study by the presence of the voice recorder.

An alternative data-capture technique was to video-tape the programmers’

sessions. However, for confidentiality reasons the company was unwilling to allow

this. In addition, the presence of a video camera, while possibly enriching the data

stream by capturing programmers’ expressions, programmers’ actions and the source

code, would increase the programmer’s awareness of their participation [40], thus

again reducing the ecological validity of the study.

When participants know they are being studied, there behavior may become

altered, an effect known as the Hawthorne effect [1]. Another potential threat to valid-

ity in this study was that programmers, aware of their participation, may attempt to

please the experimenter during the study [28], an effect referred to as the ‘placebo

effect’ [40]. Typically this behavior is instigated by some (possibly subliminal) ges-

ture or utterance by the experimenter. However, in this study the possibility of this

was reduced, as the experimenter left the room for the sessions.

 Ideally, we should have studied complete maintenance tasks rather than

studying a 2-hour timeslot. Given our current modus operandi, it is entirely possible

that certain types of information seeking episodes, specific to starting the task or wind-

ing up the task, were missed in our data capture. However, getting access to real main-

tainers, maintaining real software systems over a long period of time is difficult and

our current industrial partners favor shorter exposure time for their programmers.

A final threat to validity was the coding process used in this study. It relies on

one person’s analysis of the transcripts and thus, reliability cannot be assessed. This

coder was also aware of the hypothesized model and this may have impacted on his

interpretation of the data. Without safeguarding reliability in the coding, [34] warns: It

is the nature of a hypothesis when once a man is conceived it, it assimilates everything

to itself as proper nourishment and, from the first moment of your begetting it, it gen-

erally grows the stronger by everything you see, hear, read or understand’. In future

studies, 2 researchers will code samples from the transcripts, based on a coding man-

ual for the categories of the ISM. This dual coding will occur at the start and end of

the analysis. The kappa [15] from these dual-coded samples will allow assessment of

reliability and drift in the coding process.

8 Conclusion

This paper proposed a number of changes to the ISM of O’Brien and Buckley [25],

based on complete analysis of talk-aloud data generated in a small quasi experiment.

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 180 www.ppig.org

The findings, by in large validate the original ISM. Specifically the findings suggest

that there is little bloating in the model and that its iterative nature mirrors actual prac-

tice. However, the results do suggest that the model lacks completeness, arguing for

the explicit inclusion of an ‘Information Prompted Action’ stage, interruptions and

programmer knowledge. In addition, the data suggests that the information collection

stage be modeled in line with Marchionini’s ISM to more accurately portray the be-

havior of programmers involved in software maintenance.

Future work will be directed at collecting more rigorous empirical data to

evaluate and refine the model. Initially this will involve the analysis of talk-aloud data

that we have already gathered from other industrial collaborators.

Another issue for future work is that of task-granularity, an issue that has im-

plicitly appeared several times in the data presented in this paper. As information was

extracted by programmers, other information seeking tasks often emerged (see Section

6.1.4 for an example) resulting in the emergence of new sub-tasks, new super-tasks, or

just related tasks. This mirrors Wilson’s model of Information Seeking, where ad-

vances in knowledge as information-seeking processed, prompt new goals and new

iterations through the information-seeking process. It is an area of future research to

establish the relationship between these tasks and between these tasks and the ISM.

References

1. Adair G. “The Hawethorne Effect: A Reconsideration of the Methodological Artifact”. Jour-

nal of Applied Psychology. Vol 69. No 2. 1984. pp 334-345.

2. Basili v.. “The Role of Experimentation in Software Engineering: Past, Present, and Future”.

Keynote address: International Conference on Software Engineering 1996

3. Bowden, C., Bowden V., “Survey of Information Sources Used by Psychiatrists” Bulletin of

the Medical Library Association, Vol. 59, 1971, pp 603-608

4. Bradac MG, Perry DE, Votta LG. “Prototyping a Process Monitoring Experiment”, IEEE

Transactions on Software Engineering, 1994 Vol 20 no 12. pp 774-784.

5. Brooks R., “Towards a Theory of the Comprehension of Computer Programs”. International

Journal of Man-Machine Studies, Vol. 18, 1983, pp. 543-554

6. Burkhardt J.M., Detienne F., Wiedenbeck S., “Object Oriented Program Comprehension:

Effects of Expertise, Task and Phase”. E. S. E. Vol. 7. No. 2. pp 115-156.

7. Chen, C., “How Do Scientists Meet Their Information Needs”, Special Libraries, No. 65,

1974, pp 272-28

8. Curtis, Bill, Herb Krasner, and Neil Iscoe. “A field study of the software design process for

large systems.” Communications of the ACM, Vol. 31, no 11. 1268-1287, November 1988.

9. Ellis, D., Haugan, M., “Modeling the Information Seeking Patterns of Engineers & Research

Scientists in an Industrial Environment”, J. of Documentation, Vol. 53, No. 4, pp 384-403

10. Ellis, D., “A Behavioural Approach to Information Retrieval Design”, J. of Documentation,

Vol. 46, No. 3, 1989, pp 318-338

11. Ellis, D., Cox, D., Hall, K., “A Comparison of the Information Seeking Patterns of Re-

searchers in the Physical & Social Sciences”, J. of Documentation, Vol. 49, No. 4, pp 356-369

12. Ericsson K.A. and Simon H.A.. "Protocol Analysis, Verbal Reports as Data". MIT Press.

13. Good J., “Programming Paradigms, Information Types and Graphical Representations:

Empirical Investigations of Novice Program Comprehension”. Ph.D. Thesis, 1999

14. Harrison W.. "N=1 Editorial". E. S. E. Vol 2. no. 1. 1997 pp 7-10.

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 181 www.ppig.org

15. Hartmann D.P. (1977). "Considerations in the choice of interobserver reliability estimates."

Journal of Applied Behaviour Analysis. Vol: 10. pp 103-116.

16. King, D., McDonald, D., Roderer, N., “The Journal System of Scientific and Technical

Communication in the United States”, King Research, 1978

17. Kingrey, KP, “Concepts of Information Seeking and Their Presence in the Practical Library

Literature”, Library Philosophy & Practice, Vol. 4, No. 2, 2002

18. Kuhlthau, C., "Developing a Model of the Library Search Process: Investigation of Cogni-

tive and Affective Aspects", Reference Quarterly, Vol. 28, No. 2, 1988, pp 232-242

19. Kuhlthau, C., “Seeking Meaning: A Process Approach to Library and Information Ser-

vices”, New York: Greenwood Publishing, 1993

20. Large, A., Tedd, L., Hartley, R., “Information Seeking in the On-Line Age: Principles &

Practice”, Bowker-Saur, UK, 1999, ISBN 1-85739-260-4

21. Line, M., “Investigation into Information Requirements of the Social Sciences”, Research

Report No. 1, Bath University of Technology, 1971

22. Liu WQ, Chen CL, Lakshminarayanan V, Perry DE “A Design for Evidence-based Soft-

ware Architecture Research”, http://www.cs.toronto.edu/

23. Marchionini, G., “Information Seeking in Electronic Environments”, Cambridge, England:

Cambridge University Press, 1995

24. O’Brien, M. P., Buckley, J., “Inference-based and Expectation-based Processing in Pro-

gram Comprehension”, Proceedings of the 9th IWPC, Toronto, Canada, 2001

25. O’Brien, M. P., Buckley, J., “Modeling the Information-Seeking Behavior of Programmers

– An Empirical Approach”, Proceedings of the 13th IWPC St. Louis, Missouri. 2005

26. O’Brien M.P., Buckley J. Shaft, T., “Expectation-based, Inference-based, and Bottom-up

Software Comprehension”, IJSME: Research & Practice, Vol. 16, 2005, pp 427-447

27. Russo, J., Johnson, E., Stephens, D., (1989), “The Validity of Verbal Protocols”, Memory

& Cognition, Vol. 17.

28. Rosenthal R.. “Experimenter Effects in Behavioral Research”. New York, NY, Appelton

Century Crofts 1996

29. Seaman, C., “The Information Gathering Strategies of Software Maintainers”, ICSM, 2002

30. Singer, J., Lethbridge, T., Vinson, N., Anquetil, N., “An Examination of Software Engi-

neering Work Practices”, Proceedings of the 1997 Conference of the Centre for Advanced

Studies on Collaborative research, Toronto, Canada, 1996

31. Singer, J., "Work Practices of Software Maintenance Engineers", Proceedings of the ICSM,

Washington, Federal District of Columbia, USA, 1998, pp 139-145

32. Sim, S. E., “Supporting Multiple Program Comprehension Strategies During Software

Maintenance”, Masters Thesis, Department of Computer Science, University of Toronto, 1998

33. Sousa, Maria João Castro, and Helena Mendes Moreira. “A Survey on the Software Main-

tenance Process.” Proceedings of the International Conference on Software Maintenance, Be-

thesda, MD, November 1998, pp. 265-274.

34. Sterne L., “Tristam Shandy”. 1761.

35. Strauss, A, Corbin, J. Basics of Qualitative Research: Grounded Theory Procedures and

Techniques. Beverly Hills, CA: Sage Publications, 1990

36. Von Mayrhauser A., Vans A.M., “Program Understanding: Models and Experiments”.

Advances in Computers. 1995; Vol. 40, No. 4, 1995 pp: 25-46

37. Von Mayrhauser A., Vans A.M., Howe A.E., “Program Understanding Behavior during

Enhancement of Large Scale Software”. IJSME: Research and Practice. Vol. 9, pp: 299-327

38. Wilson, T. D., “Information Behaviour: An Interdisciplinary Perspective, A Report to the

British Library Research & Innovation Centre on a Review of the Literature”, 1996

39. Wilson, T. D., “Models of Information Behavior Research”, Journal of Documentation,

Vol. 55, No. 3, (1999), pp 249-270

40. Xu S. Rajlich V., Dialog-Based Protocol: An Empirical Research Method for Cognitive

Activities in Software Engineering

Buckley, O’Brien and Power

PPIG 2006 University of Sussex 182 www.ppig.org

