In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 18 Pages 38 - 52

An Experiment on the Effects of Program Code
Highlighting on Visual Search for Local Patterns

Tuomas Hakala, Pekka Nykyri, and Jorma Sajaniemi

University of Joensuu, Department of Computer Science,
P.O.Box 111, 80101 Joensuu, Finland,
{thakala|pnykyri|saja}@cs.joensuu.fi

Abstract. Many current program editors use syntax highlighting but
effects of various coloring schemes are not known. This paper presents
the results of an experiment where three coloring schemes were used
by intermediate programmers in visual search tasks for local patterns
in Java programs. Differences between the coloring schemes were small
and not statistically significant. Especially, in contrast to intuition, the
control scheme, black text on white background, resulted in the same
overall search performance as the other coloring schemes. Differences be-
tween search target types were statistically significant and each coloring
scheme turned out to be best for some target type but the interaction
was statistically only almost significant.

1 Introduction

A program editor is an important tool in many programming tasks. It is not only
used for writing a program but also in program comprehension, in debugging etc.
Even the process of writing a program includes episodes of program comprehen-
sion and recall of details written earlier [1]. These tasks can be enhanced with
various visualization techniques, e.g., coloring automatically different parts of
the program, popping up dynamically explanations of constructs as the user
moves the mouse over a construct etc.

It seems obvious that different tasks benefit from different techniques. Con-
sider, for example, the use of some special color for reserved words. In writing a
program, it gives immediate feedback for misspelled words as the programmer
unconsciously monitors the word to see if it changes its color when finished. On
the other hand, when trying to comprehend a program, individual keywords do
not correspond to meaningful structures and their coloring may thus be of du-
bious value. Thus any study of the effects of program code visualization must
clearly state the specific programming tasks that the study intends to cover.

Many current editors use syntax highlighting at the level of lexical tokens,
i.e., keywords are highlighted with one color, literals in another color, variables
in a third color etc. Coloring can also be based on larger syntactical constructs,
for example by giving some color to all declarations, another to all loops etc [2].
A coloring scheme can be based on non-syntactic constructs also, for example
on the plan structure of the program [3].

18th Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006 Www.ppig.org

Hakala, Nykyri and Sajaniemi

From a cognitive point of view, the coloring of programming plans [4] seems to
be closest to programmers’ mental representations of programs. Indeed, Gilmore
and Green [3] found that highlighting plans helped Pascal programmers to detect
plan bugs, e.g, omitted update or failure to check for valid input. However, no
improvement was found in other bug types nor among Basic programmers. Cur-
rent syntax highlighting schemes are much harder to justify with programmers’
cognitive structures. These schemes highlight similarity of low-level syntactical
items which has never been found to be a central part of experts’ knowledge
structures. Even at the low programming knowledge level that consists of pro-
gramming language knowledge, expert programmers have been found to group
keywords according to the common structures of the language in question [5]
rather than perceive them as a single unstructured group.

Larger syntactical constructs—declarations, loops, etc—correspond better to
programmers’ cognitive structures but we do not know of any studies of the ef-
fects of highlighting such constructs. Neither do we know of studies of the effects
of low-level lexical token coloring even though this type of syntax highlighting
is common in current editors—presumably because it is relatively easy to im-
plement and corresponds to the intuition of the designers of the editors. In this
paper, we study the effects of these types of program code highlighting with
respect to the task of visually searching for local patterns.

We have selected visual search as the basic task because it occurs as a subtask
in many programming activities like program comprehension and error detection.
The targets are local patterns, i.e., code passages that can be identified by look-
ing at a few consecutive program lines because we wanted to minimize the effects
of individual scan order preferences caused by personal program comprehension
strategies. As a result the tasks represent elementary operations in many pro-
gramming activities that are accomplished with a program editor. There are,
however, programming activities where visual search for local patterns is only
a minor part, e.g., writing new program code that has been designed carefully
before the actual coding. Such tasks are not covered by our study.

The rest of this paper is organized as follows. The next section provides
background with a literature review. Section 3 describes the experiment and
presents its results. Section 4 contains a discussion of the results and, finally,
Section 5 contains the conclusion.

2 Related Literature

This section contains a review of related literature on visual search and on pro-
posed ways to use color for program code highlighting.

2.1 Visual Search
Visual search has been studied extensively in cognitive psychology (see, e.g., [6]

for a review). Desimone and Duncan [7] present two types of basic phenomenon
in visual attention: limited capacity for processing information, and selectivity.

PPIG 2006 University of Sussex 39 Www.ppig.org

Hakala, Nykyri and Sajaniemi

Limited capacity means that dividing visual attention between two objects re-
sults in poorer performance than focusing attention on one—independently of
the complexity of the properties to be searched for. Moreover, this interference
is largely independent of the spatial separation between the objects.

Selectivity concerns the ability to filter out unwanted information. In easy
cases the target is clearly different from rest of the information and pops out very
quickly. In these cases, the number of nontargets has little effect on the speed or
accuracy. For example, a target with some specific visual characteristic is easy to
find if the nontargets are homogeneous and lack this visual characteristic, e.g.,
a colored target in a multicolor display may show good pop-out if the colors are
highly discriminable. Easy cases are characterized by a bottom-up, or stimulus-
driven, bias.

In hard cases, nontargets are similar to the target and do not filter out
effectively. Targets may have a complex structure and searches are guided by
a top-down, or goal-directed, control. This control is based on an “attentional
template” that forms the short-term description of the target and can specify
any properties of required visual input. However, even in these cases, the ability
to find targets is still dependent on bottom-up stimulus factors, especially the
visual similarity of targets to nontargets.

Finally, Desimone and Duncan [7] point out that search can furthermore
be guided by some cue to the location of the target; or by bias derived from
long-term memory, e.g., novel targets are easier to find than familiar forms, and
targets that have long-term learned importance are hard to ignore even if they
are non-important in the current search.

Itti and Koch [8] note that depending on the context some stimuli can be very
salient. If the stimuli is salient enough, so called singleton, it will involuntarily
attract attention and make a pop-out effect. Thus salience is determined very
fast in a pre-attentive manner across the entire visual field. On the other hand,
top-down search that is based on an attentional template requires voluntary
effort that exceeds the time needed to move the eyes.

Egeth and Yantis [6] review studies that have come to different conclusions
about singletons capturing attention. A possible explanation is that the different
findings originate from two different attentional strategies that people adopt. In
some circumstances, people enter a “singleton detection mode” and in some other
conditions they enter a “feature search mode”. In the singleton detection mode,
attention is directed to the largest local feature contrast, and in the feature
search mode to locations that match some task-defined visual feature. Irrelevant
feature singletons capture attention only in the singleton detection mode.

2.2 Color Highlighting of Programs

Gilmore and Green [3] have studied the effects of indentation and color highlight-
ing on intermediate Pascal and Basic programmers’ bug detection. They used
color to cue plan [4] structure where the plans were an input (with a guard), a
maximum, an average, and a filter. The cues used a different color for each plan
and no more than three plans occurred together. Indentation had a more positive

PPIG 2006 University of Sussex 40 www.ppig.org

Hakala, Nykyri and Sajaniemi

effect on bug detection than plan highlighting, and it improved the detection of
control bugs in both Pascal and Basic programmers. Only Pascal programmers
benefited from the coloring of plan structures, and mostly in the case of plan
bugs. Gilmore and Green conclude that the lack of help for Basic programmers
is due to the less important role of plans in Basic programming.

Highlighting plan information is troublesome for several reasons. First, it is
not known exactly what plans programmers have and plans may even vary from
person to person. This makes automatic detection of plans hard and consequently
their automatic highlighting unattractive. Second, as the program lines corre-
sponding to a single plan are dispersed around the program, the screen becomes
cluttered with lines of different colors heavily intermixed. Third, some parts of
a program may belong to several plans making the design of coloring schemes
hard and the screens even more cluttered. Finally, plan visualizations are new to
programmers and even the concept of a plan is usually new to most programmers
even though their tacit knowledge may contain plans. This makes the use of plan
highlighting problematic in an experimental setting: the participants may just
not understand what the purpose of the highlighting is.

Cigas [2] has suggested a coloring scheme to highlight the structure of Pascal
programs. Structures to be colored are basically consecutive program lines that
will be executed together, i.e., statements with no branches in between, and
declarations. Cigas lists a set of requirements for a coloring scheme. First, each
structure type must have its own color so that the type (loop, conditional, ...)
can be identified by its color as well as by its keyword. Second, nested structures
of the same type (e.g., nested loops) must have different colors so that they can
be distinguished by the color. However, these colors must be similar so that the
type (e.g., loop) can still be identified. Third, a user must be able to tell the
difference between two colors, i.e., the colors must be distinctive.

Cigas suggests a specific coloring scheme that uses different colors for the fol-
lowing structures: the main program (red), procedures and functions (magenta),
declaration sections (cyan), loops (blue), conditionals (green), and comments
(yellow). Nested structures are colored in two ways: if the inner structure is dif-
ferent from the enclosing structure, it will have its own color (as listed above).
On the other hand, if the inner structure is of the same type, then color is shifted
a little to make a distinction. The background color is supposed to be black.

The coloring scheme suggested by Cigas is less cluttered than that of Gilmore
and Green. Moreover, it is easier to understand by programmers because it
is based on well-defined syntactic constructs that every programmer must be
aware of. It is, however, an open question to what extent the fine grained color-
ing scheme does support programmers’ cognitive processes as Cigas presents no
evaluation of the effects of his coloring scheme.

The current standard of highlighting lexical tokens leads to the most cluttered
screens, because each word may be colored differently from the adjoining words.
Different token coloring schemes exist and users may define their own schemes.
The amount of clutter may vary between different coloring schemes as some
schemes use the same “neutral” color for several token types leading to less

PPIG 2006 University of Sussex 41 www.ppig.org

Hakala, Nykyri and Sajaniemi

clutter. We do not know of any scientifically robust analysis of the effects of
various coloring schemes.

3 Experiment

In order to study the effects of various color highlighting techniques we con-
ducted an experiment where participants made visual searches for local patterns
in program code. We selected visual search as the basic task because it occurs
as a subtask in many programming activities like program comprehension and
error detection. The targets were local patterns, i.e., program constructs that
can be identified by looking at a few consecutive lines and thus the tasks rep-
resent elementary operations in many programming activities. There were three
highlighting conditions and three search target types.

3.1 Method

Participants: There were twenty-one participants, all of them students in the
third to fourth year computer science course on software metrics at the University
of Joensuu, Finland. Three of the participants were female and eighteen male.
Participation was a course requirement but the participants got a small reward
in the form of course credits.

Materials: The experimental materials consisted of screen captures of 12
Java program fragments with an associated instruction to search for some specific
local pattern (see Figure 1). The length of the program fragments was 76 lines
and they were taken from an existing software found in the web [9]. The tasks
were presented using 1280%1024 resolution 17 inch TFT displays with font size
of 10 pixels resulting in letters being 3.0 millimeters high on the screen.

There were three types of targets, i.e., three forms of patterns to be searched
for: assignment targets were assignments of some specific form (including a cer-
tain operator or no operator at all); parameter targets were method declarations
or calls with a certain number of parameters; and statement targets were control
structures with some specific condition to look for.

The phrasing of the tasks was carefully designed not to contain any of the
strings belonging to the target of the search. For example, if the target involved
a multiplication operator “*”, the task instruction did not contain this operator
but only its name “multiplication”. Thus a participant had to transform the
verbal task instruction into a visual image as a part of the search. The rationale
for this decision was to obtain a better validity with actual search tasks in
programming where the target of a search is usually a mental pattern rather
than a direct visual pattern. For the same reason, the font used for the task
instruction was different from that of the program fragments.

For each task three versions with a different coloring scheme were made.
The control scheme used black text on white background. In the block scheme
comments were colored blue, and method headings and all declarations in red.
The token scheme (see Figure 1) used standard Java coloring scheme of the vim

PPIG 2006 University of Sussex 42 www.ppig.org

Hakala, Nykyri and Sajaniemi

44 That's it for target buildings.

/7 T000: where do | put the attacker?!?

if { target.getTargetTupe(} == Targetable.TYPEBUILDING 3 {
return;

¥
// Target entities are pushed auay or destroyed.
Coards dest = te.getPosi tion();

Coords L te.getldi), dest, direction);
i CtorgetDest 1= nul)}

dnEnt\tuD\splutamant(te, dest, targethest, nes FilotingRollatalte.getidl), 2, "hit by death from above'))i
¥ else

I S avtonstic destht Tanks

// suffer an anme/power plant hit.

a Hech suffers o Head Bloun DFF crit.
sawa» cnmbMavattnr*s(thﬂseRapnrt
destroyEntitu{te, "inpossible displacenent’, {te instanceof Mech}, {te instanceof Mech}

]
- 7/ HACK: to avoid automatic falls, displace from dest to des
Kysymys: et i ot e ot drty rim B Lot ingha (et e e AL}, 4, “axacuted duath fron chove)5

Minki nimisen muutiujan arvoon privata int gEtK\ckPushPSRHud(Ent\tg attacker, Entity target, int def) {
int mod =
kohdisnau yhteenlaskuoperaatio?
if ¢ gane. gatﬂpt\m’\s() b LeanDp tiond "naxctach_phusical psed 3 {
int attackerfod =
int targethiod = o

smitch { attacker.getizightClasst)) {
case EntitubleightClass.WEIGHT_LIGHT:
attackerfod = 13
bree

cose Enti tguelgh!mnss WE | GHT_MED 1Ur:
attackerfiod =
break;

cose Enti tykeightClass HEIBHT_HERYY :
attackerfiod =
break;

Enti thelghQEla;; LIE | BHT_ASSAULT !
ﬂttntkerﬂnd =

b
smitch { target.getieightClass()) {

e Ent e | gniG Las2 LI GHT_LIGHT:
fargetiod =
bredk;

case Ent | tubei ghtGLass MEIGHT_HED 1
targethod =
bregk;

Ent tulieightClass .LEIGHT_HEAVY:
ta»gatn iod =

Enti thelghQEla;; LIE | BHT_ASSAULT !
ta»gatn iod =

H
mod += attackertiod;
return nod;
b
fox
Each mech sinks the amount of hegt approprinte to its current heat
capacitu.
#

private void resolveteat(} {

Fig. 1. User interface used in the experiment. The task instruction on the left asks for
“the name of the variable that is affected by addition” in the program code fragment
on the right. The answer is “mod” because of the assignment “mod += attackerMod;”
on the ninth line from the bottom.

editor [10]: comments mostly in blue with some enhancements in light blue and
yellow, keywords in green (in declarations) or brown (elsewhere), and literals
in red. Thus the token scheme highlighted lexical tokens and the block scheme
highlighted larger syntactical structures (but was less cluttered than the scheme
suggested by Cigas [2]).

Both the block scheme and the token scheme used blue for comments; thus
a positive transfer effect can be expected. The block scheme used red for decla-
ration blocks whereas the token scheme used green for keywords in declarations
and red for literals resulting in a negative transfer effect.

In the three differently colored versions of a task, the task instructions were
the same. The program fragments were also the same except that variable and
method names were changed. The names used in the three versions were similar
in appearance, e.g., “getPosition”, “getLocation”, and “getSetting”; or “i”, “j”
and “k”.

Design: The experiment was a within-subjects design with two within-
subjects factors: coloring scheme and target type.

)

PPIG 2006 University of Sussex 43

www.ppig.org

Hakala, Nykyri and Sajaniemi

Each participant was presented with all 12 tasks with all three coloring
schemes—one coloring scheme at a time. The order of the coloring schemes was
counterbalanced.

In order to minimize learning effects, the task versions were different in the
different coloring schemes, i.e., used different variable and method names. The
order of task versions within a coloring scheme was random but the same to all
participants in the first, second and third scheme. Thus the sequence of all tasks
was the same for all participants; only the order of coloring schemes was varied.

Procedure: Participants were first presented with three practicing tasks,
one using each coloring scheme, in order to get them used to the user interface.
Then, for each coloring scheme, the 12 experimental tasks were preceded by two
extra tasks whose purpose was to help participants to get accustomed to the new
coloring scheme. No explanations of the principles used in the coloring schemes
were given to the participants.

The task of participants was to read the task instructions, find the answer
using a visual search, and hit Enter in the keyboard. The program fragment
was then replaced by a field for the participant to enter his or her answer. By
hitting Enter again, the next task was presented. The time used for reading the
instructions and finding the answer (up to the first Enter) was measured. If a
participant did not find an answer in the time limit of 60 seconds, the program
fragment was automatically replaced by the answering field. Participants were
instructed to enter in such cases the fact that the time had expired as their
answer. Similarly, they were instructed to note in the answer if they did not
understand a task instruction. The last task was followed by a screen asking for
demographic data.

The answers and search times were recorded automatically, and correctness
was decided later manually so that evident typing errors were not counted as
errors.

Participants were run in two groups. After the first practicing tasks partic-
ipants worked at their own pace. The lengths of the sessions were 31 and 32
minutes.

The materials and the procedure were pretested with two participants and
the one minute time limit was introduced and one task with an ambiguous answer
was changed as a result of this pretest. We also asked the pretest participants
whether they noticed that the same search target locations reappeared in all
coloring schemes and they reported not having noticed the recurrences.

3.2 Results

Among the demographic data questions, participants were asked if they had any
deficiency with color vision. Three participants reported a deficiency and were
not included in the analysis. Moreover, one participant reported of experiencing
migraine during the experiment and was not included in the analysis. Finally,
one participant reported of being able to predict the location of search targets
when seeing later versions of the same task. Also this participant was discarded.
Thus the data of sixteen participants was used in the analysis.

PPIG 2006 University of Sussex 44 www.ppig.org

Hakala, Nykyri and Sajaniemi

Time
40 -
35 .
Coloring scheme
30 Q Control
Sec O Block

25 4 6

X o X Token

o
20 4 o
15 ——

Assignment Parameter Statement
Target type

Fig. 2. Mean search times (in seconds) in the three search target types for the three
coloring schemes.

Incorrect answers were checked by hand and counted as correct if it was
evident that the participant had located the target, i.e., even if there were typing
errors in the answer. If a participant indicated in the answer that he or she had
not understood the task, the answer was not included in the analysis.

Search time: Table 1 contains the mean search times broken down by the
three search target types and the three coloring schemes. The means are also
depicted in Figure 2. A two-way within-subjects ANOVA on search times showed
that there was a significant main effect of target type (F(2,30) = 11.327,p <
.001) A post-test with Bonferroni adjustment indicated that this was due to
the higher search time of parameter targets as compared with assignment and
statement targets (p < .02). The two-way within-subjects ANOVA did not indi-

Table 1. Mean search times (in seconds) and standard deviations in different target
types and coloring schemes.

Target Type

Assignment Parameter Statement

Mean S.D. Mean S.D. Mean S.D.
Control scheme 22.3 12.8 29.1 7.9 24.1 9.6
Block scheme 20.8 8.8 33.0 10.5 25.4 7.3
Token scheme 24.4 12.5 28.4 7.4 26.4 12.4

PPIG 2006 University of Sussex 45 www.ppig.org

Hakala, Nykyri and Sajaniemi

Table 2. Mean search time (in seconds) broken down by the presentation order of the
different coloring schemes.

Order of presentation Mean S.D.
First coloring scheme 33.5 16.4
Second coloring scheme 24.3 15.0
Third coloring scheme 20.2 12.8

cate main effect of coloring scheme but there was an almost significant two-way
interaction of coloring scheme and target type (F'(4,60) = 2.457,p = .055).

The lack of statistically significant differences between coloring schemes was
at least partially affected by the steep learning curve of the participants. This
is demonstrated in Table 2 that gives mean search times in the first, second
and third coloring scheme presented to a participant. As seen in the table, there
is 40% improvement from the first to the third scheme which results in a high
variance in the search times within the experimental conditions and weakens
thus the results of statistical analyses.

To study the learning effect in more detail, a three-way between-subjects
ANOVA using the presentation order as the third factor was performed. It
showed a significant main effect of the order of presentation (F(2,117) =
33.074,p < .001) and target type (F'(2,117) = 11.084,p < .001) but no in-
teraction effects were now found.

To compensate for the learning effect we looked at each task in the order the
tasks were presented to the participants. Remember that the first task was the
same to all participants—only the coloring scheme was varied, so was the second
etc. We calculated for each of the 36 tasks mean search times in each of the three
coloring schemes (resulting in a between-subjects analysis) and applied a paired
t test for each coloring scheme pair in each search target type separately. All
other differences were statistically insignificant except block vs. token scheme in
the case of parameter target (paired ¢ test, t = 2.207,df = 11, p = .0495).

In order to avoid the learning effect we also looked at the differences between
different coloring schemes within the same presentation order (resulting again in
between-subjects analysis). There were some statistically significant differences
but these were contradictory. For example, in the assignment target case, the
block scheme resulted in fastest searches if it was the first scheme presented to
the participant (F(2,61) = 4.755,p = .0120) but the same scheme resulted in
the slowest searches if it was the second scheme (F(2,61) = 2.132,p = .1249).

Correctness: Table 3 contains the mean correctness of answers broken
down by the three search target types and the three coloring schemes. The
means are also depicted in Figure 3. A two-way within-subjects ANOVA on
correctness showed that there was a significant main effect of target type
(F(2,30) = 9.920,p < .001) but no main effect of coloring scheme nor inter-
action effects. A post-test with Bonferroni adjustment indicated that the main
effect of target type was due to the higher correctness of assignment targets as
compared with parameter and statement targets (p < .05).

PPIG 2006 University of Sussex 46 www.ppig.org

PPIG 2006 University of Sussex

Hakala, Nykyri and Sajaniemi

Coloring scheme

Q Control

O Block

X Token

Correctness
100—+4—
90 - m]
80 ——
% x
o
70 ° o
o
X
60 ——
50 —4—
Assignment Parameter Statement
Target type

Fig. 3. Mean correctness in the three search target types for the three coloring schemes.

Table 3. Mean correctness percentages and standard deviations in different target

types and coloring schemes.

Target Type

Assignment Parameter Statement

Mean S.D. Mean S.D. Mean S.D.
Control scheme 81.3 25.0 70.3 30.6 71.9 18.0
Block scheme 90.6 12.5 67.2 27.0 68.8 17.1
Token scheme 82.8 21.8 73.4 24.9 62.5 24.2

Table 4. Mean correctness percentages broken down by the presentation order of the

different coloring schemes.

Order of presentation Mean S.D.
First coloring scheme 67.7 46.8
Second coloring scheme 75.9 42.8
Third coloring scheme 79.2 40.6

There was again a notable effect of the presentation order as seen in Table
4. To study this effect in more detail, a three-way between-subjects ANOVA
using the presentation order as the third factor was performed. It showed a
significant main effect of the target type (F(2,117) = 7.190,p = .001), no
main effect of the presentation order (F(2,117) = 1.647,p = .197) but an al-

47

www.ppig.org

Hakala, Nykyri and Sajaniemi

most significant two-way interaction of presentation order and coloring scheme
(F(4,117) = 2.257,p = .067).

4 Discussion

The task of the participants was to visually search for targets in program frag-
ments shown as in an editor interface but with no editor functionality. The
targets were local in the sense that they could be identified by looking at a
single line or at most at a few consecutive lines. The phrasing of the tasks was
carefully designed not to contain any of the strings belonging to the target of
the search; thus the search was not purely visual but required a mental trans-
formation from the task instructions to an attentional template [7]. As a result,
the tasks resemble elementary operations in many programming activities that
are accomplished with a program editor.

The three coloring schemes used in the experiment were not equally familiar
to the participants. The control scheme—Dblack text on white background—was
familiar to all participants. Many had also used editors providing highlighting
of lexical tokens even if not exactly the same scheme as the token scheme in the
current experiment. The block scheme was new to all participants but it was con-
servatively designed with only two colors in addition to black: blue for comments
(as in the token scheme) and red for method headings and declarations.

The search targets represented three types of patterns to be searched for: as-
signment targets were assignments of some specific form, parameter targets were
method calls with a certain number of parameters; and statement targets con-
sidered control structures. These target types may not represent programmers’
actual search targets well [11,12] but they are examples of local search targets
with different target sizes. For example, assignment targets corresponded typi-
cally to much shorter code sequences than parameter targets.

Differences among the three target types were significant both for search
times (p < .001) and correctness (p < .001). Targets that corresponded to longer
code sequences took also longer time to search for. Correctness did not, however,
follow the same pattern. Even though the assignment targets that correspond
to short code sequences required least time and provided best correctness, the
parameter targets resulted in longest search times and the statement targets in
poorest correctness. A possible explanation for the behavior of correctness is how
well the target areas can be predicted. For assignment and parameter targets,
the program code area, which needs to be studied to make sure that correct
target has been found, is evident. In the case of statement targets, however,
there are no clear boundaries which makes it easy to look at a too narrow code
area and consequently accept a wrong piece of code. Thus statement targets are
more error-prone than the other two target types.

None of the coloring schemes turned out to be superior to others. In fact each
of them yielded the smallest search time and best correctness for some target
type: block scheme was best for assignment targets, token scheme for parameter
targets, and control scheme for statement targets. There may be many reasons

PPIG 2006 University of Sussex 48 www.ppig.org

Hakala, Nykyri and Sajaniemi

for this. For example, method declarations and calls used as parameter targets
are vital in programming and participants may have developed long-term learned
importance for the highlighting patterns in the familiar token scheme before par-
ticipating in the experiment. As another example, indentation is an important
cue for statement targets but the token scheme may lower indentation recogni-
tion efficiency which gives advantage to the other familiar coloring scheme—the
control scheme. Finally, candidate solutions for the assignment targets can be
detected by searching for a visually distinctive form, the character “=", which
is hard in the cluttered token scheme. As the comments contained no special
characters, search for the equal sign may be easiest in the block scheme.

The differences between coloring schemes were statistically insignificant ex-
cept the shorter search times when using the token scheme as compared with the
block scheme in searches for parameter targets (p = .0495). As the distribution
of search targets in actual programming work is not known and as the differences
between coloring schemes were small, there are no grounds to recommend any
of the three schemes over any other.

A surprising finding was that the control scheme resulted in the same overall
search performance as the other coloring schemes. This was unexpected because
the other two coloring schemes use a special color for comments and thus provide
an opportunity to skip parts of code during searches. The token scheme uses in
special cases other colors within comments which may attract visual attention,
but the block scheme uses a single color for comments that should thus be easy
to skip during a search. However, the color used for comments was bright blue
which may have caused a stimulus-driven pop-out effect [7]. A pop-out directs
attention to the comment and results in automatic processing of the comment
text, which takes time but is useless for the task at hand. The targets were hard
and search had to be guided by goal-directed control. Thus interference caused
by fault pop-outs is likely to happen. It seems that comments should not be
highlighted in a bright color but rather “downlighted” with a color that does
not attract visual attention—perhaps light gray if the background is white.

FEight of the 16 participants reported in their comments on color usage that
they had found the colors useful during searches (“made searches easier”, “three
colors makes searches faster”, ...), two participants wanted to see more colors,
five gave a neutral comment (“diverse”, “sufficient”, ...), and one gave a negative
comment (“not very good”). Thus the intuitive judgment of the participants was
in favor of color usage but the results of the experiment do not support this
intuition. It may be that colors make the screen aesthetically more pleasant and
thus makes participants to experience the tasks easier than they actually are. If
this is the case, the use of color can be justified by better work satisfaction.

It must be remembered that the current experiment dealt only with local
searches. In other activities the effect of color may well be different. For example,
in writing new code, the coloring of lexical tokens is highly practical: a misspelled
keyword does not change its color to the color of keywords when completed, a
missing quotation mark at the end of a string affects a pop-out effect as a large
block of program code gets the color of strings, etc. These effects could, however,

PPIG 2006 University of Sussex 49 www.ppig.org

Hakala, Nykyri and Sajaniemi

be implemented using some more conservative coloring techniques: by coloring
misspelled keywords (and, e.g., variable names) only, by coloring the first line of
a string with missing quotation mark only, etc. Thus the coloring of lexical tokens
could be used in the case of errors only, leaving a possibility to use other coding
schemes for other purposes. Such coloring principles deserve more research.

There are several threats to the validity of this experiment. First, due to
the overall similarity of the tasks and possible recall of earlier versions of tasks,
there was a high learning effect making the comparison of coloring schemes
problematic. To overcome this problem, we looked at individual tasks that were
presented in the same order to all participants; only the ordering of coloring
schemes was varied in the study. This technique allowed us to use a paired t test
on the search times of individual tasks but lead to statistically weaker between-
subjects testing. Another solution might be to have a much longer practicing
period which, however, would lead to longer experimental sessions. That would
be impractical because even now some participants reported that the experiment
was too tiresome. It would also be possible to mix tasks of the three coloring
schemes but this was not done because transitions from one coloring scheme to
another cause unpredictable effects on viewing.

Second, the tasks were artificial in the sense that they do not necessarily
correspond to actual search tasks in programming. The tasks were designed to
require a transformation from a verbal description to a visual pattern so that
they were not pure visual searches for a given visual pattern. On the other hand
they did not require a full understanding of the program fragments so that the
variance caused by a lengthy program comprehension process was avoided. Thus
they required more processing than classical visual search tasks in cognitive
psychology but less processing than programming related tasks in general. This
way we tried to approach the basic search tasks in programming.

Third, the program code used in the experiment may not represent programs
in general. To improve ecological validity, the code was not specially written
for this experiment but downloaded from web. However, different programming
styles are possible, and a final distribution version—Ilike the one used in the
experiment—may look very different from a program code that is under devel-
opment. For example, when changes are made in code, many programmers first
take a copy of the original, comment the copy out, and then change the original
code. The copy is all the time visible and it looks just like normal code but there
is no sense in looking at it during editing. Text that looks like program code has
a long-term learned importance to programmers and can thus be expected to be
hard to ignore [7] even if it is within a comment. In such a situation, it is very
convenient to have a special color for comments to be able to make a quick dis-
tinction between real code and code saved as a comment. Thus a coloring scheme
can improve the role-expressiveness of program text [13]: one color for actually
working code, another for comments, and maybe another for declarations.

Fourth, the number of participants was small. It may be that statistically
significant differences between the three coloring schemes were not found for this
reason. On the other hand, statistically significant differences were found between

PPIG 2006 University of Sussex 50 Www.ppig.org

Hakala, Nykyri and Sajaniemi

the three target types. Thus one can assume that even if the coloring schemes
actually affected search times, the differences would be small when compared
with differences between target types. As the distribution of search targets in
actual programming work is not known, the conclusions would not change with
better statistical significance of differences between coloring schemes.

Finally, the overall correctness of the tasks was low (74.2%). Thus the tasks
were harder than expected which may result in uncontrolled effects during the
searches.

5 Conclusion

We have presented the results of an experiment where different code highlighting
techniques were used by intermediate programmers in visual search tasks for local
patterns in Java program fragments. The targets were local in the sense that they
could be identified by looking at a single line or at most at a few consecutive lines
and they could be identified without an extensive comprehension of the program
fragments. The search targets represented three types of patterns to be searched
for: assignment targets were assignments of some specific form; parameter targets
were method calls with a certain number of parameters; and statement targets
considered control structures.

For code highlighting, three coloring schemes were used: highlighting of lex-
ical tokens (token scheme), highlighting of larger syntactic constructs (block
scheme), and no highlighting (control scheme). The first technique of giving
different colors to different lexical token types is common in current program
editors. Also the control condition is familiar to most programmers. The block
scheme was new and had different colors for declarations, executable code, and
comments.

Search performance differences among the three target types were significant
but differences between the coloring schemes were small and not statistically
significant. Each coloring scheme turned out to be best for some target type but
the interaction was statistically only almost significant. As the distribution of
search targets in actual programming work is not known, this study provides no
grounds to recommend any of the three schemes over any other.

A surprising finding was that the control scheme, black text on white back-
ground, resulted in the same overall search performance as the other coloring
schemes. The token and block schemes used in the experiment highlight com-
ments with bright blue and this may cause pop-out effects that direct attention
to comments and result in automatic processing of comment text. It seems that
comments should not be highlighted in a bright color but rather “downlighted”
with a color that does not attract visual attention.

The participants’ overall comments on color usage were positive and they
reported of perceived performance improvement. However, the results of the ex-
periment do not support this intuition. Colors may be aesthetically pleasant and
thus contribute to better work satisfaction but this does not necessarily mean
improved performance. Likewise, highlighting principles of current program ed-

PPIG 2006 University of Sussex 51 Www.ppig.org

Hakala, Nykyri and Sajaniemi

itors are based on their designers’ intuition that can also be false. Ideas, which
are based on intuition only, should be studied carefully before they are used as
design guidelines.

The current experiment dealt only with local searches. In other activities the

effect of color may well be different. Moreover, several coloring schemes could
be used intermittently for better assistance in different tasks. The use of color
in program editors deserves more research.

References

10.

11.

12.

13.

Green, T.R.G., Bellamy, R.K.E., Parker, J.M.: Parsing and gnisrap: A model of
device use. In Olson, G.M., Sheppard, S., Soloway, E., eds.: Empirical Studies of
Programmers: Second Workshop, Ablex Publishing Company (1987) 132-146

. Cigas, J.F.: Dynamically displaying a Pascal program in color. In: Proc. of the 1990

ACM SIGSMALL/PC Symposium on Small Systems, ACM Press (1990) 68-71
Gilmore, D.J., Green, T.R.G.: Are ’programming plans’ psychologically real —
outside Pascal? In Bullinger, H.J., Shackel, B., eds.: Human Computer Interaction
— INTERACT"’87, Elsevier Science Publishers B.V. (1987) 497-503

Ehrlich, K., Soloway, E.: An empirical investigation of the tacit plan knowledge in
programming. In Thomas, J.C., Schneider, M.L., eds.: Human Factors in Computer
Systems. Norwood, NJ: Ablex Publishing Company (1984) 113-133

Keithen, K.B., Reitman, J.S., Rueter, H.H., Hirtle, S.C.: Knowledge organization
and skill differences in computer programs. Cognitive Psychology 13 (1981) 307—
325

Egeth, H.E., Yantis, S.: Visual attention: Control, representation, and time course.
Annual Review of Psychology 48 (1997) 269-297

Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annual
Review of Neuroscience 18 (1995) 193-222

Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews
Neuroscience 2 (2001) 194-203

WWW Site: Megamek. http://megamek.sourceforge.net/idx.php?pg=main/
(2006) (Accessed May 4th, 2006).

WWW Site: Vim the editor. http://www.vim.org/ (2006) (Accessed May 4th,
2006).

Singer, J., Lethbridge, T.: Studying work practices to assist tool design in soft-
ware engineering. In: Sixth International Workshop on Program Comprehension
IWPC’98, IEEE Press (1998) 173-179

Vans, A.M., von Mayrhauser, A., Somlo, G.: Program understanding behavior
during corrective maintenance of large-scale software. International Journal of
Human-Computer Studies 51 (1999) 31-70

Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
A “cognitive dimensions” framework. Journal of Visual Languages and Computing
7 (1996) 131-174

PPIG 2006 University of Sussex 52

www.ppig.org

