
Threshold for the Introduction of Programming: Pro-
viding Learners with a Simple Computer Model

Joseph T. Khalife

Lebanese American University
PO Box 36, Byblos, Lebanon

Phone: +961-9-547254, Fax: +961-9-547256
jkhalife@lau.edu.lb

Abstract. Computer programming learning/teaching has been an active re-
search area in computer science and engineering. The difficulty level of the
teaching/learning process that novices in computer programming report is
three-fold, lack of problem solving strategies, misconceptions of code syntax
and semantics, and inability to develop an adequate mental model of the ma-
chine. This paper examines major difficulties encountered by students taking
introductory-level programming courses and it proposes a computer model that
sets thresholds for defining basic programming concepts. The study’s initial
findings suggest that the adoption of the model succeeded significantly in im-
proving students’ academic achievement and perception of computer program-
ming.

Keywords. Novice Difficulties, Threshold Concept, Computer model.

1 Introduction

The learning process in introductory programming courses has captivated the inter-
ests of researchers for some time, and considerable work has been done to identify
the difficulties encountered by learners. Computer scientists and practitioners have
studied novice programmers’ difficulties and reported extensively on what they have
uncovered. Educational researchers also studied learning in general and introductory-
level courses in specific, with their own set of results, of which one important finding
is on threshold concepts. The present work aims to identify potential threshold con-
cepts in introductory programming courses and propose solutions to help students
surpass thresholds, with the ultimate goal of improving the learning experience for
novice programmers.

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 18 Pages 244 - 254

18th Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006 www.ppig.org

1.1 Threshold Concepts

Understanding threshold concepts by instructors in Higher Education may offer po-
tential help especially to students who acquire formal knowledge of a discipline but
who seem unable to apply this knowledge. According to Meyer and Land [1], there
exist in many fields threshold concepts, which are akin to a portal opening up a new
and previously inaccessible way of thinking about something.

Meyer and Land have also defined threshold concepts as transformative and poten-
tially troublesome. Threshold Concepts are transformative in that they change the
way a student looks at things in the discipline. Being conceptually difficult, alien,
and/or counter-intuitive, threshold concepts are potentially troublesome for students.
Comprehending a threshold concept alleviates difficulties and provides a new way of
viewing or understanding a subject, without which the learner cannot progress.

To embed threshold concepts in a first programming course and evaluate whether
there is substance to this promise the first step is the identification of such concepts
for that course. Moreover, the process of identifying threshold concepts in practice
should help to clarify how we should understand threshold concepts in the context of
other contributions to the theory of learning [2].

1.2 Novice programmers’ difficulties

Embarking on a first programming course, learners may encounter difficulties for a
variety of reasons, including the inability to develop an adequate mental model of the
machine, lack of problem solving strategies, and misconceptions of code syntax and
semantics.

Novice programmers may be unable to develop a simple and concrete mental
model of the computer internals and how it operates during program execution. As a
result, novices will ordinarily tend to incorporate real world, non-programming ex-
periences in their learning of how to program without taking into consideration com-
puter limitations. Common misconception about variables and confusion between
assignment and equality are often caused by prior knowledge of algebra.

An ineffective pedagogy in learning programming is a vital factor that influences

how a novice programmer will perform in subsequent experiences. A major problem
area attributed to pedagogy is the teaching and learning of problem solving skills.
This area is often neglected or only briefly considered in early programming instruc-
tion. Part of this can be attributed to textbooks, which often dive right into program-
ming without providing support for problem solving as an initial step in program
development. When beginners write programs, they frequently generate the source
code without any organized thought process. They type their solutions seconds after
the initial reading of a problem statement [3] and iteratively proceed by modifying
their source code as required until the program generates the correct outputs. Learners
of introductory programming are a product of a traditional educational system that

Khalife

PPIG 2006 University of Sussex 245 www.ppig.org

appears to lack adequate emphasis on logical thinking and problem-solving abilities
in many of their subjects. General problem-solving strategies should be explicitly
acquired along with program development skills [4]. Novices are not familiar with
the design and testing of logical structures and heuristics required for solving prob-
lems and they have demonstrated lack of ability to perform effective sub-goal de-
composition [5], an essential skills in computer programming. It is argued that the
task of developing programs may be more difficult for novices than it really should
be because it requires solutions to be expressed in ways that are not familiar or natu-
ral for beginners.

Fundamental programming concepts are abstract in nature and have no real-word

counterparts. Beginners may not have sufficient preparation to grasp such concepts.
The syntax of a language also plays an important role in a programmer's ability to use
the language. The rigid demands of syntax compared to the inexact and loose nature
of the natural, or algorithmic, language result in many students not being able to suc-
cessfully write programs. Novices lack the ability to correctly debug and comprehend
programs. Much of the skills for debugging are learned through the experience of
writing and testing programs and since beginners lack adequate program comprehen-
sion skills, errors are often inadvertently injected into programs while debugging [6].
Novices have tendencies to understand a program or a portion of a code subjectively.
That is, that portion of the code will execute to what it is supposed to do. While de-
bugging, students fail to practice the ‘turning their brains off’, and to objectively
follow the code. As a result, they often correct errors by applying a “patch” to the
problem that allows a program to simply compile without understanding what they
are doing [7].

1.3 Threshold for programming:

The reasons for novices’ difficulties described above, as well as many others, stem
from a combination of the intricacies of programming languages and their associated
paradigms as well as the lack of instructor-related student preparation. Experience
shows that many of the students who find it difficult to learn how to program do so
when they fall behind. This leads us to the belief that there is perhaps thresholds that
students need to pass before they can effectively grasp and utilize the skills that they
are being taught.

There are common misconceptions in the way that novice programmers perceive a
computer. They have a hard time distinguishing between the “notational machine (the
one they learn to control) and its relationship with the physical machine (the com-
puter)” [8]. Computer models may be used to shorten the gap of how a user perceives
a programming environment.

We believe that the first threshold students need to pass is to develop a simple but

yet concrete mental model of the computer internals and how it operates during pro-
gram execution. In addition to placing strong emphasis on proper design and model-
ing prior to coding, we recommend a model that relies on the introduction of a ge-
neric instruction set, shields learners from Syntax details, and uses simplified memory

Khalife

PPIG 2006 University of Sussex 246 www.ppig.org

snapshots to visualize the steps of program execution. We believe that such a model
could cause a positive shift in students’ perception of programming and thus, consid-
ered a threshold that students need to pass in order to effectively grasp important
programming concepts. In the next section we present a summary of a computer
model that can be considered a threshold for the learning of programming.

2 A Computer Model as a Threshold for Programming

It is a fact that ample time is needed to discuss computers, their roles, how they work,
and how they are programmed. With beginners, understanding computer limitations
and acquiring basic problem solving skills, while being carefully introduced to syntax
details, are important prerequisites to efficiently learn how to program.

2.1 Defining a computer

Many different definitions for a computer are offered. To build a mental model of the
machine, novices need to be able to understand and articulate the definition of a com-
puter as a tool that processes data according to a set of instructions, where processing
consists of inputting, storing or manipulating, and outputting.

2.2 Major Hardware Components

Discussions of major hardware components of a computer should be generic, brief,
and limited to prerequisites of understanding how programs are executed. Under-
standing the purpose of CPU and main memory and the way they cooperate is very
important to the study of software development. It should be clear to novices what
takes place in main memory during the execution of a set of instructions.

2.3 Defining an Appropriate Subset of Generic Instructions

In order to effectively help novices develop an adequate model of the computer,
complete coverage of the programming language can be sidestepped, and the focus
should be on the collaborative development of a simplified set of generic instructions
that could translate easily to any high level language. Learners can augment their
knowledge of possible computer instructions as more constructs and instructions are
introduced. Because of the intricacies associated with certain paradigms, such as the
object-oriented, the initial selection comes from the imperative model and all syntax
details are left for subsequent stages, as beginners focus on semantics. Students at this
stage should understand that data must be placed in main memory for processing and
are introduced to input and output. A simple and best-suited set of computer instruc-
tions includes: Declarations, Input, Output and Assignment. Novices can build upon
the initial set as more instructions are introduced.

Khalife

PPIG 2006 University of Sussex 247 www.ppig.org

Declaration. In memory, data is stored in variables. A variable is a named location in
memory. Reserving data space in main memory is accomplished by a declaration
statement as follows:

Type <Variable name>
Simple example of types includes numbers (Numeric) and words (String). For the

computer model we are proposing, there is no need to go into more detail at that
stage.

Input. One of the many possible input instructions is to read data from Keyboard and
store it in a declared Variable:

KeyboardRead <Variable name>

During the execution of the KeyboardRead instruction, the computer waits for the

user to enter some value from the keyboard and press <Return>. The value entered is
stored in the variable. In this way, each time the program is run the user gets a chance
to type in a different value to the variable and the program also gets the chance to
produce a different result.

Output. The simplest output device is the computer's screen and this is called stan-
dard output. Both values stored in variables and string literals placed between quotes
can be outputted. The following is used to denote the output to screen instruction:

ScreenWrite <Variable name> or <String literal>, <Variable name> or <String
literal> …

Assignment. An assignment statement instructs the computer to evaluate an expres-
sion and store the result in a declared variable.

<Variable name> = <expression>

A numeric expression is made up of constants, variables, and numeric operators.
The meaning of the equal sign in an assignment statement is very different from its
meaning in mathematics. Equality is a totally different programming construct.

The above constructs are considered to be basic, or fundamental, in programming

and among the relatively easy task for students to learn and understand their seman-
tics. Next, program composition and the representation of a solution for a problem in
terms of these instructions are due.

2.4 Problem solving

In the context of developing a computer model, problem solving constitutes an im-
portant corner stone. Early introduction of problem-solving tasks such as problem
understanding, decomposition, problem modeling, implementation, and testing en-
hance student’s chances of coming to terms with programming.

Khalife

PPIG 2006 University of Sussex 248 www.ppig.org

Adoption of UML Activity Diagram. To model a basic computer for instructional
purposes, simple UML constructs can be introduced early on and can be built upon as
advanced modeling constructs are introduced. The introduction of simplified UML
activity diagrams in early instruction forces learners to model solutions to problems
in a visual and organized manner. Each of the instructions presented in the previous
section is considered an activity or an action. Transition to a next activity is triggered
by completion of the previous activity. Directional arrows create links between activi-
ties, thus indicating flow between them. Novices can easily understand activity dia-
grams because of their similarity to flowcharts. At this stage, solutions to simple
programming problems could be visually represented in terms of constructs shown in
Figure 1.

Figure 1 – Initial Available Constructs

Program Modeling. At this early stage, learners have limited knowledge of com-
puter instructions. Yet, this knowledge can be invested in a collaborative manner to
guide learners through solving a simple problem, while introducing important parts of
the software development cycle.

Consider the problem of finding the sum of three numbers. The first task of a pro-

gramming problem focuses on the problem understanding. The program goal is to
read three numbers, sums them and prints out their total. One possible scenario to
accomplish this is to have students collaborate to design and model solutions starting
at a high level of abstraction, then decomposing and moving into a level where each
activity can be easily translated into its equivalent code. Students’ results, taking from
an actual introductory tutoring session, are shown in figure 2.

The Third model of figure 2 is very explicit, and it constitutes a decomposition of

the previous models. Early in the learning process, novice programmers should be
expected to model even the most simplistic aspects of the solution. As students ad-
vance however, they will gain more control on deciding at what level of abstraction
to stop. Less abstraction will require less coding behind each activity, while more

Start

 Declaration

 ScreenWrite
 Activity KeyboardRead
 Assignment

 End

Khalife

PPIG 2006 University of Sussex 249 www.ppig.org

abstraction will allow the learner greater control over the implementation of their
code.

Figure 2 – Solution models with varying degrees of abstraction

Coding. Student next task consists of implementing the solution model into the ge-
neric instruction set of section 2.3, drawing attention away from language specific
programming syntax. An implementation of the solution model is presented in Fig-
ure 3.

Figure 3 – Generic Implementation

After producing a solution to a computing problem and in order to reinforce a

mental model of how the computer works, novices need to acquire an understanding
of the dynamic aspect of program execution.

 Numeric A,B,C
KeyboardRead A
KeyboardRead B
KeyboardRead C

 Numeric Total
Total = A+B+C
ScreenWrite”Sum is Equal to”, Total

Compute and Output Sum

Get 3 Numbers
Find Sum of 3 numbers

Output Total

Compute Total

Declare Total

Declare 3 Variables

Get from Keyboard 3 numbers

Khalife

PPIG 2006 University of Sussex 250 www.ppig.org

Program Execution. A computer program, based on the instruction presented so far,
is a sequential process. As program instructions get executed, the program state un-
dergoes various changes. At this stage, program state is best defined as the program
variables and their associated values together with the location of the next instruction
to be executed. Visualizing the steps of the execution with memory snapshots can
effectively assist learners in figuring out what goes on with the program state.

Figure 4– Memory Snapshot

The memory snapshot presented in Figure 4 shows the program state after the

execution of the assignment statement. It displays, in the program area, the program
code and shows explicitly the point of execution. The arrow on the side points to
statement to be executed next which happens to be the ScreenWrite statement.

Learners can be lead in collaborative manner to notice how the code presented

could be improved by using input prompts and thus be introduced to good program-
ming habits. Interactive input, being a major source of confusion to novices, requires
clarification if a user enters more input than the program requires, the excess input is
stored in a buffer and is used by next input statements requiring interactive input.
This can lead to storing non-intended values in input variables. To avoid such prob-
lems novices are encouraged to code an appropriate prompt before every interactive
input statement.

Showing novices how a computer executes programs completes our model pres-

entation.

Khalife

PPIG 2006 University of Sussex 251 www.ppig.org

3 Model Evaluation:

As presented in section 1, a major cause of novice difficulties is their lack of prepara-
tion to programming. Accordingly, the ‘threshold concepts’ computer model pro-
posed earlier will be adopted in classrooms and tested.

3.1 Methodology:

This section describes the methodology employed in an attempt to validate the pro-
posed model.

The ‘threshold concepts’ learning model, adopted in this paper, was introduced at

the beginning of Introduction to Object Oriented Programming (csc243), a three
credit Java course, required by undergraduate students majoring in Computer Science
or Engineering during their first semester at the Lebanese American University. The
assessment of the model was done in two stages. The first stage (Fall 2004) involved
the introduction of the model on a trial basis to the two sections of csc243. Students’
overall performance (letter grade percentages) was compared to students’ perform-
ance in previous semesters when the model was not used.

The second stage (Fall 2005) assessed model understanding and its correlation to

students’ performance in their first exam. To determine students’ understanding of
the model, a short pre-exam1 quiz (Q), consisting of the following three questions on
the model, was given and graded.

1- What is a computer and what is programming?
2- Develop a set of possible Instructions that a computer can execute.
3- Based on your instructions set write a program that finds the average of three

numbers.

One point was allocated to each question and scores (Q-score) ranged from 0 to 3

(0=no understanding; 1=basic understanding; 2= average understanding; 3= full un-
derstanding). Based on their Q scores, students were divided into four categories.
Students were then given their first Exam, and an exam1 average (E1-Avg) was com-
puted for students in each of the four categories.

Data was also collected through individual interviews with some csc243 students

(Spring 2006), few weeks after being introduced to the model. Students were asked to
assess the relevance of the model in helping them grasp programming concepts.

We also interviewed junior and senior students who earlier had some program-

ming difficulties but were later able to overcome their difficulties.

Khalife

PPIG 2006 University of Sussex 252 www.ppig.org

3.2 Results:

As shown in figure 8, the adoption of the proposed model in stage I led to a signifi-
cant improvement in students’ performance when compared to a previous course
when the model was not used. This is clear in the percentage increases in A’s and C’s
and decreases in D’s and F/W’s.

Figure 8– Percentage Letter Grades

In stage II, 36 pre-test1 quizzes were completed by students before their first

exam. Results of this experiment are presented in Figure 9. The eight students who
acquired a full understanding of the model averaged 77.0 on the first exam compared
to an average of 28.3 for the four students who scored low on the model (0= no un-
derstanding). To determine the amount of correlation between the development of a
computer model and students’ performance in exams, Pearson's correlation of Q-
score and E1-Avg was computed and found to be equal to 0.75. These findings indi-
cate that students who possess a good understanding of the computer model tend to
perform better in exams.

Q- Score 3 2 1 0
Number of students 8 14 10 4
E1-Avg 77.0 60.6 50.0 28.3

Pearson r (Q-score, E1-Avg) = 0.75

Figure 9– Comparative Students’ Performance

In addition, interviews revealed positive student feedback when asked about the

relevance of the model in alleviating programming difficulties. One student shared
that he made great progress once able to mentally develop a computer model. An-
other student, also a tutor in the Learning Center assigned to help weak computer
programming students, stated that spending time explaining what takes place in a
computer during program execution significantly helped learners overcome many
related difficulties.

Khalife

PPIG 2006 University of Sussex 253 www.ppig.org

4 Benefits of the Model and Future Work

While relying on flowcharts to introduce programming is not new, the early introduc-
tion of a generic instruction set, UML for modeling, and visualization in composition
proved advantageous. When the proposed model, simple enough to present no chal-
lenge to novice understanding, was used to introduce students to their first program-
ming experience, several of the difficulties encountered by novice programmers were
alleviated, simply by helping learners acquire a concrete mental model of what the
computer is, and how it operates. Difficulties resulting from rigid demands of syntax
were also alleviated by the introduction of a generic set of instruction. In addition, the
adoption of a simplified subset of UML in early instruction forced learners to adopt
an organized approach to the design and to model solutions to problems before cod-
ing.

Future work should be oriented toward precise framing of threshold concepts and
the examination of the relationship between threshold concepts and learning difficul-
ties. In other words, this research effort should lead to a systematic method of identi-
fication of major threshold concepts in programming as well as the development of
teaching material and/or methodologies aimed at helping learners surpass these
thresholds.

References

1. J. H. F. Meyer and R. Land, "Threshold concepts and troublesome knowledge: linkages to
ways of thinking and practicing within the disciplines," 10th International Symposium: Im-
proving Student Learning, Brussels, 2002.

2. P. Davies and J. Mangan, “Recognizing Threshold Concepts: an exploration of different
approaches”, European Association in Learning and Instruction Conference (EARLI), Au-
gust 2005, Nicosia, Cyprus.

3. Suchan, W. and Smith, T., “Using Ada 95 as a Tool to Teach Problem Solving to Non-CS
Majors, Annual International Conference on Ada”, Proceedings of the Conference on TRI-
Ada ’97, Nov. 1997.

4. Pane, J. and Myers, B (August 1996). “Usability Issues in the Design of Novice Program-
ming Systems”, School of Computer Science Technical Report CMU-CS-96-132, Carnegie
Mellon University, Pittsburgh, PA.

5. F.P. Deek, J. McHugh, and S.R. Hiltz, “Methodology and Technology for Learning Pro-
gramming”, Journal of Systems and Information Technology, vol. 4, no. 1, pp. 25-37, June-
July 2000.

6. Gugerty, L. and Olson, G. (April 1986). “Debugging by Skilled and Novice Programmers”,
Proceedings ACM SIGCHI on Human Factors in Computing Systems, Volume 17, Issue 4,
pp. 171-174.

7. J. Bonar and E Soloway, “Preprogramming Knowledge: A Major Source of Misconception
in Novice programmers”, in Studying the Novice Programmers, Eds: Laurence Erlbaum
Associates, 1989, pp. 325 – 354.

8. Evangeledis, G., Dagdilelis, V., Satratzemi, M. and Efopoulos, V., “X-Compiler: Yet An-
other Integrated Novice Programming Environment”, Proceedings of IEEE International
Conference on Advanced Learning Technologies, pp 166, Aug. 2001.

Khalife

PPIG 2006 University of Sussex 254 www.ppig.org

