
Teaching Programming:
Going beyond “Objects First”

Jorma Sajaniemi1 and Chenglie Hu2

1 University of Joensuu, Department of Computer Science,
P.O.Box 111, 80101 Joensuu, Finland,

saja@cs.joensuu.fi,
WWW home page: http://www.cs.joensuu.fi/~saja/

2 Carroll College, Department of Computer Science,
Waukesha, WI 53186, USA,

chu@cc.edu

Abstract. The prevailing paradigm in teaching elementary program-
ming uses Java as the first programming language and the “objects
first” approach as the conceptual basis. This approach has several short-
comings, e.g., high drop-out rates and poor skills in basic constructs
like loops. This paper suggests an alternative approach that combines
a strong start in basic constructs with early object-orientation. The
key idea of our approach is to start with concepts that are common
to both procedural and object-oriented programming, i.e., basic control
and data structures and a simple form of the interplay between responsi-
bility and implementation. Only then various abstraction mechanisms—
procedural, functional, object-oriented, and data as well as the interplay
between responsibility and implementation in these abstractions—will
be introduced. The alternative approach is also compared with the ACM
Computing Curricula.

1 Introduction

The prevailing paradigm in teaching elementary programming uses Java as the
first programming language and the “objects first” approach as the conceptual
basis. The use of Java is motivated by its extensive use in industry and stu-
dents’ wish to learn a “real” language that can “guarantee” them a job in the
future. The objects first approach is used to avoid possible negative transfer ef-
fects from procedural programming that make the transition to object-oriented
programming hard. Thus the widespread use of object-oriented programming in
software industry has led to the abandonment of the previous teaching paradigm:
Pascal as the first programming language and procedural programming as the
conceptual basis. The new approach is not free of problems either. For exam-
ple, panels in recent computer science education conferences [1–4] have criticized
the current approach due to the relatively high complexity of Java and the ab-
stract nature of the objects first approach. It is therefore worthwhile to study
alternative approaches to basic programming education.

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 18 Pages 255 - 265

18th Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006 www.ppig.org



Regardless of their career goals, most students will need to have basic un-
derstanding of programming and the programming skills required for problem-
solving. After graduation they will use a variety of programming languages and
tools in, e.g., different phases of information system development and software
engineering work. More important than the mastery of some specific language
is then the mastery of programming concepts utilized by those languages and
tools. These concepts comprise object-orientation as well as other program-
ming paradigms. This paper suggests a new elementary programming education
approach that combines a strong start in basic constructs with early object-
orientation. The key idea of our approach is to start with concepts that are
common to both procedural and object-oriented programming. This is followed
by various abstraction mechanisms—object-oriented, procedural, functional, and
data abstraction—representing different paradigms used in current programming
practice.

The basic constructs needed to understand the idea of programming in-
clude, e.g., variables, assignment and simple imperative control structures such
as sequence, iteration and conditionals. An appropriate name for our approach
would thus be “imperative-first”. However, it has been a common tradition (see,
e.g., [5]) to use this term to cover not only imperative control structures but also
procedural abstraction. For clarity, we will thus use a fresh name, “variables-
first”, to emphasize our approach that starts with the essential part of an impera-
tive programming paradigm: variables and, particularly, their roles in imperative
control structures.

The rest of this paper is organized as follows. Section 2 makes a literature
survey on the problems of the current approaches to programming education.
Section 3 then presents the new approach and section 4 compares it with the
ACM Computing Curricula. Section 5 contains the conclusion.

2 Current Problems

There are several shortcomings of the current “objects first with Java” paradigm.
The objects first approach means that programming courses start with the intro-
duction of objects that model some application domain, the attributes of these
objects, the responsibilities of objects and their relationships with other objects,
and finally the implementation of the responsibilities by the use of methods.
For example, a programming textbook [6] that uses this approach starts with
modeling simple graphical user interface elements. The first chapter of fourteen
pages long contains no program code but introduction to the following concepts
(listed in the summary of the chapter): object, class, method, parameter, sig-
nature, type, multiple instances, state, method-calling, source code, result—all
to be understood in the context of abstract picture drawing and GUI interfaces
without showing a complete working program even at the level of “Hello World”.
As a result, learners have to work with abstractions for a long time before they
can base those abstractions to program code—another abstraction even though
at a more concrete level. The high drop-out rates of objects first programming

Sajaniemi and Hu

PPIG 2006 University of Sussex 256 www.ppig.org



courses may be due to problems in acquiring correct understanding of the ab-
stractions that those courses start with [7].

Modeling an application domain without knowledge of the programming
techniques needed in the implementation of the model is like designing knitting
models without knowing the knitting techniques that are required to produce
basic knitting patterns. Knitting is not taught by starting with knitting models
but with practicing the use of knitting needles in order to first obtain skills that
are necessary to produce basic knitting patterns. Only by knowing the basic
building blocks and by understanding the basic techniques needed in combining
the building blocks will it be possible for students to make designs that can
actually be implemented.

The question of the first programming language is not free of problems, either.
Whereas Pascal was originally designed for educational purposes and was simple
and consistent, Java is designed for professional use, uses cryptic notation that is
not always consistent, and contains versatile class libraries that are too complex
for novice use [2]. It is symptomatic that in a learning object designed to teach
the concept of arrays [8] the tasks under the heading “test your understanding”
require knowledge of Java syntax details rather than real understanding of the
array concept. Similarly, in a Java-based CS1 course for academically diverse
students [9], the purpose of many programming assignments is to introduce
students to the functionality of components in a specific Java library rather
than to promote understanding of object-orientation.

Even simple notational issues may be problematic for novices. For example,
in Java, semicolons are normally used to indicate sequence of execution, e.g.,
“i=0; i++;”. But in the case of for-loops such as “for (i=0; i<=10; i++)
...” semicolons do not imply the execution of all three parts at each round,
which has caused problems for novices in understanding how the for-loop works.
Educational languages can be designed to avoid such problems, e.g., in Pascal
the above construct reads “for i:=0 to 10 do ...” which avoids the mental
overloading of semicolons. When professional languages are used in educational
settings, such issues with certain language constructs require extra care from
teachers when the constructs are first introduced.

There is a considerable amount of evidence that novices learning program-
ming have severe problems in understanding the basic concepts of programming
(see [10] for a review). For example, the notion of a variable has been proven to
be hard to understand; basic control structures like iteration are often misun-
derstood; and even the use of special notation like semicolons poses problems. A
study conducted in four universities [11] concluded that “many students do not
know how to program at the conclusion of their introductory courses” and that
“many students have not even acquired the technical skills needed for getting a
program ready to run”. It is no wonder that students have faulty mental models
concerning objects, attributes, and methods [12, 13], when their mental models
of much simpler structures like variables and basic control structures are often
fragile [14] and faulty.

Sajaniemi and Hu

PPIG 2006 University of Sussex 257 www.ppig.org



A classic overview of programming pedagogy [15] notes that “One wonders,
for example, about teaching sophisticated material to CS1 students when study
after study has shown that they do not understand basic loops” and stresses
the importance of teaching valid mental models because “if the instructor omits
them, the students will make up their own models of dubious quality”. The
objects first approach tries to provide valid mental models of object-oriented
design, class hierarchies, etc to novices, yet often prohibitive to master for those
who do not understand the basic building blocks of programs.

3 The Alternative Approach

The objects first approach tries to avoid the negative transfer effects by avoiding
teaching procedural programming before object-orientation. At the same time
it sacrifices concreteness of programs and uses abstractions that are overly hard
to root on novices’ existing knowledge [16]. There have been recent suggestions
to overcome this problem by, e.g., using various tools to help novices learn to
program [17]; starting with the use of ready-made classes [18] (perhaps in a
single static method[19]) and postponing class definitions to a later phase; and
starting with a traditional procedural approach using static methods only [20].
The developers of these tools and course syllabi usually report improved student
satisfaction and in some cases also improved learning outcomes.

In this paper we suggest an alternative solution that starts with conceptually
simple—yet essential—concepts: the concept of variables, their responsibilities
(like keeping track of the number of input items), and the implementation of
responsibilities by assignment statements and basic control structures (e.g., con-
ditional, iteration). Only then would the concepts of objects and attributes, their
responsibilities, and the implementation of responsibilities by methods be effi-
ciently introduced. This “variables first, objects then” approach starts with more
concrete concepts than the objects first approach does, yet independent of the
introduction of procedural programming. Furthermore, the same basic ideas of
responsibility and its implementation are applied twice: first to variables (they
deliver, keep, or update their contents in designated programming processes)
and then to objects (they deliver, keep, or update their attributes through the
service methods).

The responsibilities of variables can be treated by the recently introduced
notion of “roles of variables” [21] that consists of a small number of roles like
“stepper” (a role covering the notion of counting items), “gatherer” (a role cover-
ing the notion of accumulation) etc. Roles give a vocabulary for responsibilities
of variables and provide a sound basis for the variables first part of our new
approach. Roles belong to experts’ tacit programming knowledge [22] and their
use in teaching elementary procedural programming has been found to enhance
learners’ programming skills [23, 24]. In object-oriented programming, roles ap-
ply to attributes, local variables and method parameters [25]. Thus the transition
from variables to objects is conceptually more manageable, requiring only a shift
in the abstraction level.

Sajaniemi and Hu

PPIG 2006 University of Sussex 258 www.ppig.org



The set of basic control structures introduced in the variables first part should
include sequence, selection, and iteration but other control structures common
to both object-oriented and procedural programming may be considered, also.
For example, exception handling and concurrency (or multithreading) are cen-
tral concepts in object-orientation [26] and their basic ideas can be introduced
apart from objects and classes. Similarly, for the introduction of the common
parts of methods and procedures we suggest using routines that cover param-
eter passing and recursion but that will not be used for structured design as
such. Routines are motivated by the need for clarity (“separate different parts of
the code”) and code re-use (“define once—use several times”) that are required
both in object-oriented and in procedural programming. In object-oriented pro-
gramming, routines turn into constructors and methods whereas in procedural
programming they turn into hierarchical procedures and functions.

It is suggested that an educational situation might be better served by a
language specially designed using pedagogic principles [27]. The variables first
part of the suggested new approach may be benefited by using a mini language
in order to avoid the side-effect of the syntax complexity often seen in industrial-
standard languages. Once the programming constructs are mastered, transition
to a real-world language should be no different than transition to driving a
different kind of car with more bells and whistles. That said, an appropriate
subset of an industrial-standard language can usually be chosen to minimize the
syntax complexity should such a language happen to be adopted.

The suggested approach provides students valid models of basic programming
knowledge that can be applied both in object-oriented and procedural program-
ming. It does not stress programming language features or any specific design
technique to model a programming problem. Thus problems of any specific per-
spective to programming [28] can be avoided. The variables first part of the
approach is intended to give a good understanding of programming constructs
whereas the design and composition of larger programs—including notions such
as encapsulation, inheritance, and polymorphism—is postponed later in the cur-
riculum.

4 Comparison with CC2001

ACM Computing Curricula CC2005 [29] provides an overview of the different
kinds of undergraduate degree programs in computing that are currently avail-
able and for which curriculum standards are now, or will soon be, available.
The oldest one is CC2001 that was published by ACM and IEEE-CS and in-
tended to provide curriculum guidelines for degree programs for the various
computing disciplines. Curriculum guidelines for more specific domain areas are
IS2002 published by the information systems community, SE2004 published by
the software engineering community, and CE2004 published by the computer
engineering community. Because CC2001 is the most general one, we compare
our approach with it.

Sajaniemi and Hu

PPIG 2006 University of Sussex 259 www.ppig.org



ACM Computing Curricula CC2001 [5] offers several approaches to introduc-
tory courses: imperative-first (which could be better called “procedures-first”),
objects-first, functional-first, breadth-first, algorithms-first, and hardware-first.
Each of these approaches consist of two courses (with an alternative three-course
implementation in some approaches). In the same vein, our approach can be
termed variables-first.

The course contents suggested in the previous section is not the same as
the imperative-first approach of CC2001 which introduces the whole traditional
procedural model; our suggestion avoids intentionally the procedural approach
to program decomposition. In fact, our approach is closer to the algorithms-first
approach where the basic concepts of computer science are introduced using
pseudocode instead of an executable languages and which permits students to
work with a range of data and control structures. However, in our new approach
we assume that the programs are executable—even if written in some educational
programming language that resembles pseudocode and has simple syntax.

Our “variables-first” approach does not try to give exact implementations
of two or three introductory courses. However, a possible implementation—
presented in the style of CC2001—consists of , e.g., two courses: Fundamentals of
programming, and Abstraction mechanisms with the syllabi of Fig. 1. The first
course introduces the basic “knitting techniques”, i.e., control structures like iter-
ation, conditionals, recursion, exceptions, and concurrency; basic data structures
like variables, arrays, records, and strings; and the interplay between responsi-
bility and implementation in the form of roles of variables. The second course
introduces “knitting models”, i.e., various abstraction mechanisms: procedural,
functional, object-oriented, and data abstraction; and the interplay between re-
sponsibility and implementation in the form of these abstractions. Other topics
like software engineering and algorithm analysis are dispersed around the two
courses.

CC2001 defines the core contents for computer science body of knowledge.
The core consists of material that essentially everyone teaching computer science
agrees is essential to anyone obtaining an undergraduate degree in this field.
Core hours correspond to the in-class time required to present the material in a
traditional lecture-oriented format. This time does not include the instructor’s
preparation time or the time students spend outside of class. Table 1 presents
a comparison of the core hours of three CC2001 approaches (imperative-first,
objects-first and algorithms-first) and the suggested “variables-first” approach.

5 Conclusion

ACM Computing Curricula 2001 states [5, Chapter 7] that “throughout the his-
tory of computer science education, the structure of the introductory computer
science course has been the subject of intense debate [... and] recommending a
strategy for the introductory year of a computer science curriculum all too often
takes on the character of a religious war that generates far more heat than light.”
The report continues by noting that “no ideal strategy has yet been found, and

Sajaniemi and Hu

PPIG 2006 University of Sussex 260 www.ppig.org



Fundamentals of Programming:

– Background: History of computing, overview of programming languages and the
compilation process

– Simple data: Variables, types, and expressions; assignment
– Simple control structures: Iteration; conditionals
– Algorithms: Problem-solving strategies; implementation strategies; roles of vari-

ables
– Simple data structures: Arrays; records; strings
– Machine level representation of data: Bits, bytes, and words; binary representation

of integers; representation of character data; representation of records and arrays
– Functional decomposition: Routines without parameters
– Code re-use: Parameter passing
– Recursion: The concept of recursion; divide-and-conquer strategies
– Advanced control structures: Exceptions, concurrency
– Software engineering issues: Tools; processes; requirements; design and testing;

risks and liabilities of computer-based systems
– Introduction to basic algorithmic analysis

Abstraction Mechanisms:

– Principles of encapsulation: Encapsulation and information-hiding; separation of
behavior and implementation

– Abstraction in procedural programming: Procedures and functions; structured de-
composition

– Abstraction in functional programming: Functions without variables; recursion
over lists, recursive backtracking

– Abstraction in object-oriented programming: Classes and objects; methods; mes-
sage passing; subclassing and inheritance; polymorphism

– Data abstraction: Classic data structures (list, stack, and queue); procedural im-
plementation; object-oriented implementation

– Object-oriented design: Fundamental design concepts and principles; introduction
to design patterns; object-oriented analysis and design

– Using APIs: Class libraries; event-driven programming; packages for graphics and
GUI applications

– Software engineering: Building a medium sized system, in teams, with algorithmic
efficiency in mind

Fig. 1. Implementation of the “variables-first” approach in two courses.

Sajaniemi and Hu

PPIG 2006 University of Sussex 261 www.ppig.org



Table 1. Comparison of the amount of core hours in different approaches. Imperative-
first (IF), objects-first (OF), and algorithms-first (AF) are suggested by CC2001;
variables-first (VF) is our new suggestion. CC2001 total core hours in parentheses.

Topic IF OF AF VF

DS5 Graphs and trees (4) 2 - - -

PF1 Fundamental programming constructs (9) 9 9 9 9
PF2 Algorithms and problem-solving (6) 3 4 3 4
PF3 Fundamental data structures (14) 12 11 11 11
PF4 Recursion (5) 5 5 5 5
PF5 Event-driven programming (4) - 2 3 3

AL1 Basic algorithmic analysis (4) 2 2 2 2
AL2 Algorithmic strategies (6) - 2 4 2
AL3 Fundamental computing algorithms (12) 6 6 6 6
AL4. Distributed algorithms (3) - - - 1
AL5 Basic computability (6) 1 1 1 1

PL1 Overview of programming languages (2) 2 2 2 2
PL2 Virtual machines (1) 1 1 1 1
PL3 Introduction to language translation (2) - - 2 -
PL4 Declarations and types (3) 3 3 3 3
PL5 Abstraction mechanisms (3) 3 3 3 3
PL6 Object-oriented programming (10) 10 12 8 11

AR2 Machine level representation of data (3) 1 - - 1
AR3 Assembly level machine organization (9) 2 - - -

HC1 Foundations of HCI (6) - 1 - -

GV1 Fundamental techniques in graphics (2) 2 2 2 2

SP1 History of computing (1) 1 1 1 1
SP5 Risks and liabilities (2) - 1 - -

SE1 Software design (8) 4 4 4 4
SE2 Using APIs (5) 2 2 2 2
SE3 Software tools and environments (3) 2 2 2 2
SE5 Software requirements and specifications (4) 1 - 1 -
SE6 Software validation (3) 1 1 1 1
SE7 Software evolution (3) - - 1 -

Total core hours 75 77 77 77

Sajaniemi and Hu

PPIG 2006 University of Sussex 262 www.ppig.org



that every approach has strengths and weaknesses.” Finally, it encourages “in-
stitutions and individual faculty members to continue experimentation in this
area.”

In this paper, we have studied the problems of the current main-stream ap-
proach to teaching elementary programming, objects first; and surveyed recent
suggestions to overcome the problems of this approach. We have then suggested
a new approach, “variables-first” that combines a strong start in basic con-
structs with early object-orientation. The key idea of our approach is to start
with concepts that are common to both procedural and object-oriented program-
ming, i.e., basic control and data structures and a simple form of the interplay
between responsibility and implementation. Only then will various abstraction
mechanisms—procedural, functional, object-oriented, and data as well as the
interplay between responsibility and implementation in these abstractions—be
introduced. We have also sketched a two-course implementation of this approach
and compared it with the Computing Curricula 2001. In the future we plan to
try this approach in real classroom settings.

Acknowledgments

This work was supported by the Academy of Finland under grant number
206574.

References

1. Astrachan, O., Bruce, K., Koffman, E., Kölling, M., Reges, S.: Resolved: Objects
early has failed (Panel). In: Proceedings of the 36th SIGCSE Technical Symposium
on CS Education. (2005) 451–452

2. Bailie, F., Courtney, M., Murray, K., Schiaffino, R., Tuohy, S.: Objects first - does
it work? (Panel). Journal of Computing Sciences in Colleges 19 (2003) 303–305

3. Weir, G.R.S., Vilner, T., Mendes, A.J., Nordström, M.: Difficulties teaching Java
in CS1 and how we aim to solve them (Panel). In: Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education
ITiCSE’05, ACM (2005) 344–345

4. Ranum, D., Miller, B., Zelle, J., Guzdial, M.: Successful approaches to teaching
introductory computer science courses with Python. (Special session). In: Proc. of
the 37th SIGCSE Technical Symposium on Computer Science Education. (2006)
396–397

5. Joint Task Force on Computing Curricula: Computing curricula 2001.
http://www.sigcse.org/cc2001 (2001) (Accessed Nov. 24th, 2005).

6. Barnes, D.J., Kölling, M.: Objects First with Java. 2nd edn. Pearson Education
Limited (2005)

7. Milne, I., Rowe, G.: Difficulties in learning and teaching programming—views of
students and tutors. Education and Information Technologies 7 (2002) 55–66

8. London Metropolitan University: Arrays learning object.
http://www.codewitz.org/demo/index.html (2003) (Accessed Nov. 24th, 2005).

Sajaniemi and Hu

PPIG 2006 University of Sussex 263 www.ppig.org



9. Comer, J., Roggio, R.: Teaching a Java-based CS1 course in an academically-
diverse environment. In: Proceedings of the 33th SIGCSE Technical Symposium
on CS Education. Volume 34(1) of ACM SIGCSE Bulletin. (2002) 142–146

10. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: A
review and discussion. Computer Science Education 13 (2003) 137–172

11. McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D.,
Ben-David Kolikant, Y., Laxer, C., Thomas, L., Utting, I.: A multi-national, multi-
institutional study of assessment of programming skills of first-year CS students. In:
Working Group Reports from ITiCSE on Innovation and Technology in Computer
Science Education ITiCSE’01, ACM (2001) 125–140

12. Eckerdal, A., Thuné, M.: Novice Java programmers’ conceptions of “object” and
“class”, and variation theory. In: Proceedings of the 10th Annual SIGCSE Con-
ference on Innovation and Technology in Computer Science Education ITiCSE’05,
ACM (2005) 89–93

13. Holland, S., Griffiths, R., Woodman, M.: Avoiding object misconceptions. SIGCSE
Bulletin 29 (1997) 131–134

14. Perkins, D.N., Martin, F.: Fragile knowledge and neglected strategies in novice
programmers. In Soloway, E., Iyengar, S., eds.: Empirical Studies of Programmers,
NJ: Norwood, Ablex Publishing Company (1986) 213–229

15. Winslow, L.E.: Programming pedagogy — a psychological overview. SIGCSE
Bulletin 28 (1996) 17–22

16. Hu, C.: Rethinking of teaching objects-first. Education and Information Technolo-
gies 9 (2004) 209–218

17. Powers, K., Gross, P., Cooper, S., McNally, M., Goldman, K.J., Proulx, V., Carlisle,
M.: Tools for teaching introductory programming: what works? (Panel). In: Proc.
of the 37th SIGCSE Technical Symposium on Computer Science Education. (2006)
560–561

18. Pedroni, M., Meyer, B.: The inverted curriculum in practice. In: Proc. of the 37th
SIGCSE Technical Symposium on Computer Science Education. (2006) 481–485

19. Roumani, H.: Pactice what you preach: full separation of concerns in CS1/CS2. In:
Proc. of the 37th SIGCSE Technical Symposium on Computer Science Education.
(2006) 491–494

20. Reges, S.: Back to basics in CS1 and CS2. In: Proc. of the 37th SIGCSE Technical
Symposium on Computer Science Education. (2006) 293–297

21. Sajaniemi, J.: An empirical analysis of roles of variables in novice-level procedural
programs. In: Proceedings of IEEE 2002 Symposia on Human Centric Computing
Languages and Environments (HCC’02), IEEE Computer Society (2002) 37–39

22. Sajaniemi, J., Navarro Prieto, R.: Roles of variables in experts’ programming
knowledge. In Romero, P., Good, J., Bryant, S., Chaparro, E.A., eds.: Proceedings
of the 17th Annual Workshop of the Psychology of Programming Interest Group
(PPIG 2005), University of Sussex, U.K. (2005) 145–159

23. Sajaniemi, J., Kuittinen, M.: An experiment on using roles of variables in teaching
introductory programming. Computer Science Education 15 (2005) 59–82

24. Byckling, P., Sajaniemi, J.: Roles of variables and programming skills improve-
ment. In: Proc. of the 37th SIGCSE Technical Symposium on Computer Science
Education. (2006) 413–417

25. Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., Kulikova, Y.: Roles of variables
in three programming paradigms. Computer Science Education (in press)

26. Culwin, F.: Object imperatives! In: Proceedings of the 30th SIGCSE Technical
Symposium on CS Education. Volume 31(1) of ACM SIGCSE Bulletin. (1999)
31–36

Sajaniemi and Hu

PPIG 2006 University of Sussex 264 www.ppig.org



27. Du Boulay, B., O’Shea, T., Monk, J.: The black box inside the glass box: Presenting
computing concepts to novices. International Journal of Human-Computer Studies
51 (1999) 265–277

28. Christensen, H.B.: Implications of perspective in teaching objects first and object
design. In: Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education ITiCSE’05, ACM (2005) 94–98

29. The Joint Task Force for Computing Curricula 2005: Computing curricula 2005.
tp://www.acm.org/education/curric vols/CC2005-March06Final.pdf (2005) (Ac-
cessed Apr. 26th, 2006).

Sajaniemi and Hu

PPIG 2006 University of Sussex 265 www.ppig.org


