
Assisting Concept Location in Software Comprehension

Brendan Cleary and Chris Exton

Lero, University of Limerick, Ireland,
brendan.cleary@ul.ie

Abstract. Concept location, the problem of associating human oriented concepts
with their counterpart solution domain concepts, is a fundamental problemthat
lies at the heart of software comprehension. Recent research has attempted to
alleviate the impact of the concept location problem through the application of
methods drawn from the Information Retrieval (IR) community. Here wepresent
a new approach based on a complimentary IR method which also has a sound
basis in cognitive theory. We compare our approach to related work through an
experiment and present our conclusions. . . .

1 Introduction

While how software engineers understand or comprehend the systems they work with
is frequently described in terms of processes, models or strategies [1] [2], it can also be
described in terms of a person’s ability to communicate intelligently in human oriented
terms about a systems implementation. Biggerstaff describes a person as understanding
a program when able to explain the program, its structure, its behavior, its effects on
its operational context, and its relationships to its application domain in terms that are
qualitatively different from the tokens used to construct the source code of the program
[3]. This categorization of how an engineer understands a software system rests on two
different descriptions of ”computational intent” [4] and the ability of the engineer to
associate concepts appearing in one description of intent with the concepts in another.

In software engineering we are usually concerned with two descriptions of intent;
one described using a human language another using a programming language. For
clarity and to compare related work, we refer to the former asproblem domain and
the latter as solution domain descriptions of intent. Thesedifferent descriptions or do-
mains of intent are separated by constraints on the sets of concepts expressible using
the language in which they are described which constitute a ”conceptual gap” between
domains [5]. Recent research [6] [7] [8] [9] [10] has seen attempts to bridge this con-
ceptual gap based on the application of methods drawn from the Information Retrieval
(IR) community. These approaches typically index the source code ”documents” of a
System Under Study (SUS) constructing a vocabulary of termsand models of term-
document relationships within the SUS. When a user specifies aquery the vocabulary
and term-document models are consulted in order to determine a set of documents (usu-
ally methods or functions) which are ranked in descending order and returned to the user
as being related to the terms defined in their original (problem domain) query.

Approaches which follow this general schema tend to focus oninformation deriv-
able solely from the source code of the SUS in constructing their models and ranking

documents as being related to a query. While source code is oneartifact used by soft-
ware engineers to express their intent, engineers have traditionally had recourse to use
other artifacts to communicate and record concerns which either were not easily ex-
pressed directly in code (crosscutting concerns for example) or which they intended to
express in code at some other time. Artifacts such as design and requirements docu-
mentation have traditionally been used to express such concerns while more recently
bug tracking databases, online forums and even email have become in some develop-
ment environments the primary mechanisms for expressing and communicating such
concerns. These artifacts serve as a ”human oriented” repository of information related
to a SUS that parallels the source code ”machine orientated”artifacts of the SUS. By
concentrating on source code artifacts alone the concepts and concerns described in
these artifacts cannot be taken into account when evaluating a user’s query. In this pa-
per we present a new approach to the concept location problembased on a cognitively
motivated information retrieval technique which while similar to the general schema
outline above, differs primarily in that it allows us to transparently incorporate informa-
tion derived from non-source code artifacts in implementing a ranked search over the
source code artifacts of a SUS.

In the next section we look at related work on the applicationof information re-
trieval techniques to the concept location problem while also giving a brief overview
of other approaches to the problem. In section 3 we present our approach its theoreti-
cal foundations and implementation. In sections 4 and 5 we present a small experiment
where we evaluate the performance of our technique against related techniques. Finally
in section 6 we present our conclusions and discuss future work.

2 Related Work

The concept location problem put simply is the problem of identifying the subset of
elements comprising a software system related to a set of problem domain concepts. As
such the concept location problem is very similar in intent to the concern localization
and feature location problems in that each is concerned withmapping from the prob-
lem domain to the solution domain. However while the three terms are frequently used
interchangeably we can envisage a distinction in terms of the constraints placed (usu-
ally informally) on the definition of the set of problem domain concepts in each. While
concept location places very little constraint on its definition of a problem domain con-
cept (except that it be defined using human-orientated terms), the concern in concern
localization implies that it is motivated by problem domainconcepts that are also sys-
tem stakeholder interests. Finally feature location goes one step further in constraining
problem domain concepts to be those stakeholder concerns which are also executable
using test cases.

2.1 Feature Location and Concern Localization

Feature location approaches, due to the more stringent constraints they place on the
definition of the problem domain concept set, are able to capitalize on the formal re-
lationships expressed in a function call trace that resultsfrom the execution of one or

more test cases related to a feature or features. Dynamic software analysis or feature
location techniques such as software reconnaissance [11] and formal concept analy-
sis [12], focus on localizing concepts that are expressibleeither through test cases or
through navigation of control and data flow. Unfortunately while a system’s implemen-
tation may imply the intent that led to its development, the intent is not expressed ex-
plicitly in that implementation [13]. As such these techniques are only able to localize
concepts which are expressible as test cases. While this is a limitation, in cases where
there exists no system expert or documentation, they can be of great benefit in assisting
software engineer comprehension. These approaches are also able given enough test
cases to identify sets of elements specific to particular features.

Concern localization approaches, due to their definition ofproblem domain con-
cepts as being that which a system stakeholder is concerned with, tend to involve those
stakeholders (usually software engineers) and their existing knowledge or actions in
defining the mapping between concerns and software elements. Semi-automated or
manual approaches such as IBM’s Concern Manipulation Environment (CME) [14] and
FEAT [15] provide an environment which allows engineers to explicitly describe and
record associations between software elements and user defined concerns. Similarly ar-
tifact recommender systems or agents such as Hipikat [16] suggest pertinent artifacts
(both source code and documentation) to engineers as they engage in an understanding
task by attempting to automatically model the concerns the engineer is currently work-
ing on and making inferences from that model. Mylar [17] is another tool that attempts
to model the concerns or tasks that an engineer is concerned with as a set of evolving
software elements; this information is then used to performfiltering of the elements
presented to the engineer in and IDE on a task by task basis in an attempt to reduce
information overload.

2.2 IR Based Approaches

The concept location problem being very much more liberal inits definition of a prob-
lem domain concept requires approaches which are able to construct relationships be-
tween arbitrary problem domain concepts described in humanorientated terms and the
elements of a software system from only that evidence which already exists in the cor-
pus of software system artifacts. When described like this the concept location problem
would seem to be well fitted by techniques from the information retrieval community
where the goal is to find material (usually documents) of an unstructured nature (usu-
ally text) that satisfy an information need from within large collections [18]. In [6]
Zhao et al describe their attempts at using an IR technique, the Vector Space Model
(VSM), in identifying specific and relevant sets of functions for a set of given feature
descriptions. Their approach sees them construct feature descriptions from natural lan-
guage texts such as requirements and design documentation.These feature documents
are then matched, using the VSM, against query documents derived from identifiers
found in functions in the source code of the SUS.

One of the fundamental problems associated with the VSM, as used by Zhao et al
in [6], is that correlation between term sets is used to compute the similarity measure
between documents or between documents and queries, That is, two documents are
considered similar if they share the same terms. While logical, this scheme requires

that if documents are discussing a particular concept, thento be considered similar
those documents need to use the same terms when describing the concept. Where a
document or a user generated query uses different terms whenreferring to the same
concept then documents that should be considered similar will likely not be classified as
such by VSM. These problems are termed synonymy and polysemyrespectively where
synonymy describes the problem of different terms being used to describe the same
concept and polysemy describes the problem of a single term (depending on context)
having more than one distinct meaning [19]. This is of potentially great significance
to novice software engineers or engineers encountering an unfamiliar system for the
first time who may not possess a large vocabulary of terms withwhich to describe their
concerns and so may be unsuccessful in constructing querieswhich would elicit the
desired results.

Latent Semantic Indexing (LSI) is an extension to the VSM model that attempts
to increase classification accuracy by reducing the impact of the synonymy and pol-
ysemy problems. Whereas VSM computes similarity based on a raw term-document
occurrence matrix (with possibly some term weighting) LSI attempts to alleviate the
problems we have just described by performing an extra analysis step in which the
overall distribution of a term over its usage context, independent of its correlations with
other terms, is first taken into account prior to computing a similarity measure between
documents [20]. This allows otherwise unrecognized or ”latent” relationships between
terms to be exposed and recognized when performing a search.Marcus et al. in [10]
expand on the work in [9] to apply the LSI method directly to the concept location
problem. The authors first index the source code of the SUS identifying and extracting
index terms from identifiers and comments. The authors then partition the SUS into
a set of documents (defined in terms of the index term set) corresponding to the set
of functions defined in the SUS. Finally each document is mapped, using a technique
called Singular Value Decomposition, into the LSI space. Query documents are simi-
larly mapped into the LSI space and the similarity between documents and the query is
computed in a similar fashion as in the VSM. In an attempt to further resolve the lack of
vocabulary problem described previously the authors investigate two mechanisms for
defining the query documents, the first is a simple user generated natural query. The
second sees the authors implement a limited form of query expansion where given a
single query term other potentially related query terms arederived from the LSI space
based on their relationship to the ”seed” query term.

While using the LSI space to identify latent relationships between terms in the
source code of a SUS will identify some previously unrecognized relations, it is only
making use of one part of the available corpus of informationabout the SUS. The work
presented in this paper similarly to [10] employs a sophisticated IR method that seeks
to address the problems of synonymy, polysemy and lack of vocabulary mentioned pre-
viously. However unlike [10] the method we describe provides a structured and cogni-
tively motivated mechanism for incorporating informationderived from the potentially
large (depending on the SUS) corpus of non-source code artifacts in generating sets of
ranked software elements in response to a users query. The next section describes our
approach, its cognitive motivation and implementation.

3 Assisting Concept Location through Language Modeling

Language Modeling (LM) is an approach used in many recent studies in IR that not
only produces promising experimental results comparable with the best IR systems but
also provides a sound theoretical setting [21]. The LM approach to information re-
trieval calculates the conditional probabilityP(Q|D) of generating a queryQ given an
observed documentD. WhereP(Q|D) is calculated based on a probabilistic language
model derived from documentD.

3.1 Classical LM Framework

The classical LM framework can be described as follows; given a queryQ consisting
of a sequence of query termsQ = {q1,q2, ...,qn} the probability of generatingQ from
documentD is equal to the probability of observing the sequence ofn query terms from
Q in D.

P(Q|D) = P(q1,q2, ...,qn|D) (1)

For reasons of computational tractability the independence assumption which states
that terms are statistically independent from each other [22] is often invoked. This as-
sumption results in a unigram model being calculated fromD whereby terms are con-
sidered to be conditionally independent. This means that the order or sequence of occur-
rence of query terms in the document does not need to be considered when calculating
the correspondence of the query and document.

P(Q|D) = ∏
qi∈Q

P(qi|D) (2)

Models such as this have already been used by for recovering traceability links be-
tween source code and high-level documentation. In [23] Antoniol et al. used unigram
estimation based on term frequency to create links that describe the similarity between
elements of the code base (object-orientated classes) and high level system documen-
tation. Antoniol et al. use a stochastic language model based on identifiers found in the
source code elements to calculate the set of conditional probabilities between a given
source code element and the set of system documents.

An alternative formulation of LM in information retrieval is KL-divergence which
estimates two models; one for the query and one for the document, the similarity of the
query and document or score then being determined by the KL-divergence between the
two models.

Score(Q,D) = ∑
qi∈Q

P(qi|Q)× logP(qi|D) (3)

3.2 Extending the Classical LM Framework

While the independence assumption makes the development of retrieval models easier
and the retrieval operation tractable, it does not hold in textual data [22]. In reality a

word may be related to other words [21]. As such the unigram model has the potential
to miss potentially significant dependencies between words; for instance the synonymy
relationship. This deficiency has prompted recent researchinto extending the classical
LM framework.

One approach to extending the classic LM framework, and the one which we inves-
tigate in this paper, is to consider indirect correspondences between query terms and
document terms so that documents can be retrieved even if they don’t contain the orig-
inal query terms. In these approaches a model of relationships between terms is first
defined, then when two terms are compared, if there is no direct correspondence this
relationship model is consulted to see if an indirect match can be made. How the model
of term relationships is implemented allows us classify these extensions to the classical
LM framework as practicing either document expansion or query expansion.

Document expansion approaches [22] use the relationship model to enrich the doc-
ument model so that terms in the relationship model which have related terms in the
document are artificially inserted into the document model.In these approaches then
matching of a query to a document proceeds as normal except that terms not originally
in the document will now also be considered in the evaluation. Query expansion ap-
proaches [21] (investigated in this paper) do not manipulate the document model but
instead modify the query model, identifying terms in the relationship model that are
related to the query terms and then considering these terms when evaluating the query
against document models.

3.3 Query Expansion with Term Relationships

More formally we can define query expansion in the LM framework as an extension
to classical smoothing techniques. In the classical LM framework for a document to
be retrieved given a query that document would have to contain all the query terms. In
order to allow documents which contain only some of the queryterms to be retrieved
the document model or query model can be smoothed in terms of the collection model
so that the probabilities of terms not actually in the document or query are increased to
some small non-zero value.

Unfortunately this form of smoothing while solving the zeroprobability problem
increases the probabilities of all the non-occurring termsin the document uniformly
or proportionally to the term distribution in the whole collection [21]. This means that
terms which are actually not related to those already in the document are artificially
incorporated into the document model (for example), while those terms that deserve to
be incorporated in the model (by their relatedness to terms in the document) receive no
special treatment. For example if the term ”engine” appearsin a document the prob-
ability that a query with the term ”car” should be matched against that document is
higher than if the query contained the term ”desk” instead. In this case it is intuitively
more reasonable to assign a higher probability to the term ”car” due to the relationship
between ”engine” and ”car”.

An alternative solution which we investigate here to smoothing the query model
is to incorporate terms derived from some explicit model of term relationships. Bai et
al. in [21] smooth the original query modelPML (ti|Q) by another probability function

defined over an explicit model of term relationshipsPR (ti|Q) so that the query model
from (3) P(ti|Q) = P(qi|Q) now becomes;

P(ti|Q) = λPML(ti|Q)+(1−λ)PR(ti|Q) (4)

Given this definition forP(ti|Q), Score(Q,D) now becomes;

Score(Q,D) = ∑
qi∈Q

P(qi|Q)× logP(qi|D) (5)

= ∑
ti∈V

[λPML(ti|Q)+(1−λ)PR(ti|Q)]× logP(qi|D) (6)

= λ ∑
qi∈Q

PML(qi|Q)× logP(qi|D)+(1−λ) ∑
ti∈V

PR(ti|Q)× logP(ti|D) (7)

Whereλ is a mixture parameter used to control the influence of the twomodels on
the document scoring function and whereV is the vocabulary or set of unique termsti
in the term relationship model. Given this equation for estimating the query model the
question becomes how does one define a model of explicit term relationships, that is,
how do we definePR(ti|Q)?

3.4 Hyperspace Analogue to Language

A human encountering a new concept derives its meaning via anaccumulation of expe-
rience of the contexts in which the concept appears [24]. HAL(Hyperspace Analogue to
Language) is a cognitively motivated and validated semantic space model for deriving
term co-occurrence relationships from a corpus of text [25]. HAL is significant because
the term associations computed by the HAL model correlate with human judgments in
word association tasks [24].

HAL represents words/terms/concepts as vectors in a high dimensional space based
on lexical co-occurrences. A simple windowing based co-occurrence analysis can be
used to construct a HAL space, whereby a window of sizel-words is passed in one
word increments over the corpus of text. Where two words occurwithin the win-
dow a co-occurrence relationship is defined between them. For an n-word vocabu-
lary this co-occurrence analysis results in ann× n matrix of co-occurrence relation-
ships. A conceptci then can be represented a vector drawn from this matrixci =
〈

wci p1,wci p2, ...wci pn

〉

wherep1, p2, ..., pn are called dimensions ofci and correspond to
the other concepts/words from the vocabulary whichci participates in a co-occurrence
relationship with.wci pi is then the weight ofpi in theci concept vector [24]. An exam-
ple HAL vector for the word ”HAL” derived from the first paragraph of section 3.4 is
given in Fig 1.

Given a HAL vector representation for a conceptci, a set of quality properties
QP(ci) for that concept can be derived. Quality properties are those properties of the
concept which frequently co-occur in the same context as theconcept. A propertypi

of a conceptci is declared a quality property iffwci pi > ∂ , where the threshold∂ is
usually the mean weight for the concept vector [24].

HAL = <analogue:1, appears:1, associations:2, because:2, co-occurrence:1, cognitively:1,
computed:2, concept:1, contexts:1, corpus:1, correlate:1, human:1, hyperspace:1, judgments:1,
language:1, model:1, motivated:1, relationships:1, significant:2, term:2, text:1, word:1>

Fig. 1. Example HAL Vector

3.5 Information Flows

While the co-occurrence matrix at the heart of the HAL representation can be used
directly to make inferences about term relationships, in [26] Song and Bruza propose a
more complex model of term relationships based on HAL vectors. The goal of the HAL-
based information flow model developed by Song and Bruza is toproduce information-
based inferences which correlate with inferences made by humans [27].

Given a source term or set of source termsti, ...,tk and a target conceptt j there is
an information flow from the set of source terms to the target term ti, ...,tk| − t j if the
former suggest or entails the latter to some degree [21]. Thedegree of information flow
from ti, ...,tk to t j is given bydegree(c1 ⊳ c2) (the interested reader is referred to [26]
for the formal definition of information flow). Essentially information flow measures
how many of the quality properties of the source vector are also properties of the target
vector [21], that is, the ratio of the intersection of the setof quality properties ofci and
c j to the number of quality properties inci.

3.6 Query Expansion using Information Flows

Using this measure of the degree of information flow between concepts, given a concept
or set of concepts in the form of a query, we can compute information flow values for
each term in the vocabulary and by imposing a threshold or by selecting a set of the top
ranked terms define a set of terms related by information flow to the terms in the query.
That is we can use HAL derived information flow to definePR(ti|Q).

More formally if we define information flow between terms as a probability:

PIF(t2|t1) =
degree(c1 ⊳ c2)

∑tk∈Vocabulary degree(c1 ⊳ c2)
(8)

then we can definePR(ti|Q) as follows:

PR(ti|Q) = PIF(ti|Q) = ∑
Qi⊆Q

PIF(ti|Q j)×P(Q j|Q) (9)

whereQ j can be a single query term or a group of query terms but usuallycorre-
sponding to the query itself and whereP(Q j|Q) = 1

|Q| .
To limit the number of term relationships considered we can then define a set of

the top ranked IF (Information Flow) relationshipsE using some threshold and only
consider those terms which are part of a relation inE.

PR(ti|Q) = PIF(ti|Q) = ∑
Qi⊆Q∧R(ti,Q j)∈E

PIF(ti|Q j)×P(Q j|Q) (10)

This definition ofPR(ti|Q) can then be used to smooth our query model (7):

Score(Q,D) = λIF ∑qi∈Q PML(qi|Q)× logP(qi|D)

+(1−λIF) ∑
Qi⊆Q∧R(ti,Q j)∈E

PIF(ti|Qk)×P(Q j|Q)× logP(ti|D) (11)

3.7 Application to Concept Location

While recognized for their potential importance in assisting software engineer com-
prehension of unfamiliar systems, it has not been immediately obvious as to how to
make use of intent rich non source code artifacts when implementing software compre-
hension tools or techniques. The Hipikat system [16] being anotable exception in that
it directly incorporates non-source code artifacts in its recommendations of pertinent
software artifacts related to the concerns software engineers are working on.

However direct and explicit use of non-source code artifacts is only one way in
which these artifacts can be used to assist software comprehension. These non-compliable
development artifacts can also serve as a repository of termrelationships specific to
the particular system. The query expansion LM approach, based on the cognitively
motivated HAL & IF representation of term relationships discussed in this paper then
serves as a principled foundation which allows us to incorporate these previously under
utilized development artifacts in combating the concept location problem in software
comprehension.

The modification of the basic HAL & IF query expansion LM framework is trivial.
Instead of calculating a term relationship model from the source code of a SUS, we
generate a HAL space from the non-source code artifacts related to the SUS. This HAL
space is then used in combination with IF analysis to generate sets of terms that are
potentially related to query terms specified by the user which are then used to smooth
the classic LM query model as discussed in this paper. That iswe calculate the query
model smoothing functionPR(ti|Q) not from the source code of the system but from
other documentation artifacts related to the system. The hypothesis for doing this being
that by using natural language non-source code documents tobuild a model of term
relationships we will identify relationships between terms that may not be expressed in
source code documents due to the unrestricted nature of natural language documents.

4 Evaluation

To evaluate our technique, we extended our cognitive assignment Eclipse plug-in [28]
to incorporate the HAL & IF based query expansion model discussed in this paper.
We then conducted a small experiment to quantitatively assess the performance of our
technique in terms of precision and recall versus sets of software elements considered
by a system expert to be relevant to 4 system concern descriptions. Finally we compared
the performance of our technique (QEKLD) against 3 other IR techniques including; a
classic LM approach (LM), a dependency based language modeling based approach
(DLM) and an LSI implementation (LSI).

4.1 System Under Study

The experiment was performed over the CHIVE software visualization tools framework
[29] and associated non-source code documentation. The CHIVE has been employed in
the implementation of several software understanding tools [30] and has been in devel-
opment for over 3 years. The CHIVE core, the framework itself, consists of 7 packages,
25 classes and over 15 KLOC of Java. Finally between the client applications and the
framework there is over 40,000 words of academic and technical text documenting
CHIVE and its client applications. We chose the CHIVE framework as the basis of this
case study because it constitutes a non trivial system with which the authors of this
paper are intimately familiar and because both the source code and documentation of
CHIVE are publicly available allowing the experiment to be replicated.

4.2 Experiment Procedure

Prior to the experiment we constituted a HAL term relationship matrix from the CHIVE
documentation corpus using the freely available AutoMap tool [31], this term relation-
ship model was then loaded into the cognitive assignment Eclipse plug-in. The 4 con-
cern descriptions used in the experiment consisted of 2 feature descriptions, 1 feature
request and a bug report. Query term sets for each of the 4 concern descriptions were
arrived at based on queries generated manually by participants to an earlier experiment
[32] where we used the same concern descriptions.

For each of the 4 concerns the corresponding query term sets were then used to
generate a probability ranking for each source code document in the SUS based on the
HAL & IF query expansion LM approach discussed in this paper.For this experiment
we chose to use the method or function as our document, this decision is in keeping with
other research on this topic [10] [6]. We also computed rankings for each document
using the other IR techniques listed previously.

5 Results and Analysis

To assess and compare the performance of the various IR techniques, we used the av-
erage precision measure of document scoring function performance. Average precision
is defined as the mean of the precision scores obtained after each relevant document
is retrieved, and measures how accurately a document scoring function ranks a set of
known relevant documents. A scoring function that returns more relevant documents
with higher rankings will perform better under the average precision measure when
compared with a scoring function which does not. For exampleif we have a set of 10
relevant documents out of a corpus of 100, a scoring functionthat returned the 10 rel-
evant documents in the top 10 ranking positions would have anaverage precision of 1
where as a document scoring function which did not rank the relevant documents in the
top 10 positions would get an average precision score of< 1. The interested reader is
referred to [33] for a more formal explanation. The average precisionv for a document
scoring function is defined over the set of document rankingsproduced by that function
as follows;

v =
1
R

n

∑
i=1

xi

i

i

∑
k=1

xk (12)

WhereR is the total number of relevant documents in the collection and n is the
number of documents included in the ranked document list. And

where xi =

{

1 i f the ith document is relevant
0otherwise

}

(13)

where xk =

{

1 i f the kth document is relevant
0otherwise

}

(14)

Table 1 presents an analysis of the average precision performances of 4 different
document scoring functions against the experiment SUS.

Table 1. Average Precision Analysis

task LM DLM LSI QEKLD
Task 10.0840707970.2663974660.4648179450.527995294
Task 20.0358071030.2005020690.2964350540.528178496
Task 30.0386673820.4980587640.1944460730.405287366
Task 40.0294117650.076923077 0.5 0.25

Here we see that QEKLD (Query Expansion Kullback-Leibler Divergence - the ap-
proach discussed in the paper) significantly out performs the LSI document scoring
function in all of the first 3 tasks. In task 1 we see a relatively small 4% difference
between the two techniques however in tasks 2 and 3 we see a 23%and 21% difference
respectively. The last task (task 4 the bug location task) sees the LSI technique outper-
form all other techniques by a significant margin. Table 2 presents the mean average
precision for each of the techniques.

Table 2. Mean Average Precision

LM DLM LSI QEKLD
3 MAP 0.0528484280.3216527660.3185663570.487153719
4 MAP 0.0469892620.2604703440.3639247680.427865289

To reduce the distorting impact of task 4 (the bug location task) on the mean average
precision analysis we have also calculated an average over the first 3 tasks only. From
this analysis we can see that QEKLD is able to outperform LSI on average by between
6% and 17%.

Overall we were pleased with the performance of the QEKLD technique. While the
experiment was small the results generated by our techniquewere, we think, sufficient
to have a positive impact on a software engineer attempts to understand the experiment
system. In comparison with the LSI technique, while QEKLD was able to out perform
it on all tasks (excluding the bug location task), it remainsto be seen if an average
10% to 20% difference in average precision has any impact on the performance of a
software engineer using a search tool based on the technique. Even given a set of doc-
uments ranked with reasonably good recall and precision, anengineer still has to make
a decision as to what elements they consider relevant to the task or concern they are
attempting to localize. In this respect ranked search only offers suggestions and as such
a small difference in precision and recall of one technique vs. another may not have
a significant impact. What is potentially more significant is the case where documents
which are related to the concern are ranked very low (out sidethe top 10 or 20 doc-
uments) in the result set. In this case it is unlikely that theengineer will identify the
document as being related to their concern from search aloneand will need to consult
other sources of information, it is here that hybrid dynamicanalysis - IR approaches
such as [7] would likely be of great benefit.

6 Conclusions & Future Work

In this paper we have presented a new approach to assisting concept location in software
comprehension. While recent research has seen the application of several IR techniques
to the concept location problem, these approaches tend to focus on information deriv-
able from the source code of the system under study alone. While the source code is an
incredibly rich and useful source of information produced by software development and
maintenance processes it is not the only artifact generated. Engineers have traditionally
used other non-source code artifacts to express concepts and concerns which they were
either to later express in code or which could not be expressed directly in the code. The
approach we have presented is based on a cognitively motivated information retrieval
technique which allows us to incorporate information from non-source code artifacts in
implementing a ranked search over the source code documentsin a system under study.
We have presented the background behind our approach as wellas its application to
software engineering and software comprehension research. We also describe a small
experiment we conducted to compare the performance of our technique against some
other IR techniques. We show through this experiment that our technique equals or out
performs other similar techniques. In future work we intendto perform more and larger
experiments comparing our approach with similar approaches against different code
bases and document corpuses to generalize our findings and toassess the performance
of our technique.

7 Acknowledgments

This research was supported by Lero. Lero is supported by Science Foundation Ireland
(under grant no. 03/CE2/I3031).

References

1. Pennington, N.: Comprehension strategies in programming. presented at Empirical Studies of
Programmers: Second Workshop. New Jersey. (1987)

2. Good, J.: Programming Paradigms, Information Types and Graphical Representations: Em-
pirical Investigations of Novice Program Comprehension. University of Edinburgh. (1999)

3. Biggerstaff, T. J., Mitbander, B. G., Webster, D. E.: Program understanding and the concept
assignment problem. Commun. ACM.37 (1994), 72–82

4. Simonyi, C.: Intentional Programming. The Intentional Software Corporation. (2005)
5. Rajlich V., Wilde N.: The role of concepts in program comprehension.Proceedings 10th In-

ternational Workshop on Program Comprehension. (2002)
6. Zhao, W., Zhang, L., Liu, Y., Sun, J., Yang, F.: SNIAFL: Towards a Static Non-Interactive

Approach to Feature Location. Proceedings of International Conference on Software Engi-
neering. Edinburgh. Scotland. (2004)

7. Poshyvanyk, D., Marcus, A., Rajlich, V., Gueheneuc, Y.-G. and Antoniol, G.: Combining
Probabilistic Ranking and Latent Semantic Indexing for Feature Identification. Proceedings
of 14th IEEE International Conference on Program Comprehension.(2006)

8. Poshyvanyk, D., Marcus, A., Dong, Y.: JIRiSS - an Eclipse plug-in for Source Code Explo-
ration. Presented at 14th IEEE International Conference on ProgramComprehension. (2006)

9. Marcus, A., Maletic, J. I.: Recovering documentation-to-source-code traceability links using
latent semantic indexing. Proceedings of 25th International Conference on Software Engi-
neering. (2003)

10. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J. I.: An information retrieval approach to
concept location in source code. Proceedings of 11th Working Conference on Reverse Engi-
neering. (2004)

11. Wilde, N., Scully, M. C.: Software reconnaissance: Mapping program features to code. Jour-
nal of Software Maintenance: Research and Practice.7 (1995) 49–62

12. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE Transactions
on Software Engineering.29 (2003) 210–224

13. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Patterns Frame-
works Models and Tools. John Wiley and Sons (2004)

14. Chung, W., Harrison, W., Kruskal, V., Ossher, H., Stanley, J., Sutton, M., P. Tarr.: Work-
ing with Implicit Concerns in the Concern Manipulation Environment. Presented at Linking
Aspect Technology and Evolution Co hosted with Aspect Orientated Software Development.
Chicago. USA. (2005)

15. Robillard, M. P.: Representing Concerns in Source Code. The University of British
Columbia. (2003)

16. Cubranic, D., Murphy, G. C., Singer, J., Booth, K. S.: Hipikat: aproject memory for software
development. Software Engineering, IEEE Transactions on,31 (2005) 446–465

17. Murphy, G. C., Kersten, M., Findlater, L.: How Are Java Software Developers Using the
Eclipse IDE?. IEEE Software23 (2006) 76–83

18. Manning, C. D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval: Cambridge
University Press. (2007)

19. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., Harshman, R.: Indexing by
Latent Semantic Analysis, Journal of the American Society of Information Science41 (1990)
391–407

20. Landauer, T. K., Foltz, P. W., Laham, D.: Introduction to Latent Semantic Analysis. Dis-
course Processes (1998) 259–248

21. Bai, J., Song, D., Bruza, P., Nie, J.-Y., Cao, G.: Query expansion using term relationships in
language models for information retrieval. Presented at 14th ACM international conference
on Information and knowledge management. Bremen. Germany. (2005)

22. Gao, J., Nie, J.-Y., Wu, G., Cao, G. Dependence language model for information retrieval.
Proceedings of the 27th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval. Sheffield. United Kingdom. ACM Press. (2004) 170–177

23. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links
between code and documentation. Software Engineering. IEEE Transactions on.28 (2002)
970–983

24. Bruza, P. D., Song, D.: Inferring query models by computing information flow. Proceed-
ings of the eleventh international conference on Information and knowledge management.
McLean. Virginia. USA. ACM Press. (2002) 260–269

25. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods. Instruments and Computers. (1997) 203–208

26. Song, D., Bruza, P.: Discovering information flow suing high dimensional conceptual space.
Proceedings of the 24th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval. New Orleans. Louisiana. United States. ACM Press. (2001)
327–333

27. Song, D., Bruza, P.: Towards Context-sensitive Information Inference. Journal of the Amer-
ican Soceity for Information Science and Technology (JASIST).4 (2003) 321-334

28. Cleary, B., Exton, C.: The Cognitive Assignment Eclipse Plug-in (ICPC 06). Presented at
Internation Conference on Program Comprehension. Athens. Greece. (2006)

29. Cleary, B., Exton, C.: CHIVE - a program source visualisation framework. Presented at 12th
IEEE International Workshop on Program Comprehension. Bari. Italy. (2004)

30. LeGear, A., Cleary, B., Buckley, J., Collins, J. J., Exton, C.: Making a Reuse Aspectual
View Explicit in Existing Software. Presented at Linking Aspect Technology and Evolution
Co hosted with Aspect Orientated Software Development (ASOD 05). Chicago. USA. (2005)

31. Carley K. M., Diesner, J. AutoMap1.2 - Extract, analyze, represent, and compare mental
models from texts. Carnegie Mellon University. School of Computer Science. Institute for
Software Research International. Technical Report CMU-ISRI-04-100. (2004)

32. Cleary, B., Exton, C.: Assisting Concept Assignment using Probabilistic Classification and
Cognitive Mapping. Presented at 2nd International Workshop on Supporting Knowledge Col-
laboration in Software Development (KSCD2006). Tokyo. Japan. (2006)

33. Kishida, K.: Property of Average Precision and its Generalization: An Examination of Eval-
uation Indicator for Information Retrieval Experiments. Technical Report. National Institute
of Informatics. Tokyo. Japan. NII-2005-014E (2005)

