PPIG'07 Full paper

Assisting Concept L ocation in Software Comprehension

Brendan Cleary and Chris Exton

Lero, University of Limerick, Ireland,
brendan.clearyQul.ie

Abstract. Concept location, the problem of associating human oriented concepts
with their counterpart solution domain concepts, is a fundamental protbiam

lies at the heart of software comprehension. Recent researchtbagpted to
alleviate the impact of the concept location problem through the application of
methods drawn from the Information Retrieval (IR) community. Hergvesent

a new approach based on a complimentary IR method which also hasi@ sou
basis in cognitive theory. We compare our approach to related worlsghran
experiment and present our conclusions. . ..

1 Introduction

While how software engineers understand or comprehend #terag they work with
is frequently described in terms of processes, models ategfies [1] [2], it can also be
described in terms of a person’s ability to communicatdligently in human oriented
terms about a systems implementation. Biggerstaff dessalperson as understanding
a program when able to explain the program, its structusehehavior, its effects on
its operational context, and its relationships to its aggion domain in terms that are
qualitatively different from the tokens used to constriet $ource code of the program
[3]. This categorization of how an engineer understandgtavace system rests on two
different descriptions of "computational intent” [4] anldet ability of the engineer to
associate concepts appearing in one description of intiéimtke concepts in another.
In software engineering we are usually concerned with twardptions of intent;
one described using a human language another using a progrgnianguage. For
clarity and to compare related work, we refer to the formepmblem domain and
the latter as solution domain descriptions of intent. Thdifferent descriptions or do-
mains of intent are separated by constraints on the setsnokepts expressible using
the language in which they are described which constitutoaceptual gap” between
domains [5]. Recent research [6] [7] [8] [9] [10] has seeeratits to bridge this con-
ceptual gap based on the application of methods drawn frerifiormation Retrieval
(IR) community. These approaches typically index the sewade "documents” of a
System Under Study (SUS) constructing a vocabulary of texntsmodels of term-
document relationships within the SUS. When a user specifipgesy the vocabulary
and term-document models are consulted in order to deteranset of documents (usu-
ally methods or functions) which are ranked in descendidgicand returned to the user
as being related to the terms defined in their original (mabtiomain) query.
Approaches which follow this general schema tend to focumfimmmation deriv-
able solely from the source code of the SUS in constructieg thodels and ranking

42

documents as being related to a query. While source code iartifeect used by soft-
ware engineers to express their intent, engineers haviéidradly had recourse to use
other artifacts to communicate and record concerns whittereivere not easily ex-
pressed directly in code (crosscutting concerns for exapglwhich they intended to
express in code at some other time. Artifacts such as designmesjuirements docu-
mentation have traditionally been used to express suchecosavhile more recently
bug tracking databases, online forums and even email hase®in some develop-
ment environments the primary mechanisms for expressidgcammunicating such
concerns. These artifacts serve as a "human oriented”iteposf information related
to a SUS that parallels the source code "machine orientatdidacts of the SUS. By
concentrating on source code artifacts alone the conceptxe@ncerns described in
these artifacts cannot be taken into account when evafuatirser’s query. In this pa-
per we present a new approach to the concept location prdidsed on a cognitively
motivated information retrieval technique which while ganto the general schema
outline above, differs primarily in that it allows us to teparently incorporate informa-
tion derived from non-source code artifacts in implememntinranked search over the
source code artifacts of a SUS.

In the next section we look at related work on the applicabbinformation re-
trieval techniques to the concept location problem whiajiving a brief overview
of other approaches to the problem. In section 3 we preserdgproach its theoreti-
cal foundations and implementation. In sections 4 and 5 weqmt a small experiment
where we evaluate the performance of our technique agalased techniques. Finally
in section 6 we present our conclusions and discuss futurie. wo

2 Related Work

The concept location problem put simply is the problem ohtidging the subset of
elements comprising a software system related to a set bfggrodomain concepts. As
such the concept location problem is very similar in intentite concern localization
and feature location problems in that each is concerned mwithping from the prob-
lem domain to the solution domain. However while the thremgeare frequently used
interchangeably we can envisage a distinction in termsefttnstraints placed (usu-
ally informally) on the definition of the set of problem domaioncepts in each. While
concept location places very little constraint on its défni of a problem domain con-
cept (except that it be defined using human-orientated Jethes concern in concern
localization implies that it is motivated by problem domaoncepts that are also sys-
tem stakeholder interests. Finally feature location goesstep further in constraining
problem domain concepts to be those stakeholder concerich ate also executable
using test cases.

2.1 FeatureL ocation and Concern Localization

Feature location approaches, due to the more stringentraoris they place on the
definition of the problem domain concept set, are able totalige on the formal re-
lationships expressed in a function call trace that restdts the execution of one or

43

more test cases related to a feature or features. Dynantigesefanalysis or feature
location techniques such as software reconnaissance fitilLfoamal concept analy-

sis [12], focus on localizing concepts that are expressliteer through test cases or
through navigation of control and data flow. Unfortunatelyilesa system’s implemen-

tation may imply the intent that led to its development, thi@mt is not expressed ex-
plicitly in that implementation [13]. As such these techrégq are only able to localize
concepts which are expressible as test cases. While thignstation, in cases where

there exists no system expert or documentation, they cahdreat benefit in assisting

software engineer comprehension. These approaches arakdés given enough test
cases to identify sets of elements specific to particulaufea.

Concern localization approaches, due to their definitioproblem domain con-
cepts as being that which a system stakeholder is conceritigdend to involve those
stakeholders (usually software engineers) and theiriegignowledge or actions in
defining the mapping between concerns and software elem@eisi-automated or
manual approaches such as IBM’s Concern Manipulation Bnmient (CME) [14] and
FEAT [15] provide an environment which allows engineersxplieitly describe and
record associations between software elements and useedefincerns. Similarly ar-
tifact recommender systems or agents such as Hipikat [Iffjesi pertinent artifacts
(both source code and documentation) to engineers as tigagern an understanding
task by attempting to automatically model the concerns tiggneer is currently work-
ing on and making inferences from that model. Mylar [17] isthier tool that attempts
to model the concerns or tasks that an engineer is conceritieéisva set of evolving
software elements; this information is then used to perftittering of the elements
presented to the engineer in and IDE on a task by task basis attampt to reduce
information overload.

2.2 IR Based Approaches

The concept location problem being very much more liber@kinefinition of a prob-
lem domain concept requires approaches which are able giragtrelationships be-
tween arbitrary problem domain concepts described in huwriantated terms and the
elements of a software system from only that evidence wHiglady exists in the cor-
pus of software system artifacts. When described like tldstmncept location problem
would seem to be well fitted by techniques from the informatietrieval community
where the goal is to find material (usually documents) of astrustured nature (usu-
ally text) that satisfy an information need from within largollections [18]. In [6]
Zhao et al describe their attempts at using an IR technidueeMéctor Space Model
(VSM), in identifying specific and relevant sets of functicior a set of given feature
descriptions. Their approach sees them construct featig@igtions from natural lan-
guage texts such as requirements and design documentHtiese feature documents
are then matched, using the VSM, against query documenitgederom identifiers
found in functions in the source code of the SUS.

One of the fundamental problems associated with the VSMsad by Zhao et al
in [6], is that correlation between term sets is used to cdmfhe similarity measure
between documents or between documents and queries, Thabislocuments are
considered similar if they share the same terms. While Ibgihss scheme requires

a4

that if documents are discussing a particular concept, thdme considered similar
those documents need to use the same terms when describicgribept. Where a
document or a user generated query uses different terms welfeming to the same
concept then documents that should be considered simildikely not be classified as
such by VSM. These problems are termed synonymy and polysespgctively where
synonymy describes the problem of different terms beingl usedescribe the same
concept and polysemy describes the problem of a single @epefding on context)
having more than one distinct meaning [19]. This is of pa&diytgreat significance
to novice software engineers or engineers encounteringhamiliar system for the
first time who may not possess a large vocabulary of termswiiibh to describe their
concerns and so may be unsuccessful in constructing quehies would elicit the
desired results.

Latent Semantic Indexing (LSI) is an extension to the VSM eldHat attempts
to increase classification accuracy by reducing the imphtteosynonymy and pol-
ysemy problems. Whereas VSM computes similarity based omvaeman-document
occurrence matrix (with possibly some term weighting) L&&mpts to alleviate the
problems we have just described by performing an extra aizatep in which the
overall distribution of a term over its usage context, inetggent of its correlations with
other terms, is first taken into account prior to computingralarity measure between
documents [20]. This allows otherwise unrecognized oefifitrelationships between
terms to be exposed and recognized when performing a sédecbus et al. in [10]
expand on the work in [9] to apply the LSI method directly te ttoncept location
problem. The authors first index the source code of the SUSifgi;mig and extracting
index terms from identifiers and comments. The authors tlatitipn the SUS into
a set of documents (defined in terms of the index term setgspanding to the set
of functions defined in the SUS. Finally each document is radppsing a technique
called Singular Value Decomposition, into the LS| spaceei@ulocuments are simi-
larly mapped into the LSI space and the similarity betweetudwents and the query is
computed in a similar fashion as in the VSM. In an attempt tthier resolve the lack of
vocabulary problem described previously the authors ty&te two mechanisms for
defining the query documents, the first is a simple user geateratural query. The
second sees the authors implement a limited form of quergresipn where given a
single query term other potentially related query termsdarésed from the LS| space
based on their relationship to the "seed” query term.

While using the LSI space to identify latent relationshipsween terms in the
source code of a SUS will identify some previously unrecegdirelations, it is only
making use of one part of the available corpus of informagibaut the SUS. The work
presented in this paper similarly to [10] employs a soptéséid IR method that seeks
to address the problems of synonymy, polysemy and lack cflwdary mentioned pre-
viously. However unlike [10] the method we describe prosidestructured and cogni-
tively motivated mechanism for incorporating informatiderived from the potentially
large (depending on the SUS) corpus of non-source codacdiin generating sets of
ranked software elements in response to a users query. kheewion describes our
approach, its cognitive motivation and implementation.

45

3 Assisting Concept L ocation through Language M odeling

Language Modeling (LM) is an approach used in many recemnliesun IR that not
only produces promising experimental results comparalifetive best IR systems but
also provides a sound theoretical setting [21]. The LM apphoto information re-
trieval calculates the conditional probabil®(Q|D) of generating a quer§) given an
observed documem. WhereP(Q|D) is calculated based on a probabilistic language
model derived from documeil.

3.1 Classical LM Framework

The classical LM framework can be described as follows; maejueryQ consisting
of a sequence of query terrs= {qs,0p, ...,dn} the probability of generatin@® from
documenD is equal to the probability of observing the sequenceadery terms from
QinD.

P(Q|D) = P (01,92, -..,0n|D) (1)

For reasons of computational tractability the independessumption which states
that terms are statistically independent from each oth#rifPoften invoked. This as-
sumption results in a unigram model being calculated fidbrmhereby terms are con-
sidered to be conditionally independent. This means tlatittier or sequence of occur-
rence of query terms in the document does not need to be evadid/hen calculating
the correspondence of the query and document.

P(QD) = [] P(ailD) (2)
I

Models such as this have already been used by for recovedogability links be-
tween source code and high-level documentation. In [23bAiol et al. used unigram
estimation based on term frequency to create links thatitesthe similarity between
elements of the code base (object-orientated classes)igindelel system documen-
tation. Antoniol et al. use a stochastic language modeldasédentifiers found in the
source code elements to calculate the set of conditiondlafitities between a given
source code element and the set of system documents.

An alternative formulation of LM in information retrievad iKL-divergence which
estimates two models; one for the query and one for the docynie similarity of the
query and document or score then being determined by theivdreggence between the
two models.

Score(Q,D) = % P(ai|Q) x logP (| D) 3)
gi€Q

3.2 ExtendingtheClassical LM Framework

While the independence assumption makes the developmesttriefal models easier
and the retrieval operation tractable, it does not hold xtued data [22]. In reality a

46

word may be related to other words [21]. As such the unigrardehbas the potential
to miss potentially significant dependencies between wdodénstance the synonymy
relationship. This deficiency has prompted recent resaatolextending the classical
LM framework.

One approach to extending the classic LM framework, and tigenhich we inves-
tigate in this paper, is to consider indirect correspondsrimtween query terms and
document terms so that documents can be retrieved everyitltirét contain the orig-
inal query terms. In these approaches a model of relatipadhgtween terms is first
defined, then when two terms are compared, if there is notdigacespondence this
relationship model is consulted to see if an indirect mathlze made. How the model
of term relationships is implemented allows us classifséhextensions to the classical
LM framework as practicing either document expansion orygegpansion.

Document expansion approaches [22] use the relationshiiehto enrich the doc-
ument model so that terms in the relationship model whictehalated terms in the
document are artificially inserted into the document mottethese approaches then
matching of a query to a document proceeds as normal excapetims not originally
in the document will now also be considered in the evaluatf@mery expansion ap-
proaches [21] (investigated in this paper) do not manipulae document model but
instead modify the query model, identifying terms in theatieihship model that are
related to the query terms and then considering these telras @valuating the query
against document models.

3.3 Query Expansion with Term Relationships

More formally we can define query expansion in the LM framdwas an extension
to classical smoothing techniques. In the classical LM &awrk for a document to
be retrieved given a query that document would have to comtbthe query terms. In
order to allow documents which contain only some of the quemns to be retrieved
the document model or query model can be smoothed in terne afdtlection model
so that the probabilities of terms not actually in the docohoe query are increased to
some small non-zero value.

Unfortunately this form of smoothing while solving the zgmmbability problem
increases the probabilities of all the non-occurring teimthe document uniformly
or proportionally to the term distribution in the whole @altion [21]. This means that
terms which are actually not related to those already in timuchent are artificially
incorporated into the document model (for example), wiiitese terms that deserve to
be incorporated in the model (by their relatedness to temntisd document) receive no
special treatment. For example if the term "engine” appéaes document the prob-
ability that a query with the term "car” should be matchediagiathat document is
higher than if the query contained the term "desk” insteadhis case it is intuitively
more reasonable to assign a higher probability to the teari tue to the relationship
between "engine” and "car”.

An alternative solution which we investigate here to smuttthe query model
is to incorporate terms derived from some explicit modelesfit relationships. Bai et
al. in [21] smooth the original query modBjy_ (ti|Q) by another probability function

47

defined over an explicit model of term relationshiRpgti|Q) so that the query model
from (3) P(t;|Q) = P(q;|Q) now becomes;

P(ti|Q) = ARuL(ti|Q) + (1—A)Pk(ti|Q) (4)
Given this definition folP(t;|Q), Score(Q, D) now becomes;
Score(Q,D) = ¥ P(q|Q) x logP(qi|D) (5)
qeQ
= }v[/\ RuL(ti|Q) + (1= A)Rk(ti|Q)] x logP(ci| D) (6)
tie

=A > Bu(qilQ) xlogP(qi|D) + (1—A) Z/PR(ti|Q) x logP(ti|D) ()
Gi€Q te
WhereA is a mixture parameter used to control the influence of therhodels on
the document scoring function and whétés the vocabulary or set of unique ters
in the term relationship model. Given this equation forraating the query model the
question becomes how does one define a model of explicit telatianships, that is,
how do we definék(ti|Q)?

3.4 Hyperspace Analogueto Language

A human encountering a new concept derives its meaning v@é@eumulation of expe-
rience of the contexts in which the concept appears [24]. ftAperspace Analogue to
Language) is a cognitively motivated and validated sernapace model for deriving
term co-occurrence relationships from a corpus of text.[A3]L is significant because
the term associations computed by the HAL model correlatie imiman judgments in
word association tasks [24].

HAL represents words/terms/concepts as vectors in a higkemional space based
on lexical co-occurrences. A simple windowing based caioence analysis can be
used to construct a HAL space, whereby a window of simerds is passed in one
word increments over the corpus of text. Where two words oedgthin the win-
dow a co-occurrence relationship is defined between themafm-word vocabu-
lary this co-occurrence analysis results inrar n matrix of co-occurrence relation-
ships. A concept; then can be represented a vector drawn from this mafrix
(Weipy , Wei g ---We; pn) Whereps, pa, ..., pn are called dimensions of and correspond to
the other concepts/words from the vocabulary witcparticipates in a co-occurrence
relationship withwg,, is then the weight ofy; in thec; concept vector [24]. An exam-
ple HAL vector for the word "HAL" derived from the first paraaph of section 3.4 is
given in Fig 1.

Given a HAL vector representation for a concepta set of quality properties
QP(ci) for that concept can be derived. Quality properties areethmwsperties of the
concept which frequently co-occur in the same context asdineept. A propertyp;
of a concept; is declared a quality property iffi;,, > d , where the threshol@ is
usually the mean weight for the concept vector [24].

48

HAL = <analogue:1, appears:1, associations:2, because:2, co-occukrecmgnitively:1,
computed:2, concept:1, contexts:1, corpus:1, correlate:1, humapdrdpace:1, judgmentsil,
language:1, model:1, motivated:1, relationships:1, significant:2, termt2] tesord: 1>

Fig. 1. Example HAL Vector

3.5 Information Flows

While the co-occurrence matrix at the heart of the HAL repméestéon can be used
directly to make inferences about term relationships, 6] Rong and Bruza propose a
more complex model of term relationships based on HAL vecttine goal of the HAL-
based information flow model developed by Song and Bruzapsaduce information-
based inferences which correlate with inferences made tnaha [27].

Given a source term or set of source tems.,tx and a target concept there is
an information flow from the set of source terms to the targent;, ...,t| —t; if the
former suggest or entails the latter to some degree [21]dEhece of information flow
fromt;,....t to tj is given bydegree(cy < cp) (the interested reader is referred to [26]
for the formal definition of information flow). Essentiallpformation flow measures
how many of the quality properties of the source vector ese ptoperties of the target
vector [21], that is, the ratio of the intersection of theaequality properties o€; and
cj to the number of quality properties @

3.6 Query Expansion using Information Flows

Using this measure of the degree of information flow betwegtepts, given a concept
or set of concepts in the form of a query, we can compute indgiom flow values for
each term in the vocabulary and by imposing a threshold oelgctng a set of the top
ranked terms define a set of terms related by information ftothie terms in the query.
That is we can use HAL derived information flow to deffagt;|Q).

More formally if we define information flow between terms agahability:

degree(cy <¢p)

= 8
ir (2lty) ZtkeVOCabularydegree(Cl aCp) (®)

then we can definBx(tj|Q) as follows:
RR(iIQ) =Rr(t|Q = 5 Rr(tQ)) xP(Qj|Q) 9)

QcQ
whereQj can be a single query term or a group of query terms but usoatie-
sponding to the query itself and whe?éQ;|Q) = \%I .
To limit the number of term relationships considered we damtdefine a set of
the top ranked IF (Information Flow) relationshigsusing some threshold and only
consider those terms which are part of a relatio&.in

Pr(ti|Q) = Rr(ti|Q) = > RF(tiQj) x P(Qj[Q) (10)
QiCQAR(,Qj)€E

49

This definition ofPk(ti|Q) can then be used to smooth our query model (7):

Score(Q,D) = AiF 3 g eq PuL(Gi|Q) x logP(qi|D)

+(1—Nig) > RE (ti|Q«) x P(Qj|Q) x logP(t;|D) (11)
QiICQAR(,Qj)€E

3.7 Application to Concept L ocation

While recognized for their potential importance in assgtioftware engineer com-
prehension of unfamiliar systems, it has not been immedgliatavious as to how to
make use of intent rich non source code artifacts when img@heimg software compre-
hension tools or techniques. The Hipikat system [16] beingtable exception in that
it directly incorporates non-source code artifacts in @sammendations of pertinent
software artifacts related to the concerns software eeginare working on.

However direct and explicit use of non-source code artféstonly one way in
which these artifacts can be used to assist software compsain. These non-compliable
development artifacts can also serve as a repository of telationships specific to
the particular system. The query expansion LM approachecdas the cognitively
motivated HAL & IF representation of term relationshipsadissed in this paper then
serves as a principled foundation which allows us to incafgathese previously under
utilized development artifacts in combating the concepatimn problem in software
comprehension.

The modification of the basic HAL & IF query expansion LM franmk is trivial.
Instead of calculating a term relationship model from tharse code of a SUS, we
generate a HAL space from the non-source code artifactedsa the SUS. This HAL
space is then used in combination with IF analysis to geeeats of terms that are
potentially related to query terms specified by the user whie then used to smooth
the classic LM query model as discussed in this paper. Thaeisalculate the query
model smoothing functio®(ti|Q) not from the source code of the system but from
other documentation artifacts related to the system. Thetimesis for doing this being
that by using natural language non-source code documettsiltba model of term
relationships we will identify relationships between terthat may not be expressed in
source code documents due to the unrestricted nature ohhltnguage documents.

4 Evaluation

To evaluate our technique, we extended our cognitive assghEclipse plug-in [28]
to incorporate the HAL & IF based query expansion model dised in this paper.
We then conducted a small experiment to quantitativelysastee performance of our
technique in terms of precision and recall versus sets dfvaoé elements considered
by a system expert to be relevant to 4 system concern desaspFEinally we compared
the performance of our technique (QEKLD) against 3 otherlghhiques including; a
classic LM approach (LM), a dependency based language mgdehsed approach
(DLM) and an LS| implementation (LSI).

50

4.1 System Under Study

The experiment was performed over the CHIVE software vigatibn tools framework

[29] and associated non-source code documentation. TheERks been employed in
the implementation of several software understandingstf3fl] and has been in devel-
opment for over 3 years. The CHIVE core, the framework itsehsists of 7 packages,
25 classes and over 15 KLOC of Java. Finally between thetdipgplications and the

framework there is over 40,000 words of academic and teehmtéxt documenting

CHIVE and its client applications. We chose the CHIVE framéwas the basis of this
case study because it constitutes a non trivial system witislwthe authors of this

paper are intimately familiar and because both the sourde anad documentation of
CHIVE are publicly available allowing the experiment to leplicated.

4.2 Experiment Procedure

Prior to the experiment we constituted a HAL term relatiopshatrix from the CHIVE
documentation corpus using the freely available AutoMap [®1], this term relation-
ship model was then loaded into the cognitive assignmetpgecplug-in. The 4 con-
cern descriptions used in the experiment consisted of rfeatescriptions, 1 feature
request and a bug report. Query term sets for each of the £nodescriptions were
arrived at based on queries generated manually by pantisipa an earlier experiment
[32] where we used the same concern descriptions.

For each of the 4 concerns the corresponding query term s&ts thven used to
generate a probability ranking for each source code docuiméine SUS based on the
HAL & IF query expansion LM approach discussed in this paper.this experiment
we chose to use the method or function as our document, thisiole is in keeping with
other research on this topic [10] [6]. We also computed nagkifor each document
using the other IR techniques listed previously.

5 Resultsand Analysis

To assess and compare the performance of the various IRigeelsnwe used the av-
erage precision measure of document scoring function pedice. Average precision
is defined as the mean of the precision scores obtained aftérrelevant document
is retrieved, and measures how accurately a document gclonction ranks a set of
known relevant documents. A scoring function that returmmgenrelevant documents
with higher rankings will perform better under the averagecjsion measure when
compared with a scoring function which does not. For exariple have a set of 10
relevant documents out of a corpus of 100, a scoring fun¢tiahreturned the 10 rel-
evant documents in the top 10 ranking positions would havavarage precision of 1
where as a document scoring function which did not rank tlevaat documents in the
top 10 positions would get an average precision score bf The interested reader is
referred to [33] for a more formal explanation. The averageigionv for a document
scoring function is defined over the set of document rankmgduced by that function
as follows;

51

(12)

10 x i
V== - X
Ri; ! kzl “

WhereR is the total number of relevant documents in the collectiod mis the
number of documents included in the ranked document listl. An

1if theithdocument isrel evant

wherex; = { Ootherwise } (13)
1if thekthdocument isrel evant

wherex, = { Ootherwise } (14)

Table 1 presents an analysis of the average precision paafaes of 4 different
document scoring functions against the experiment SUS.

Table 1. Average Precision Analysis

task LM DLM LSI QEKLD

Task 1
Task 2
Task 3
Task 4

0.08407079
0.03580710
0.03866738
0.02941176

10.26639746
.20050206
10.49805876

1.07692307

0.46481794
#.29643505
D.19444607

¥ 05

1).52799529
D.52817849
1.40528736

Oy Oy &=

0.25

Here we see that QEKLD (Query Expansion Kullback-Leiblerddgence - the ap-
proach discussed in the paper) significantly out perfornesLiil document scoring
function in all of the first 3 tasks. In task 1 we see a relagiv@hall 4% difference
between the two techniques however in tasks 2 and 3 we see ar28%4 % difference
respectively. The last task (task 4 the bug location task3 siee LS| technique outper-
form all other techniques by a significant margin. Table Zen¢s the mean average
precision for each of the techniques.

Table 2. Mean Average Precision

LM DLM LSI QEKLD
3 MAP|0.0528484218).32165276(.31856635]0.487153719
4 MAP|0.04698926/0.260470341D.36392476¢.42786528D

To reduce the distorting impact of task 4 (the bug locatigk)tan the mean average
precision analysis we have also calculated an average lowdirst 3 tasks only. From
this analysis we can see that QEKLD is able to outperform lrSdwerage by between
6% and 17%.

52

Overall we were pleased with the performance of the QEKLBDnéue. While the
experiment was small the results generated by our techmigoe, we think, sufficient
to have a positive impact on a software engineer attemptsderstand the experiment
system. In comparison with the LSI technique, while QEKLDsvadle to out perform
it on all tasks (excluding the bug location task), it remainse seen if an average
10% to 20% difference in average precision has any impachermpérformance of a
software engineer using a search tool based on the techitigaa given a set of doc-
uments ranked with reasonably good recall and precisioapngmeer still has to make
a decision as to what elements they consider relevant taastedr concern they are
attempting to localize. In this respect ranked search offér®suggestions and as such
a small difference in precision and recall of one technigsieanother may not have
a significant impact. What is potentially more significanttie tase where documents
which are related to the concern are ranked very low (out tideop 10 or 20 doc-
uments) in the result set. In this case it is unlikely thatehgineer will identify the
document as being related to their concern from search alpdeavill need to consult
other sources of information, it is here that hybrid dynaari@lysis - IR approaches
such as [7] would likely be of great benefit.

6 Conclusionsé& FutureWork

In this paper we have presented a new approach to assistingtdocation in software
comprehension. While recent research has seen the applicdeveral IR techniques
to the concept location problem, these approaches tencttrs fon information deriv-
able from the source code of the system under study aloneeWglsource code is an
incredibly rich and useful source of information producgdbftware development and
maintenance processes it is not the only artifact genertegineers have traditionally
used other non-source code artifacts to express concaptanerns which they were
either to later express in code or which could not be expdegiectly in the code. The
approach we have presented is based on a cognitively mediviatormation retrieval
technique which allows us to incorporate information froom+source code artifacts in
implementing a ranked search over the source code documensystem under study.
We have presented the background behind our approach aasviedl application to
software engineering and software comprehension reseaietalso describe a small
experiment we conducted to compare the performance of ohnigue against some
other IR techniques. We show through this experiment thatemhnique equals or out
performs other similar techniques. In future work we intémgerform more and larger
experiments comparing our approach with similar approacuainst different code
bases and document corpuses to generalize our findings asddes the performance
of our technique.

7 Acknowledgments

This research was supported by Lero. Lero is supported gn8eiFoundation Ireland
(under grant no. 03/CE2/1308B).

53

References

1. Pennington, N.: Comprehension strategies in programming. pegsanEmpirical Studies of
Programmers: Second Workshop. New Jersey. (1987)

2. Good, J.: Programming Paradigms, Information Types and @apRepresentations: Em-
pirical Investigations of Novice Program Comprehension. Univerdigdinburgh. (1999)

3. Biggerstaff, T. J., Mitbander, B. G., Webster, D. E.: Programenstanding and the concept
assignment problem. Commun. ACBI (1994), 72-82

4. Simonyi, C.: Intentional Programming. The Intentional Softwarep@ration. (2005)

5. Rajlich V., Wilde N.: The role of concepts in program comprehendtwaceedings 10th In-
ternational Workshop on Program Comprehension. (2002)

6. Zhao, W., Zhang, L., Liu, Y., Sun, J., Yang, F.: SNIAFL: Tads a Static Non-Interactive
Approach to Feature Location. Proceedings of International Camderen Software Engi-
neering. Edinburgh. Scotland. (2004)

7. Poshyvanyk, D., Marcus, A., Rajlich, V., Gueheneuc, Y.-G1 amtoniol, G.: Combining
Probabilistic Ranking and Latent Semantic Indexing for Feature IderiifitaProceedings
of 14th IEEE International Conference on Program Comprehen&606)

8. Poshyvanyk, D., Marcus, A., Dong, Y.: JIRISS - an Eclipse ptufpr Source Code Explo-
ration. Presented at 14th IEEE International Conference on Pra@oenprehension. (2006)

9. Marcus, A., Maletic, J. |.: Recovering documentation-to-soeaxe traceability links using
latent semantic indexing. Proceedings of 25th International ConferencSoftware Engi-
neering. (2003)

10. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J. I.: An infortioa retrieval approach to
concept location in source code. Proceedings of 11th Working Gamderon Reverse Engi-
neering. (2004)

11. Wilde, N., Scully, M. C.: Software reconnaissance: Mapping ignogeatures to code. Jour-
nal of Software Maintenance: Research and Practi¢€995) 49-62

12. Eisenbarth, T., Koschke, R., Simon, D.: Locating features irceazode. IEEE Transactions
on Software Engineerin@9 (2003) 210-224

13. Greenfield, J., Short, K.: Software Factories: Assembling Aptdics with Patterns Frame-
works Models and Tools. John Wiley and Sons (2004)

14. Chung, W., Harrison, W., Kruskal, V., Ossher, H., StanleySdtton, M., P. Tarr.: Work-
ing with Implicit Concerns in the Concern Manipulation Environment. Preskat Linking
Aspect Technology and Evolution Co hosted with Aspect Orientated Seftixavelopment.
Chicago. USA. (2005)

15. Robillard, M. P.: Representing Concerns in Source Code. Theetsity of British
Columbia. (2003)

16. Cubranic, D., Murphy, G. C., Singer, J., Booth, K. S.: Hipikgir@gect memory for software
development. Software Engineering, IEEE Transaction8b(2005) 446-465

17. Murphy, G. C., Kersten, M., Findlater, L.: How Are Java SofevBrevelopers Using the
Eclipse IDE?. IEEE Softwar23 (2006) 76—83

18. Manning, C. D., Raghavan, P., Schtze, H.: Introduction to inftion Retrieval: Cambridge
University Press. (2007)

19. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,, H&shman, R.: Indexing by
Latent Semantic Analysis, Journal of the American Society of Informaiciencetl (1990)
391-407

20. Landauer, T. K., Foltz, P. W., Laham, D.: Introduction to Latestn&ntic Analysis. Dis-
course Processes (1998) 259-248

21. Bai, J., Song, D., Bruza, P., Nie, J.-Y., Cao, G.: Query egjom using term relationships in
language models for information retrieval. Presented at 14th ACM irttena conference
on Information and knowledge management. Bremen. Germany5)Y200

54

22. Gao, J., Nie, J.-Y., Wu, G., Cao, G. Dependence languagelrfaxdnformation retrieval.
Proceedings of the 27th annual international ACM SIGIR conferendeesearch and devel-
opment in information retrieval. Sheffield. United Kingdom. ACM Pre260¢) 170-177

23. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., MerloREcovering traceability links
between code and documentation. Software Engineering. IEEE Ttamsaon.28 (2002)
970-983

24. Bruza, P. D., Song, D.: Inferring query models by computingrmtion flow. Proceed-
ings of the eleventh international conference on Information and kruig&lenanagement.
McLean. Virginia. USA. ACM Press. (2002) 260-269

25. Lund, K., Burgess, C.: Producing high-dimensional semantécesp from lexical co-
occurrence. Behavior Research Methods. Instruments and Campi@97) 203—-208

26. Song, D., Bruza, P.: Discovering information flow suing high disi@mal conceptual space.
Proceedings of the 24th annual international ACM SIGIR conferendeesearch and devel-
opment in information retrieval. New Orleans. Louisiana. United States] R@ess. (2001)
327-333

27. Song, D., Bruza, P.: Towards Context-sensitive Informatierémce. Journal of the Amer-
ican Soceity for Information Science and Technology (JASIST2003) 321-334

28. Cleary, B., Exton, C.: The Cognitive Assignment Eclipse Plug@PC 06). Presented at
Internation Conference on Program Comprehension. Athens. &r&f96)

29. Cleary, B., Exton, C.: CHIVE - a program source visualisatiomé&aork. Presented at 12th
IEEE International Workshop on Program Comprehension. Bari. {2004)

30. LeGear, A., Cleary, B., Buckley, J., Collins, J. J., Exton, CakiMg a Reuse Aspectual
View Explicit in Existing Software. Presented at Linking Aspect Technplagd Evolution
Co hosted with Aspect Orientated Software Development (ASOD 05)aghidJSA. (2005)

31. Carley K. M., Diesner, J. AutoMap1.2 - Extract, analyze, regresand compare mental
models from texts. Carnegie Mellon University. School of Computerrgeielnstitute for
Software Research International. Technical Report CMU-ISR1:0@-(2004)

32. Cleary, B., Exton, C.: Assisting Concept Assignment using Pribbigc Classification and
Cognitive Mapping. Presented at 2nd International Workshop on@tipg Knowledge Col-
laboration in Software Development (KSCD2006). Tokyo. JaparQgp0

33. Kishida, K.: Property of Average Precision and its GeneralizationERamination of Eval-
uation Indicator for Information Retrieval Experiments. Technical&efNational Institute
of Informatics. Tokyo. Japan. NII-2005-014E (2005)

55

