
An experiential report on the limitations of

experimentation as a means of empirically investigating

software practitioners

Chris Exton, Gabriela Avram, Jim Buckley, Andrew LeGear

{Chris.Exton, Gabriela.Avram, Jim.Buckley, Andrew.LeGear, @ul.ie},

University of Limerick, Computer Science Systems Department, Limerick Ireland and

Lero, University of Limerick, Ireland

Abstract. This paper outlines the needs for careful empirical-design choices

during the study of software practitioners. It does this by presenting a docu-

mented, but unpublished, in-vivo, empirical, group study. The study was ini-

tially conceived as an experiment but was subsequently overwhelmed by human

and other factors. As a consequence, only more observational comments could

be derived from the study. In this paper, the study is analyzed and discussed, as

a means of illustrating the conflict that often exists between in-vivo empirical

studies and the experimental paradigm.

1 Introduction

All understanding and efforts to gain understanding exist in a tradition: a set of related

and harmonious assumptions about what exists and the way to gain knowledge about

it. Many researchers studying Software Engineering (SE) come from a computer sci-

ence tradition. This tradition has a strong affiliation with cognitive psychology

through Turing’s [21] central influence. The cognitive psychology perspective, with

its use of information processing models and scientific idioms, provides an island of

familiarity for computer science researchers when they branch into empirical studies.

However, closely associated with this affiliation, comes the acceptance of experimen-

tation as a valid means of gaining insight into what participants are doing at a cogni-

tive level.

One of the major reasons for empirical studies in SE is to identify and inform on the

practice of SE [16]. While accepting the essential role of evidence in deepening our

understanding of such SE practice, several studies show that there is a tendency in

empirical software engineering to value quantitative evidence over qualitative

[8,19,16]. The assumption that all constructs of interest “must have observable fea-

tures that we can measure, although imperfectly” [8] often serves to ignore psycho-

logical factors such as social dynamics and organizational environments that have a

strong influence on the software engineering practice. Thus they are inappropriate and

unrealistic [15].

PPIG'07 Work in Progress Report

173

Moving away from strictly controlled laboratory experiments, several researchers

are now focusing on real work environments and observing practitioners at work

[10,7,22]. They try to understand the software engineers’ day-to-day problems and to

devise methods and tools that could help them solve these problems. Another trend

coming to the fore in empirical software engineering research is to pay more and more

attention to “the central role of human behaviour in software development” [19].

In this paper, we review the findings of an unpublished experiment that took place

in a large computer company in Dublin in 2006. The original intent of this study was

to use an architecture recovery technique called Reflexion Modelling as a collabora-

tive learning support for a group of “software immigrants”[17] who were beginning to

familiarize themselves with one of the company’s large, commercial, proprietary soft-

ware systems. Reflexion modelling had been used successfully in the organization

previously as an aid to individual software engineers and thus, the company was inter-

ested in broadening their adoption of the technique. However this was the first time

the tool would have been used in a collaborative context.

In this paper, we use our experiences of this experimental study to highlight the dif-

ficulties associated with a purely experimental approach in the empirical study of

collaborative software engineering. These include subtle social and organizational

dynamics that could easily be overlooked in a purely quantitative analysis. They also

include other in-vivo considerations that impacted on the potential validity of our

findings.

1.1 Use of Experiments in Software Engineering research

One of the most challenging aspects of research in Software Engineering is the crea-

tion, adaptation and use of suitable empirical research methods and sources of infor-

mation that facilitate the comparison and evaluation of different Software Engineering

practices, tools and techniques. Software Engineering research is still very much in its

infancy and, as such, still has very much to learn in terms of building a wide selection

of methods from which sound theories can be developed. Although it would make our

life as researchers straightforward, it is improbable that any mono-dimensional at-

tempts, could hope to accommodate the complexity of the multiple interacting influ-

ences between the software, the software engineering processes, software engineers

and the wider environment. Given this complexity, the choice of research methods

with which to study these interactions needs to vary according to the circumstances of

each study. However computer scientists often seem to have a disposition to default to

experimentation as the predominant empirical research method1. For example Sjoberg

et al [18], in their review of the pervasiveness of experimentation in empirical SE,

found 103 experiments in software engineering published in journals and conference

proceedings between 1993-2002. The experiments presented involved 207 scholars

1 Fenton et al [3] define a formal experiment as “a rigorous, controlled investigation of an

activity, where key factors are identified and manipulated to document their effects on the

outcome.” In their opinion, formal experiments, together with case studies and surveys, are

among the key components of empirical investigation in software engineering [3].

from 109 institutions in 19 countries, illustrating how popular this type of empirical

study is in software engineering. The choice of a research method should instead be

guided by the actual research question, the type of evidence needed, and the intended

audience for the evidence.

Observation of collaborative work practices in SE can and should successfully

complement quantitative methods like experiments, according to O’Brien et al. [15].

Observation focuses mainly on people’s behaviour and discourse, paying attention to

all details. The role of the researcher can range from complete observer (having no

contact with those he is observing) to participant-observer (when the researcher actu-

ally gets involved and plays a role in the event). Observation might involve note tak-

ing, audio and/or video-recording and even interviews in order to produce a rich de-

scription of what happened in the setting. The purpose is “to gain an understanding

about what people do, why they do it and what meaning they assign to activities” [14].

2 The Empirical Study

Over the course of 2005 and 2006 researchers from the University of Limerick, in

collaboration with a large Dublin-based, computer company carried out a number of

in-vivo empirical studies of software engineering. These studies evaluated Reflexion

Modelling as a tool to support architecture recovery and architecture conformance in

large commercial software systems. (Reflexion Modelling is described in detail in the

paper: “ESCAPE Meta Modelling in Software Engineering: When Premature Com-

mitment is Useful in Representations”, which is also to be presented at this workshop).

In the empirical study described here, software developers were tasked with famil-

iarizing themselves with the software system and were already working, semi-

independently, towards this goal, when the idea of this study arose. The architects

responsible for the system were committed to having the software developers perform

Reflexion Modelling as soon as possible to allow them leverage the greatest possible

(architectural) understanding from the approach, before they had developed it inde-

pendently. Hence the experiment had to be designed and performed with only one

weeks notice.

However, despite the short preparation time, the potential research value appeared

significant. Firstly, it would advance our case-study work, allowing us to apply Re-

flexion Modelling to a population, and thus introduced the possibility of generalizing

the results using statistics. Secondly, Reflexion Modelling had never before been

considered as a collaborative tool. This study allowed us the opportunity to study it in

this new and potentially interesting context.

The experiment was designed immediately, with one constraint specified by the

company: that the context of the experiment was in-vivo with respect to the subject

system and with respect to the participants participating in situ. This was seen by the

researchers involved as beneficial, heightening the ecological validity of the study.

The design of the proposed experiment is now discussed in more detail.

2.2 Design of the Experiment

As described above, an experimental procedure was designed to try and gain an in-

sight into how a group of software engineers could collaboratively use Reflexion

Modelling as a tool to further their understanding of a specific software system. Spe-

cifically, the aim of the study was to address several research questions, most of which

can be subsumed by the question: Are there advantages to group design recovery

mediated through Reflexion Modelling?

The component hypotheses were:

1. Do participants aggregate to a more consistent understanding of the system

through group design recovery (mediated through Reflexion Modelling)?

2. Do participants become more aware of other participants’ perspectives on the

system through group design recovery (mediated through Reflexion Model-

ling)?

3. Does participant role (architect, software immigrant) impact on the amount of

change a participant’s architectural model undergoes as a result of group de-

sign recovery (mediated through Reflexion Modelling)? Specifically, do the

models generated by participants with more senior, architect-type roles

change less as a result of the group’s design recovery exercise.

If the answer to all three were yes, then we would have evidence that, during this

form of group design recovery, more senior members of the group generally influence

the architectural model formed by more junior members of the team (although we

anticipated that it may also work in reverse occasionally, especially if a more junior

member of the team is focused on the specific area being modelled.)

Thus the experiment was designed in 3 phases. In the first phase the participants

(new developers and existing architects of the system) were to independently create

their own Reflexion Models of part of the system. These models would be gathered by

the researchers. Then the participants would collaborate together in three teams to

form team-models of the system. These collaboration meetings would be observed by

the researchers and the resultant Reflexion Models gathered. Finally, the participants

would revisit their individual Reflexion models in the light of their collaboration and

refine them. By comparing the various Reflexion Models produced, the researchers

could address the research questions.

3 Realization of the Experiment

3.1 Phase 1: using Reflexion Modelling individually

Initially 18 developers and 3 architects had signed up as participants. A standard tuto-

rial was given to each of them individually, at their desk, to familiarize them with both

the Reflexion Modelling approach and the associated software. The participants then

had 2 weeks to develop their individual Reflexion Model of the system under study,

focusing on its ‘search’ utility. They were asked to do this in their spare time but they

were made aware that they were doing this at the bequest of their team leaders and that

they would be required to present their architectural model to a system’s architect in a

group meeting after this time. Participants were asked to develop their model in isola-

tion. However, given the open-plan work environment of the company and the pres-

ence of electronic communication, we cannot guarantee that this was entirely their

mode of operation.

Participants were offered email support for their efforts but only one participant chose

to email us over the following 2 weeks. Additionally, one of the research team went up

to the company after the first week, and visited all the participants to ensure that they

were progressing and to help them circumvent any bottleneck or problems they were

having with the process. During this visit, the researcher fixed 2 problems encountered

by different participants.

3.2 Phase 2: collaborative Reflexion Modelling

On the morning of the experiment, only 8 developers and two architects were still

available. Unfortunately, it was impossible to control who would be involved in the

experiment: the participants volunteered to do so, but some were subsequently pre-

vented from participation by various other work commitments that arose over the

initial 2 weeks.

Given the fall-off in numbers, the researchers decided to re-organize the collaborative

meetings into two groups, each made of one software architect and four developers

(the original plan was to have 3 teams with six developers each). In each room, there

was one researcher who lead the experiment and a second one observing its develop-

ment. Each group made use of a laptop and two wireless keyboards; the image on the

screen (the Reflexion Model) was shared on a big screen with the help of a projector.

Group 1 was dominated by the software architect, who took the opportunity to

teach the developers what he knew about the application under scrutiny. The interven-

tions of researchers were minimal (as intended) while the developers’ interventions

were few, and mainly aimed at clarifying issues related to the use of the supportive

tool provided.

Group 2 worked more collaboratively and the architect tried to act as a coach, re-

fraining from imposing his own vision. There were extensive discussions between the

participants and the researchers about the issues encountered when using the tool, as

the tool was a prototype only and required large processing power when applied to a

commercial software system, often causing their machine to pause for several minutes

 Group 1 Group 2

The layout of the room for each of the 2 groups is presented in the figure above. We

will now highlight some of the participant-based differences between the 2 groups that

suggested the limited utility of a controlled experiment in this case. We will start with

the architect.

The architect in each team was supposed to contribute an initial opinion on the indi-

vidual Reflexion Models produced by the developers, and then to become one of the

participants, asking relevant questions, commenting and giving hints when necessary.

In Group 1, the architect dominated the session, with the result that a sort of ‘class-

room’ atmosphere was created, where he ‘taught’ the others. When asked to comment

on the individual models, he emphasized where they had deviated from the actuality of

the system. He was the controlling party, and did all the changes to the model while

commenting on them. In the end, he commented:

 ”As kind of senior here, I’d like to come up with some ideas about where the mis-

fits were”

These words illustrated the role he felt he should play. Even if he didn’t take a cen-

tral seat, and used a keyboard instead of the laptop itself, he took over the meeting,

speaking for most of the time, initiating and creating his own changes on the model.

screen

door

laptop

keyboard

video camera

architect

developer

researcher

LEGEND

D1

D2

D3

D4

A

R1

R2

A

D1

D2

D3

D4

R1

R2

From a spatial perspective, he shared his attention between the keyboard and the

screen, seldom making visual contact with the others.

In Group 2, the architect played more of a mediating role. He stood in the central

seat and operated the changes on the laptop, but most of the time he waited for the

changes to be suggested by the others. He gave his opinion whenever asked to, but he

asked the others not to take his point of view as necessarily correct, emphasizing that

he was no expert on that part of the system and he might be wrong. When commenting

on the initial individual models, he found good parts in them all, and similarities with

his own model. He did much less talking that the architect in group 1 but seemed par-

ticularly concerned about the influence he had on the final model:

“It’s so peculiar, really – it looks very much like my own model! But I as-

sume I’m influencing things too much here!”

He empathized with the others about his acquired experience in working with the

prototype tool:

“See? That’s exactly what happened to me…and the only solution is to take

every class and map it…”

He also encouraged a relaxed atmosphere, by making remarks like:

“It reminds me of the map of a ski resort in Switzerland I go to every year!”

As regards the software developers, they were supposed to take an active role,

and to suggest and operate changes to the model themselves. In addition, they were

expected to comment on the changes suggested by the others. The final model was

supposed to be a result of the iterative interactions within each group.

In Group 1, the developers’ interventions were minimal. In the beginning, each

immigrant had to comment on his own model, but after that, their interventions were

limited to asking questions of the architect, or responding to the researchers’ ques-

tions:

“What are we focusing on? On this model or on the search function in general?”

(“Did you actually find it (the tool) very slow?) It’s terrible. Not only that it’s slow,

but it also blocks everything else that’s going on on your machine”)

In the first 30 minutes, there were a few attempts to suggest various alternatives.

None of them was accepted by the architect. In the second half of the experiment, all

of them became passive with respect to modelling the system.

In Group 2, the developers’ interventions were received with enthusiasm, dis-

cussed by the architect and by the other developers and put into practice if accepted

by the group. Because of the long time required by model recalculation, a batch of

changes was suggested, discussed and sometimes put into practice before every model

recalculation. This inconvenience of the tool made it difficult to see the direct effects

of every change made to the model. Developer1 and Developer3 tried to use the key-

boards for making changes, and for a while, Developer1 was the one operating the

changes instead of the architect. Developer4 made a number of pertinent suggestions

and commented extensively on their rationale. Developer2 played a less active role,

having to attend another meeting for 30 minutes in the middle of the experiment.

3.3 Phase 3: the new individual models

Initially, our intention was to ask the individual developers to review their architec-

tural Reflexion Model in the light of their group session. Consequently, participants

were asked ‘if they could review their individual model’ over the following 2 weeks.

Unfortunately, this weak phrasing of the request, coupled with work pressures meant

that none of the programmers did so. Indeed, given the divergence between the 2

group sessions, the research team decided that the data would be of limited value in

evaluating their research questions and so this data was not collected.

4 The Postmortem

It became apparent that we had to examine the study on a number of fronts. Firstly

there were several operation issues which had occurred that could have been avoided

given proper preparation. For example, some of the keyboards didn’t work and the

researcher had to leave one of the rooms to ask there colleagues about specific charac-

teristics of the tool (stopping proceedings). Also, the long waiting times for building

the model was a cause of frustration to the participants, although this was less avoid-

able without significant overhead.

We felt however that, apart from these operational issues, there were more funda-

mental and interesting observation as to what actually had occurred in relation to the

dependent and independent variables we had hoped to measure between the two

groups. From an experimental perspective, the two groups were similar in nature

(similar makeup) and the dependent variables were the same. Consequently, we could

have expected to see broadly similar characteristics in terms of the groups’ interac-

tions and outcomes. This was not the case.

Instead, it was obvious that unconsidered human factors were at play and that these

had had an extremely large and differentiating effect on the two experimental groups

we had observed. The interaction between the architect and developers was signifi-

cantly different in both groups. One was collaborative whereas the other was a largely

passive experience for the developers.

If we really wanted to understand why the two groups had functioned so differently

it would have been more appropriate to focus on what the participants had said, how

they had said it and how this discourse had effected the roles each participant played

within there group. For the dedicated experimenter it may seem at first that the obvi-

ous solution was to tighten the level of control by scripting the architect’s discourse -

but the effect of this course of action would have been to significantly decrease the

ecological validity or real-world similarity we hoped to maintain.

The next action for the dedicated experimenter might have been to simply intro-

duce these factors as independent variables. But again, we had to question to what

extent we could quantitatively measure these human characteristics (variables such as

the ‘use of authority’ and ‘use of humour’ and how they influenced the junior partici-

pants by empowering or dis-empowering them.). Yet these characteristics of the ses-

sions obviously impacted our study to a great extent.

A third alternative would have been to use the same architect in both sessions.

However, it is likely in this instance that such a strategy would have also resulted in 2

different sessions for the developers as the experience of the architect in his first ses-

sion would have introduced learning factors into the second session.

Given our strategy, it became apparent that the interaction we had observed, and

resultant output, was fundamentally different between the two groups. Due to the large

magnitude of difference in behaviour we observed between the two groups, we felt

that any of the quantitative measurements that we initially proposed would have little

value in terms of the initial research questions, and any statistical significance that

may have been reported by us would be ambiguous at best - as it was unclear if the

variables we were measuring were the core causal factors.

Another issue was the lack of control we researchers had in studying realistic in-

vivo behaviour. For example, we had no way of insuring that the participants did cre-

ate their initial Reflexion model in isolation (although, given the diversity in their

original models, individual work was likely for the most part). Likewise we could not

stop a participant from leaving the collaborative meeting in phase 2, for another meet-

ing of higher priority. Yet critically, these are factors that come into play in real Soft-

ware Engineering practice.

Finally, while we started off with a relatively large cohort, the in-vivo nature of the

study resulted in a large fall-off in the number or participants willing to proceed to

phase 2. Even with this fall-off we still retained 8 participants, a number suitable for

some non-parametric, repeat-measure statistical techniques. However, in the majority

of in-vivo empirical studies, it is likely that the number of participants would be

smaller still and unsuited to statistical analysis.

On a positive note it was felt that the experience we obtained in this study should

be documented as it may provide insights into some of the practical pitfalls in per-

forming experimentation in a real-world industrial setting. In addition, our docu-

mented and pragmatic experience may feed into a number of current debates that

relate to the use and values of qualitative and quantitative research in the domain of

software engineering.

5 Discussion

Given the original experimental design, it is fair to state that our own perspective

was firmly rooted in the experimental tradition and that we were primarily concerned

about presenting our findings in a quantitative manner. Our intent was to produce

credible and authoritative knowledge about the use of Reflexion Modelling as a means

of gaining understanding of software in the social setting of a design team. It was an

experiment designed to take place in a real work setting, with real software engineers

trying to solve a real software-familiarization problem.

Our use of the experimental method provided a well-recognized approach that

would have enabled us to present our findings as credible. The experimental para-

digm, as the primary basis of gaining knowledge, needs a controlled environment with

identifiable variables. Although quantifiable variables can be identified for social

interactions, we should ask ourselves the true value of these variables. Given the indi-

viduality of participants[23], are these truly useful or merely a fudge that enables our

use of experimentation in an otherwise impossible situation?

In many cases it may be more appropriate if we simply accepted that too many fac-

tors are at play and defy quantification, and that other augmenting methods should be

considered. In addition, the very creation of a controlled environment may destroy

telling interactions that would serve to inform on the practice of software engineering.

Thus, in many cases, the knowledge we gain from controlled experiments gives us

insights into how programmers behave in experimental situations, but cannot be used

with any validity outside that particular context. It is important that, like researchers

from the qualitative social psychology domain, we recognize that issues such as “situ-

ational knowledge” [24] and “power relations” do exist and they directly affect all

aspects of software engineering from analysis through design to debugging. (Where

situational knowledge can be defined as knowledge that is embedded in language,

culture, or traditions, and power relations consider the relationships between individu-

als within the study and how they are used.)

It is essential that we accept that experimentation can be stretched beyond its useful

capacity in some situations and that it should augmented by confidence-building quali-

tative methods, or even displaced by such methods. This is of course not without loss,

as experimentation has and still does provide a well accepted, tested and understood

means of knowledge creation. Although we can argue that there must be a more ap-

propriate means of gaining knowledge than experimentation for many in situ industrial

based studies, it is still unclear as to what qualitative methods are the best approach

for investigations of social settings in software engineering.

6 Conclusion

Statistics are based on the quantitative findings of a study. They depend on the need

to reduce the scenario to a number of quantitative observations. This reductionist

approach is a dual edged sword as, on one hand, it is intended to ascertain the rela-

tionship between the core elements or variables. However if it simultaneously jettisons

elements that may directly affect the outcome due to their inability to be measured in a

quantitative manner, it renders the statistics meaningless. From our experienced view-

point the intrinsic properties of social interaction, which constituted a key element of

this study were not quantifiable in any meaningful manner.

Hence, it is important that we continuously question if the necessary assumptions

for the experimental method to operate undermine the validity of the knowledge dis-

covered. We should not simply assume that the sacrifice of considerations such as

“situational knowledge” and “power relations” are acceptable, as they are real compo-

nents of many software engineering situations and the studies that observe these prac-

tices. Hence, they often affect what we are trying to observe.

Our analysis of this unsuccessful experiment is meant to shine a light on the need to

carefully choose the most appropriated research methods for each situation. Even if

our experiment did not succeed, the reflection triggered by this case can be considered

worthwhile in itself, serving to improve the quality of future studies.

7 Acknowledgments

The authors would like to acknowledge the contributions made by research assistant

Jacek Rosik and Professor Liam Bannon to this work. Lero is supported by Science

Foundation Ireland (under grant no. 03/CE2/I303_1).

8 References

1. Basili, V. (1996) The Role of Experimentation in Software Engineering -

http://ieeexplore.ieee.org/iel2/3540/10631/00493439.pdf?tp=&arnumber=493439&isnum

ber=10631

2. Christl A, Koschke R, Storey M-AD. (2005) Equipping the Reflexion Method with Auto-

mated Clustering. Working Conference on Reverse Engineering 2005; pages 89-98

3. Fenton, Pfleeger, Glass (1994) - Science and Substance: a challenge to software engineers-

http://ieeexplore.ieee.org/iel1/52/7423/00300094.pdf?tp=&arnumber=300094&isnumber=

7423

4. Hassan A. and Holt R. (2004) Using Development History Sticky Notes to Understand

Software Architecture. Proceedings of the 12th International Workshop on Program Com-

prehension. pp 183-193.

5. Johnson, G. (1998) Collaborative Visualization 101, ACM SIGGRAPH – Computer

Graphics, pages 8-11, vol 32 number 2 May 1998

6. Koschke R, Simon D. (2003) Hierarchical Reflexion Models. Working Conference on

Reverse Engineering.

7. Ko A.J., DeLine R. Venolia G. (2007) Information Needs of Co-located Software Devel-

opment Teams. International Conference on Software Engineering. May 2007 (To appear).

8. Lanubile,F. (1997) ‘Empirical evaluation of software maintenance technologies’, Empiri-

cal Software Engineering, 2, 1997, pp 97-108.

9. Le Gear A., Buckley J. (2005) Reengineering Towards Components with “Reconn-exion.”

ESEC/FSE Doctoral Symposium.

10. Lethbridge T. and Singer J. (2003). How Software Engineers use Documentation: The

State of the Practice”. IEEE Software. Vol 20. No 6. pp 35-39.

11. Murphy, G. (2003), ‘jRMTool Reflexion Modelling eclipse plug-in.’,

http://www.cs.ubc.ca/murphy/jRMTool/doc/ [Accessed December 2003].

12. Murphy GC, Notkin D, Sullivan K. (1995) Software Reflexion Models: bridging the gap

between source and high-level models. Symposium on the Foundations of Software Engi-

neering. pages 18-28

13. Murphy GC,Notkin D. (1997) Reengineering with Reflexion Models: a case study IEEE

Computer. 2(17):29-36

14. Oates, B.J. (2006) 'Researching Information Systems and Computing' Sage Publications:

London; Thousand Oaks (see www.sagepub.com)

15. O'Brien, M. P., Buckley, J., and Exton, C. (2005). Empirically Studying Software Practi-

tioners " Bridging the Gap between Theory and Practice. In Proceedings of the 21st IEEE

international Conference on Software Maintenance (Icsm'05) - Volume 00 (September 25

-30). ICSM. IEEE Computer Society, Washington.

16. Segal, Judith (2003) The Nature of evidence in empirical software engineering. In: 11th

Annual International Workshop on Software Technology and Engineering Practice, 19-21

Sep 2003, Amsterdam, The Netherlands.

17. Sim, S.E., Holt, R. C.(1998) The Ramp-Up Problem in Software Projects: A Case Study

of How Software Immigrants Naturalize, Proceedings of the Twentieth International Con-

ference on Software Engineering, pp. 361-370, Kyoto, Japan, 19-25 April, 1998

18. Sjoberg et al (2005) - A Survey of Controlled Experiments in SE-

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans/ts/&toc=comp/t

rans/ts/2005/09/e9toc.xml&DOI=10.1109/TSE.2005.97

19. Seaman, C(1999) "Methods in empirical studies of software engineering', IEEE Transac-

tions on Software Engineering, 25(4), 1999, pp.557-572.

20. Shadish, W.R., Cook T.D., Campbell D.T. (2002) Experimental and Quasi-Experimental

Design for Generalized Causal Inference, Boston:Hought-on-Mifflin

21. Turing, A. M. (1950) ‘Computing Machinery and Intelligence’, Mind 59:pp. 433-460.

22. Von Mayrhauser A. Vans A.M. (1995) Industrial Experience with an Integrated Code

Comprehension Model” IEEE Software Engineering. Vol 10. No. 5.

23. Prechelt L. (1999). "The 28:1 Grant/Sackman legend is misleading" Technical Report

1999-18, 25 pages, Universität Karlsruhe, Fakultät für Informatik, Germany.

24. Brown, J. S., Collins. A., and Duguid, P., (1989), “Situated Cognition and the Culture of

Learning” Educational Researcher; v18 n1, pp. 32-42, Jan-Feb 1989.

