
Introducing Learning into Automatic Program

Comprehension

Petri M. Gerdt and Jorma Sajaniemi

University of Joensuu, Joensuu, Finland
{petri.gerdt|jorma.sajaniemi}@cs.joensuu.fi

Abstract. Automatic program comprehension applications, which try
to extract programming knowledge from program code, share many fea-
tures of human program comprehension models. However, the human
trait of learning seems to be missing among the shared features. We
present an approach to integrate machine learning techniques into auto-
matic program comprehension, and present an example implementation
in the context of automatic analysis of roles of variables.

1 Introduction

Human program comprehension models [4, 9, 10, 16, 15] describe the scholars’
view of what humans do when they try to understand what a program might be
about. The models seek to explain why certain behavior happens when people
ponder what code does. Human program comprehension models have also been
utilized in systems that try to “understand” code automatically.

Quilici [11] defines automated program comprehension (APC) as the process
of automatically extracting programming knowledge from source code. We will
use the term automatic program comprehension as a synonym for the alternative
notions used in literature: program recognition [18] and program understanding
[7]. The basis of APC lays on the belief, that the programming knowledge used
by the programmer of a certain program can be recognized and recovered by
examining the program [7]. Even if publications about APC rarely cite research
on human program comprehension it can be assumed that this assumption is
based on the success of explaining programmers’ cognition through different
models of human program comprehension.

Cognitive science and artificial intelligence research have a long history of in-
teraction, where cognitive theories have been implemented as computer models
of reasoning (see [3] for a thorough introduction into the topic). These implemen-
tations in turn have given feedback in form of new ideas and feasibility studies to
the cognitive science community. APC in its many forms continues the tradition
of implementing systems based on notions of human reasoning: most implemen-
tations use data structures and algorithms that are almost directly comparable
to various (human) program comprehension models. We believe that the emula-
tion of one human trait could improve APC: machine learning [1].

PPIG'07 Work in Progress Report

101



The rest of the paper is organized as follows. Section 2 examines five theories
of human program comprehension. The models are mirrored in automatized pro-
gram comprehension and its derivates: the APC systems are after all programs,
whose purpose is to understand programs like humans do. We will compare four
APC approaches to human program comprehension models in Section 3. In Sec-
tion 4 we present our suggestion of augumenting APCs with machine learning.
Section 5 presents an example of an APC application that uses the machine
learning scheme of Section 4.

2 Human Program Comprehension

Categorical syllogism is the basis of Aristotelian logic based on quantified deduc-
tion, where premises are expressed with the help of the quantifiers some, all, no,
and some not [2]. Categorical syllogism provides sound theory for reasoning with
quantifiers, which is used as the basis of the mental model theory, which seeks to
explain how subjects’ cognitive processes work. The mental model theory states
that a subject builds a mental model of the world that satisfies the premises of
syllogism and then inspects the model to see if some conclusion is satisfied [2].
Within this context understanding is the activity of building a mental model
and verifying it.

Von Mayrhauser and Vans [17] have done a survey of mental model theo-
ries used in program comprehension research literature. They call mental model
theories program cognition models. The purpose of a cognition model is to ex-
plain the cognitive processes of a programmer engaged in a task requiring code
cognition.

We will next outline a general view of human program comprehension by
summarizing five models of human program cognition: Shneiderman [15], Brooks
[4], Soloway & Ehrlich [16], Letovsky [9], and Pennington [10]. The models differ
in details and emphasize different parts of the comprehension process, but they
do include some common elements: a representation of internal knowledge, a
mental model, a comprehension strategy that directs the building of the mental
model, and a definition of expert characteristics.

External and internal knowledge. Program comprehension is a process,
where existing knowledge is combined with new knowledge. Knowledge can be
divided into external and internal knowledge. External knowledge refers to any
materials available to the comprehender that aid in the comprehension process,
such as the program code and documentation. Internal knowledge is knowledge
that resides within the long-term memory of the comprehender. The five models
seems to share at least two kinds of internal knowledge that a program compre-
hender uses: program language knowledge and programming knowledge. Table
1 summarizes characteristics of internal knowledge in the different models. See
[16] and [9] for detailed descriptions of how internal knowledge may be modeled.

The mental model. Comprehension involves the creation of a mental model,
that represents the program under examination. Table 2 summarizes key char-
acteristics of the mental models of five comprehension models. Two common



Table 1. Internal knowledge representation in selected models of human program
comprehension.

Source Internal knowledge representation

Shneiderman Knowledge is divided into syntactic and semantic knowledge.
Brooks Knowledge is arranged and accessed through index-like beacons.
Soloway & Ehrlich Knowledge is divided into programming plans and rules of pro-

gramming discourse. Three kinds of plans: strategic, tactical and
implementational.

Letovsky Like Soloway & Ehrlich, in addition: knowledge about recurring
programming goals, efficacy knowledge, and domain knowledge.

Pennington Knowledge is divided into text structure knowledge and program-
ming knowledge.

features that all of the comprehension models share is that they have multiple
levels of abstraction and at least one of the levels is language independent, i.e.,
the program comprehender creates a mental model of a program that is not
based on any programming language syntax. In addition, the mental models are
assumed to be hierarchical: the most abstract mental representation is at the
top of the hierarchy and elements lower in the hierarchy are less abstract.

Table 2. Mental model characteristics.

Source Mental model characteristics

Shneiderman Language independent semantic representation of the program
code with multiple levels of abstraction.

Brooks A tree of hypotheses, where the most general hypothesis is the root.
Soloway & Ehrlich A linked hierarchy of goals and plans.
Letovsky Three layers, the most abstract first: specification layer, annotation

layer, and implementational layer.
Pennington Two distinct but interlinked parts: program model and domain

model.

Comprehension strategy. During the comprehension process the compre-
hender creates a mental model that describes the program to be understood. The
mental model of the program resides within the working memory of the com-
prehender. The comprehension process is directed by a comprehension strategy,
which directs the acquisition of knowledge and the verification of the mental
model. We use the term acquisition process as a synonym of comprehension
strategy, which stresses the process nature of the comprehension process.

Different models of program comprehension describe the process of building
the mental model differently, but most involve chunking and cross-referencing in
some form. Chunking means the creation of higher-level-abstraction structures
from chunks of lower-level structures. When groups of structures are recognized,



labels replace the lower-level chunks. Lower-level structures are thus chunked
into larger structures at higher level of abstraction [17]. Cross-referencing means
the relating of different levels of abstraction, building a mental model that spans
all levels of abstraction in internal knowledge. Cross-referencing is an active
process, which interacts with the mental model and knowledge stored in the
long-term memory of the program comprehender.

There are two analogous comprehension strategies that appear in the pro-
gram comprehension models. In the top-down approach the structures of the
mental model are first formulated as general overviews of the target. The struc-
tures are then refined recursively until the mental model is detailed enough to
be validated. The top-down approach starts with general knowledge, which is
refined into more specific detailed knowledge. The bottom-up approach works
vice versa, i.e., the construction of the mental model is started by formulating
specific structures representing details in the target being examined. The spe-
cific structures are then linked together to form larger structures that can be
validated. The bottom-up approach starts with specific knowledge, from which
more general knowledge is constructed. The two approaches are not mutually
exclusive, some models of program comprehension expect both top-down and
bottom-up processing to happen.

Table 3 summarizes comprehension strategies of five models of program com-
prehension. All of the models have the common feature of cross-referencing ex-
ternal and internal knowledge with the mental model, and the creation of links
between the different knowledge sources.

Table 3. Comprehension strategy characteristics.

Source Comprehension strategy characteristics

Shneiderman Building a mental model that covers multiple levels of abstraction.
Brooks Hypothesis driven: reconstruction of mappings between the prob-

lem and programming domains through refinement of hypotheses.
Soloway & Ehrlich Top-down processing of goals and plans driven by the rules of dis-

course: goals are chunked into sub-goals, which in turn are replaced
by plans.

Letovsky Conjecture driven, three kinds of conjectures: why, what, and how.
May be top-down or bottom-up or both.

Pennington Bottom-up processing of program code: program model is con-
structed by examining control structures and the domain model
is constructed by examining data flow and other semantic informa-
tion.

Expert characteristics. Most experiments within psychology of program-
ming compare novice programmers and expert programmers, and most program
cognition models describe what expertise or expert characteristics are in the
context of the model. Typically experts have different knowledge acquisition
strategies as well as different internal knowledge representations when compared



with novices. A definition of expert characteristics makes a model more useful
for research: to verify a program comprehension model a researcher can compare
how novice and expert programmers differ. Thus, an idea about expert charac-
teristics is crucial for empirical evaluation of the models: expert characteristics
serve as a hypothesis to be verified. Table 4 lists a short summary of expert
characteristics of the comprehension models. Typically an expert’s comprehen-
sion process works in the way that the comprehension model describes, novices
differ in making errors in the process or being unable to create some mental
constructs needed for program comprehension.

Table 4. Expert characteristics.

Source Expert characteristics

Shneiderman -
Brooks Effective hypothesis verification ability.
Soloway & Ehrlich Possesses programming plans and is able to use them.
Letovsky A good ability to build and verify conjectures.
Pennington Experts are able to cross-reference between domain and program

knowledge.

Overview of human program comprehension. Figure 1 shows how the
elements of program comprehension models discussed in this section are related
by presenteing a very generalized overview of human program comprenesion as
a process. The roundels represent data that is either stored outside the compre-
hender’s memory or inside it. The gray rectangle represents action, the act of
comprehension.

External
knowledge

Acquisition
process

Internal
knowledge

Mental
model

Fig. 1. Human program comprehension as a process.

The edges represent data flow: both external and internal knowledge are
input to the acquisition process, whereas the mental model is the output of
program comprehension. The acquisition process may add to the knowledge of
the comprehender, this is represented by the dotted edge. Similarly, the building
of the mental model affects, and may even direct, the acquisition process. The
dashed edge represents this fact.



3 Automated Program Comprehension

APC approaches seek to automatize program comprehension to achieve some
programming related goal. APC systems have many different application areas.
Some maintenance related objectives of APC are the generation of documenta-
tion, refactoring (RECOGNIZE [8]) and using APC techniques to locate reusable
code.The translation of a program from some language to another language can
be done with an APC system, for example C programs have been translated to
object-oriented C++ (Quilici’s method [11]). Visualization of programming con-
cepts may benefit from APC methods: the constructs that are to be visualized
are automatically detected, thus reducing the effort of creating the visualiza-
tion, or even automating the creation process. Researchers of human program
comprehension can use APC systems for testing their hypotheses and theories
(GRASPR [18]). APC approaches can be general purpose tools, that can poten-
tially be used in any of the above tasks (UNPROG [7]). In addition, we believe
that there are educational uses for APC systems in automatic assessment and
other support systems that help students to comprehend programs.

Programming knowledge repository. Human program comprehenders
have programming and domain knowledge stored in their long-term memory.
This internal knowledge is used in the comprehension process. Similarly, an
APC application needs a permanently stored programming knowledge repository

of suitably encoded knowledge. Most APC systems do not deal with domain
knowledge as this kind of knowledge is very specialized, and the purpose of most
APCs is to analyze arbitrary programs. Programming knowledge, such as high-
level language independent programming plans, is suitable for computerization.
The encoding of programming knowledge differs in the level of abstraction and
granularity, but all representations can be seen as encoded programming plans.

We will use the term plan as a general concept when referring to knowledge
items stored in a programming knowledge repository. Other names for knowl-
edge items include, for example, knowledge atoms [5], standard implementation
plans (STIMPs) [7], abstract program concepts [8], common stereotypical com-
putational structures or cliches [18], and templates [19]. Plans of the repository
are encoded as various data structures, such as flow graphs, source code tem-
plates or logical constraints, which are typically organized as an interrelated or
even recursive hierarchy. The hierarchies are typically organized as forests of tree
structures that have goals as their root nodes and instructions as leafs. Knowl-
edge repositories are typically constructed manually by humans by codifying
plans found in example program samples. Table 5 presents a summary of the
programming knowledge repositories of four APC systems.

The APC systems seem to mirror human program comprehending models:
the long-term knowledge stored in the human brain is represented by a pro-
gramming knowledge repository, which is our term for the long-term storage of
programming knowledge in APC systems. The rationale of the UNPROG sys-
tem serves as a good example of the resemblance of APCs and human program
cognition models. The use of STIMPs to represent programming knowledge is
based on the notion of planfullness: “programming is stereotyped, making fre-



Table 5. Programming knowledge repositories of selected APC systems.

System Overview of knowledge repository

UNPROG Standard implementation plans (STIMPs), represented by the hier-
archical program model (HMODEL), an abstraction of control and
data flow that is organized as a tree.

RECOGNIZE Abstract concepts stored in a concept model. Includes concept
recognition rules: information about components of sub-concepts
of the concept, constraints on and among the sub-concepts.

Quilici’s method Plan definitions encoded as frames: list plan attributes. Plan recog-
nition rules: list of components and constraints.

GRASPR Cliches, program properties encoded in graph grammar.

quent use of standard implementations” [7]. The notion of planfullness resembles
the term plan-like, which Soloway and Ehrlich [16] use to denote program code
that match expert programming plans.

Program representation. The mental model that humans build and pro-
cess when they are examining a program is represented by a program represen-

tation that is constructed by the APC during the automatic analysis. The pro-
gram representation is typically a complex data structure that can be queried
and otherwise manipulated. Abstract syntax trees (ASTs) constructed during
the scanning and parsing of the code of a program are a popular choice for the
foundation of program representations [7, 8, 11]. Data flow graphs are another
program representation type that is used. Some program representations com-
bine both data structures along with other types of information. An important
feature of the program representation is that it must be somehow comparable
with the programming knowledge repository of an APC. In some cases the data
structure used in the program representation is used to implement the program
knowledge repository. For example, a plan might be represented by a partial
abstract syntax tree that could be matched against the abstract syntax tree
internal representation of a source program with common tree operations.

The reason is obvious: there must be a way to compare the knowledge in the
repository to the information that is being gathered about the examined pro-
gram. The reader is instructed to study the summary of the program represen-
tations in Table 6 by cross-examining it with Table 5 that contains information
about knowledge repositories.

Table 6. Program representations of selected APC systems.

System Overview of program representation

UNPROG A tree-like hierarchical program model (HMODEL).
RECOGNIZE An AST, on which programming concepts are added.
Quilici’s method An AST, whose nodes are frames.
GRASPR An annotated flow graph.



Algorithms. In APC systems the comprehension strategy of a human com-
prehender is represented by the algorithm, which searches the program repre-
sentation for any instances of the plans contained in the program repository.
There are two recurring general approaches to implement the matching algo-
rithms, which are similar to those of human comprehension strategies. In the
top-down approach the system starts from determining the goals that a program
might achieve and then seeks the plans that would implement these goals [11].
Then the instructions of the plans are matched to program instructions. The
bottom-up approach starts from the opposite direction: it starts by examining
instructions of the input program, and then tries to find plans that contain these
instructions. Then the algorithm tries to infer goals that the found plans might
define. Quilici [11] lists some problems with the two algorithmic approaches. The
top-down method needs information about the goals that the program achieves.
This information is not readily accessible in real world applications. The top-
down approach does not suit partial plan recognition as it only knows how to
deal with plans that are connected to goals. The bottom-up method suffers from
the possibility of a combinatorial explosion: each instruction may be a part of
several plans, which in turn may be parts of other plans. This feature limits the
size of the analyzed programs and plan hierarchies that can be used. Quilici [11]
suggests that methods that limit search space may help to circumvent this prob-
lem. A weakness in both top-down and bottom-up methods is the lack of domain
or program specific plans, the general plans stored in the plan library may not
apply to real world application as they are bound to contain very domain specific
plans.

The algorithms used in the four example APC systems are summarized in
Table 7. The algorithms can be categorized according to the way that they
process the program representation: a top-down algorithm will process an AST
from the root to the leaves and a bottom-up vice versa. The approach used
in RECOGNIZE [18] is notably different: it is based on the parsing of graph
grammars.

Table 7. Overviews of the algorithms of selected APC systems.

System Overview of algorithm

UNPROG HMATCH: compares STIMPs with the program representations
top-down.

RECOGNIZE Top-down traversal of the AST, the nodes may trigger an evaluation
of a concept in the concept model.

Quilici’s method A hybrid top-down, bottom-up algorithm.
GRASPR Graph grammar parsing based algorithm.

Woods and Yang [19] prove that APC, where plans in a knowledge reposi-
tory are compared with a program representation, is a NP-hard problem. They
formally define the simple program understanding problem (SPU) [19], where the



knowledge repository is a graph of templates representing programming plans,
and the program is represented by a graph. Program comprehension is done by
comparing the subgraphs of the knowledge repository with the graph structures
of the program representation.

Woods and Yang [19] then prove that the SPU problem is NP-hard by reduc-
tion from the subgraph isomorphism problem, which is known to be NP-hard. In
addition, the authors prove that cliche, template or STIMP-based matching are
NP-hard too, as they are reductions of the subgraph isomorphism problem. The
APC approaches discussed in this section deal with the NP-hardness by using
various heuristics, like constraints that reduce search space. Woods and Yang
propose a solution that reformulates the SPU problem into a solvable constraint
satisfaction problem.

Evaluation. The evaluation of an APC application should be straightfor-
ward in most cases: the APC should produce the output that a expert human
program comprehender would with the same input. In other words the purpose
of an APC is to mimic the behavior of expert human program comprehenders.

Table 8 summarizes the data about the evaluation of selected APC systems.
None of the publications describing the APCs do include a thorough evaluation,
not to speak of a formal evaluation that would be possible to replicate.

Table 8. The evaluations of selected APC systems.

System Purpose

UNPROG UNPROG correctly recognized 34 of 35 instances of a bounded
linear search algorithm in 20 input programs. Input programs in
Pascal, C, PL/I, Lisp, and pseudocode. The knowledge repository
consisted of 9 STIMPs.

RECOGNIZE Processes short programs of about 100-200 lines. The system needs
an extensive collection of abstract concepts in order to be useful.

Quilici’s method Quilici tested the APC system with a relatively small library in-
cluding approximatedly 100 plans and student programs. The pub-
lication does not report performance of the testing.

GRASPR -

Overview of APC. Figure 2 shows how the elements of APC systems in-
teract. The rounded nodes represent data and rectangles with gray background
represent processes. The edges represents data flow within the process. The au-
tomatic comprehension process starts by the parsing of program code. The code
is transformed into a program representation, which in turn is feeded as input
to the algorithm together with the knowledge repository. The algorithm com-
pares the constructs stored in the repository to the program representation and
produces output accordingly.



Parsing
Program

representation

Knowledge
repository

Algorithm Output

Code

Fig. 2. An overview of APC.

4 Augumenting APC with Machine Learning

A human program comprehender learns how to read and understand programs.
We believe that APC systems could be improved by emulating learning through
the use machine learning algorithms [1]. Instead of building a knowledge repre-
sentation explicitly, the programmers give the APC system labeled examples of
the programming concept to be learned, and the APC creates an appropriate
knowledge representation.

How, then, does a human look for plans in code? One characteristic of hu-
man program comprehension models is the use of beacons. According to Brooks
[4] beacons are program features that indicate the presence of certain program
constructs. Beacons help the comprehender to associate a hypothesis about the
program to program code [17]. Soloway and Ehrich [16] think that beacons are
indexes or indicators of programming plans. So, a human might look for code
constructs that would serve as beacons into her programming knowledge. We
believe that an APC application could use the beacon concept: the knowledge
repository can represent program knowledge as sets of beacons, which we will
call features (of programming plans, etc.). The presence of a certain feature or
several features within a program that is being automatically comprehended
would then indicate that the program contains a certain plan, etc.

An obvious requirement for these features is that they must be automatically
detectable: it must be possible to technically specify a way to find each of the
features. The features are detected with algorithms that examine the program
representation of the APC.

Figure 3 shows an overview of the proposed machine learning enhanced APC
process that uses automatically detectable features. The roundels represent data
and rectangles with gray backgrounds phases of the process. The process is dual,
it contains a learning mode and a classification mode. The edges represent data
flow; the edges of the learning mode are dashed, whereas the edges belonging to
the classification mode are solid.

The purpose of the learning mode is to construct the knowledge repository
by giving the APC application labeled programs. The labels indicate what con-
structs can be found in the program; a label could for example indicate that the
lines 6–14 of the program represent a certain programming plan. In the beginning
of the learning mode the labeled code is parsed to a program representation. The



program representation is then analyzed in feature detection, where the features
that are present in the input program are detected.

The outcome of feature detection in the learning mode is a set of labeled
feature vectors, i.e., labeled lists of features. The feature vectors are input to
model construction, where a computable representation of the vectors is con-
structed. The exact form of the representation depends of the machine learning
method that is being used: the decision tree generating algorithms ID3 and C4.5
would, for example, create either a tree data structure or if-else-rulesets [1]. The
model construction process may be reduced to a data preparation step in some
cases: nearest neighbour type algoritms do not use a pre-computed model, so
the model construction phase could perhaps only sort the feature vectors for
better performance. The output of the model consruction phase is stored in the
knowledge repository for future use. The model stores information about what

Parsing
Program

representation
Feature

detection
Feature

vector(s)

Classification
algorithm

Output
Code

Knowledge
repository

Parsing
Program

representation
Feature

detection
Labeled

code

Labeled
feature

vector(s) Model
construction

Fig. 3. An overview of machine learning enhanced automatic program comprehension.

collections of features account for what recognizable phenomena. As a naive ex-
ample: the presence of a nested for-loop, and repeated array access in the loop
could be labeled as “possible sorting algorithm”. The learning mode may incre-
ment the knowledge repository instead of wiping out previously learned issues.
The knowledge repository may include several different models, for example,
representing different views of the phenomena that the application is supposed
to comprehend.

When the learning mode has created a knowledge repository it is possible
to execute the other mode of the dual process: the classification mode. The
classification mode gets unannotated code as input, i.e., the program code does
not include any hints of what could be “understood” from it. The first two
phases, parsing and feature detection, are identical in the two modes. When the
classification mode has produced feature vectors, the vectors are compared to
the model stored in the knowledge repository with a classification algorithm.
The algorithm is different for different machine learning methods: the decision
tree based approaches would simply do a tree walk in this phase, whereas the
nearest neighbour type algorithms would compare each of the feature vectors to
those stored in the konwledge repository in order to find the nearest one(s). The



output of the whole classification mode are the labels that are assigned to the
feature vectors by the classification algorithm.

The benefits of the machine learning enhanced APC architecture is that it
is very modular. The features can be specified through algorithms, that are lan-
guage independent. Then the concrete implementations of the algorithms can
access program information through an interface to the program representation.
This way the program representation implementation is independent of the al-
gorithms and vice versa. The feature vectors serve as an interface between the
feature detection phase and the phases of model construction and classification.
Thus it is possible to “plug in” different machine learning methods, perhaps to
find the most effective one. There are free open-source machine learning libraries
and applications available that can be used.

An interesting possibility is the sharing of feature detection algorithms. If a
researcher manages to create a feature detection algorithm that automates the
detection of a beacon, then we believe that the chances are that this algorithm
could be used in other, seemingly unrelated, program comprehension tasks too.
Other APC developers could implement the algorithm and add it to the feature
detection phase of their APC application.

The objective assessment of the performance of the APC systems presented in
Section 3 is hard, the reported evaluations are not comparable. Machine learning
addresses this problem through well established evaluation methods. For exam-
ple, cross-validation is a technique which is used within machine learning to test
how well a model corresponds to the training data. In simple cross-validation
a training set is divided into two parts: the training set and the validation set.
The application is trained with the training set, and then it is made to classify
the validation set. There are several variations of cross-validation for different
data sets. It must be noted that the cross-validation results are no direct impli-
cations of the classification accuracy of the application when it encounters new
data outside the learning set. Nevertheless, it is a method to get comparable and
constistent results with a defined training set. Cross-validation makes it possible
to compare to APCs by giving them the same training set: the cross-validation
accuracy is a comparable measure. Cross-validation is a good tool for the de-
veloper: it is possible to experimentally seek the features that best describe a
phenomena by changing the feature set that is being detected in the feature
detection phase and then performing cross-validation.

5 Automatic Detection of Variable Roles

The roles of variables is recent concept that describes the stereotypic behaviors
of variables [12]. The roles of variables is a simple and compact way to represent
higher level programming knowledge: according to an analysis [14] of nine pro-
gramming textbooks 11 roles cover 99 % of variables in procedural, functional,
and object-oriented programs.

The roles are quite simple; short informal definitions are enough to commu-
nicate the concept. For example, a variable that does not get a new proper value



after its initialization has the role of fixed value. A variable stepping through a
systematic, predictable succession of values is a stepper; for example, a variable
controlling a for-loop is a typical stepper. A most-recent holder is a variable that
holds the latest value encountered when going through a succession of unpre-
dictable values, or simply the latest value obtained as input. See [13] for a more
comprehensive treat of the roles of variables concept.

The purpose of the automatic detection of variable roles is to find the roles
of variables in arbitrary programs that include no role information. Roles are
cognitive constructs and represent human programming knowledge. Different
people may think of roles differently, and the exact definition of what behavior
constitutes a certain role is a matter of opinion and point of view.

The ambigious nature of the role concept is one of the strengths of it as
programmers can discuss variables through a vocabulary that does not restrict
the discussion too much. The vague nature of cognitive constructs is reflected in
the fact that the roles do not have technical definitions. The lack of definitions
is the cause of a major challenge in the automatic detection of variable roles:
the analysis tries to find traces of cognitive structures of the programmer in
program code. This property of the problem is typical to automatic program
comprehension in general.

We have designed, implemented, and validated a system that performs the
automatic detection of variable roles [6] based on the framework described in
Section 4. We will henceforth call it the ADVR system, where ADVR is an
accronym of Automatic Detection of Variable Roles.

In Section 4 we presented the beacon-like concept of features that can be
used in a machine learning APC system. We have developed a set of 13 features
to facilitate the automatic detection of variable roles, which we use in the ADVR
system. We call the features flow characteristics (FCs), as we are interested of
the data flow affecting variables. Table 9 presents examples of the FCs with
short descriptions. Each FC is detected with a separate detection algorithm.
The algorithms use various static program analysis results, and some are more
complicated than others in terms of computational complexity. The FCs are quite
abstract in order to separate them from language dependent issues; they describe
properties that commonly exist in procedural and object-oriented programming.
See [6] for a comprehensive description of the FCs and their detection algorithms.

To assess the performance of the ADVR system and the set of FCs, role
assignments done by the ADVR system were compared with human role as-
signers. The material for the validation consisted of example programs in three
Pascal textbooks. The variables in the example programs were assigned roles
by researchers. The validation method was leave-one-out cross-validation. The
overall accuracy of the ADVR system was 93%. This can be compared with the
accuracy of computer science educators who assigned roles to variables after an
introduction to the role concept [14]; their accuracy with short Pascal programs
was 85%. The same programs that the educators analyzed were given also to
the ADVR system (using this time both the learning material and the matching
material of the above validation as a large learning material). The ADVR system



Table 9. Examples of flow characteristics.

Flow characteristic Description

Loop assignment The variable has an assignment that is done within a loop
structure.

Arbitrary sequence The variable goes through values that are resolved dy-
namically at run time.

Singlepass The variable is defined and referred to during a single
pass of a loop, and the definition is not referred to in
subsequent passes of the loop.

Following The variable’s value sequence follows another variable’s
or variables’ value sequence(s).

Initial value The definition of a variable is done before a loop, where
the variable is redefined.

achieved 95% correctness. Thus, the reliability of the ADVR system seems to be
comparable to that of computer science educators.

We are currently developing a new Java-based version of the ADVR system,
that analyzes both Pascal and Java programs, and includes an improved flow
characteristics set.

6 Conclusions

The goal of automatic program comprehension is to extract programming knowl-
edge from program code. Automatic program comprehension applications share
many features of human program comprehension models. However, the human
trait of learning seems to be missing among the shared features.

In this paper we have presented a possible way to combine machine learning
and APC systems. Our solution is based on the use of beacon-like features, that
are detected from source code. Then machine learning techniques are used to
search for patterns among the features. Our hypothesis is that different program
comprehension tasks can be represented as patterns of features. Thus, the com-
puter would mimic a human program comprehender who uses beacons as clues
when trying to find out what a program does. The use of machine learning in
APC transforms the problem of defining complex representations of program-
ming knowledge into the gathering and labeling of example code.

We have implemented an APC system, which succesfully uses machine learn-
ing to detect roles of variables. Our experiences are encouraging and we believe
that machine learning techniques are a promising resource to be explored in the
context of automatic program comprehension.

References

1. E. Alpaydin. Introduction to Machine Learning. MIT Press, Cambridge, Mas-
sachusetts, USA, 2004.



2. J. R. Anderson. Cognitive Psychology and Its Implications. Worth Publishers, 5th
edition, 2000.

3. W. Bechtel and G. Graham, editors. A Companion to Cognitive Science. Blackwell
Publishers Ltd, 1998.

4. R. Brooks. Towards a theory of the comprehension of computer programs. Inter-
national Journal of Man-Machine Studies, 18:543–554, 1983.

5. R. Clayton, S. Rugaber, and L. Wills. On the knowledge required to understand a
program. In Proceedings of the Fifth Working Conference on Reverse Engineering
(WCRE), pages 69–78, Honolulu, HI, 1998. IEEE Computer Society Press.

6. P. Gerdt. A system for the automatic detection of variable roles. Licenciate thesis,
Department of Computer Science, Univeristy of Joensuu, Finland, 2007.

7. J. Hartman. Understanding natural programs using proper decomposition. In ICSE
’91: Proceedings of the 13th international conference on Software engineering, pages
62–73, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

8. W. Kozaczynski, J. Ning, and T. Sarver. Program concept recognition. In Proc. of
KBSE’92 Seventh Knowledge-Based Software Engineering Conference, pages 216–
225, Los Alamitos, CA, September 20-23 1992. IEEE Computer Society Press.

9. S. Letovsky. Cognitive processes in program comprehension. In E. Soloway and
S. Iyengar, editors, Empirical Studies of Programmers, pages 58–79. Ablex Pub-
lishing Company, 1986.

10. N. Pennington. Comprehension strategies in programming. In G. M. Olson,
S. Sheppard, and E. Soloway, editors, Empirical Studies of Programmers: Second
Workshop, pages 100–113. Norwood, NJ: Ablex Publishing Company, 1987.

11. A. Quilici. A memory-based approach to recognizing programming plans. Com-
munications of the ACM, 37(5):84–93, 1994.

12. J. Sajaniemi. An empirical analysis of roles of variables in novice-level procedural
programs. In Proceedings of IEEE 2002 Symposia on Human Centric Computing
Languages and Environments (HCC’02), pages 37–39. IEEE Computer Society,
2002.

13. J. Sajaniemi. Roles of variables home page.
http://www.cs.joensuu.fi/˜saja/var roles/, 2007. (Accessed Jun. 11th, 2007).

14. J. Sajaniemi, M. Ben-Ari, P. Byckling, P. Gerdt, and Y. Kulikova. Roles of variables
in three programming paradigms. Computer Science Education, 16(4):261–279,
2006.

15. B. Shneiderman. Empirical studies of programmers - the territory, paths, and des-
tinations. In E. Soloway and S. Iyengar, editors, Empirical Studies of Programmers,
pages 1–12. Ablex Publishing Company, 1986.

16. E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, SE-10:595–609, 1984.

17. A. von Mayrhauser and A. M. Vans. Program understanding - a survey. Technical
Report CS-94-120, Department of Computer Science, Colorado State University,
August 1994.

18. L. M. Wills. Using attributed flow graph parsing to recognize clichés in programs.
In Proceedings of the 5th International Workshop on Graph Grammars and their
Application to Computer Science, pages 170–184. Springer-Verlag, 1996.

19. S. Woods and Q. Yang. The program understanding problem: Analysis and a
heuristic approach. In Proceedings of the 18th International Conference on Software
Engineering, pages 6–15. IEEE Computer Society Press, 1996.




