
From Procedures to Objects:
What Have We (Not) Done ?

Jorma Sajaniemi and Marja Kuittinen

University of Joensuu, P.O.Box 111, FI-80101 Joensuu, Finland
{saja|marja}@cs.joensuu.fi

Abstract. Programming education has experienced a shift from imperative and
procedural programming to object-orientation. This shift has been motivated by
educators’ desire to please information technology industry and potentialstu-
dents; it is not motivated by psychology of programming nor by computer sci-
ence education research—there are practically no results that would indicate that
such a shift is desirable, needed in the first place, or even effective for learning
programming. Moreover, there has been an implicit assumption that classic re-
sults on imperative and procedural programming education and learning apply to
OO programming, also, but we argue that this is not the case and, therefore, call
for systematic research into the fundamental cognitive and educationalissues in
learning and teaching OO programming.
In order to understand the huge shift from imperative and procedural program-
ming to object-orientation, we compare these paradigms at three levels: notations
of languages, the notional machine that describes how programs are executed,
and the orientation of a paradigm describing what programs are for andwhat can
be done with them. We will also review research literature and see how it sup-
ports our claims. Finally, we present a research agenda intended to improve the
understanding of OO programming and OO programming education.

1 Introduction

During the last ten years, programming education has experienced a shift from impera-
tive and procedural programming to object-oriented (OO) programming. This shift has
been motivated by educators’ desire to please information technology industry on one
hand and potential students on the other hand. Object-orientation and Java have been
spreading as the most important implementation platform for new, web-based applica-
tions with wide-spread visibility among computer users, which has created the illusion
that programming equals to object-oriented Java programming. Thus, students want to
learn Java from the very beginning of their programming studies, and teachers may fear
that if an institute is not offering Java as the first programming language, students will
go elsewhere. With the current fall in enrollments to academic computing programs [5]
educators’ thirst for pleasing potential students will probably even increase. Moreover,
many companies want to hire students who know how to program in Java and educators
may think that if an institute is not teaching Java, its reputation among those companies
is gone.

It should be noted that the shift to object-orientation is not motivated by psychology
of programming or computer science education research: there are practically no results



that would indicate that such a shift is desirable, needed inthe first place, or even effec-
tive for learning programming [32]. Yet, learning programming should be the most im-
portant issue—not learning the peculiarities of a single paradigm or a certain language.
Note that “learning programming” does not refer to imperative1 or procedural—neither
functional nor logic—programming, but learning programming in a way that can be
applied in many programming paradigms and many programminglanguages.

Indeed, we are surprised to find out that the cognitive consequences of the shift
to object-orientation have been studied neither before theshift nor after it. This lack
of research covers both comprehension of programming concepts and development of
programming skills. There has been an implicit assumption that classic results on im-
perative and procedural programming education and learning (see [44] and [60] for
reviews) apply to OO programming, also, but we fear that thisis not the case. Object-
oriented programming is so much more complicated than imperative and procedural
programming—both at the concrete notational level and at a more abstract conceptual
level—that there are good grounds to question whether the classic results can be gener-
alized to object-orientation.

What this means in practice is that educational institutionsaround the world are
using curricula and teaching methods that are not based on research, but on intuition.
There are practically no theories on the development of programming skills or compre-
hension of programming concepts in the OO case. It is no wonder that educators are
fighting against high drop-out rates (e.g., [26]) and poor learning outcomes (e.g., [36])
of programming courses. Research has offered them various pedagogic tricks (e.g., [2,
3, 8, 24, 25, 27, 33–35, 50, 56, 57]), but the lack of solid psychological and educational
theories makes a holistic approach impossible.

This paper presents a case for systematic research into comprehension of program-
ming and development of skills in the object-oriented paradigm. In order to understand
the huge shift from imperative and procedural programming to object-orientation, we
start by comparing these paradigms at three of the five domains that du Boulay [14]
presents as issues that a learner must master:notationsof the particular language, the
notional machinethat describes how programs in the particular language are executed,
and theorientationdescribing what programs are for and what can be done with them.
Differences between programming paradigms in du Boulay’s two remaining domains,
structuresandpragmatics, are not so clear and will not be treated in this paper.

This paper is structured as follows. First, we will look at the differences between
imperative and procedural programming versus object-orientation with respect to no-
tations (Section 2), notional machine (Section 3), and orientation (Section 4). Then, in
Section 5, we will review research literature and see how it supports our claims. Finally,
Section 6 contains a research agenda for OO programming and Section 7 concludes the
paper.

1 Imperative and procedural programming are often considered to besynonyms, but in this paper
“imperative” refers to programming with variables, assignment and simple imperative control
structures such as sequence, iteration and conditionals whereas “procedural” covers proce-
dures, parameters and recursion, also.



2 The Notational Revolution

Notations needed in Java programs do differ remarkably fromthose of imperative and
procedural programming2. This is partially due to the larger number of programming
concepts needed, but also due to the structure of the Java language [42].

For example, consider the algorithm for simple user interaction in Figure 1, given
in a natural language, English. The pseudo code version of this algorithm is given in
Figure 2, and a Pascal program for the same task in Figure 3 (from a popular textbook
of its time [7, p. 15]). Even though the notations differ in their level of formality, they
look strikingly similar. When we compare the natural language version (that should be
in a notation familiar to students) in Figure 1 to the Pascal version (that the students
should learn to understand) the new notations and the related concepts are:

– “program”, name of the program: program
– interaction ports needed: input/output
– “integer” and the variable name: variables
– “write”, “writeln” and “readln”: input/output
– “var”, “begin”, “end” and punctuation: language syntax

The first two of these are required by the language, but are simple to students (this
is a program with input and output); the next two are just what the students are learning
(the concepts of variable and input/output); the last one issomething cryptic required
by the language. Parts required by the language vary from onelanguage to another; e.g.,
in Python there would be no special punctuation or statementbrackets and the program
line would not be needed.

Now, let us turn to the Java version of the same program given in Figure 4, which
must be stored in a file with a certain name, Interactive.java. (We assume the existence
of another class for user input stored in the file Input.java). Compared with Figure 1 the
new notations and the related concepts are:

– “public”: visibility
– “class”, name of the class: classes and objects
– “static”: access rights
– “void”: return values
– “main”: program
– method name and its argument: methods and their arguments
– “String”, “[]”, “System”, “Input”: predefined classes
– “int” and the variable name: variables
– “println”, “readInt”: input/output
– punctuation: language syntax

This list is much longer than the corresponding list for Pascal and, what is more
important, it contains a large number of difficult concepts that are not required by the

2 We are here interested in differences that are inherent to object-orientation and the way object-
related concepts are implemented in Java. We do not treat Java problemsthat occur within
imperative parts of Java, e.g., that using “=” as the assignment operator makes some students
to confuse assignment with mathematical equality.



4

Tell the user that this is an interactive program.
Ask the user to enter an integer value.
Get the number from the user.
Tell the user what the entered number was.

Fig. 1.An example program in English.

write ’This program interacts with its user.’
write ’Please enter an integer value.’
read Number
write ’The number you entered was:’
write Number

Fig. 2.The example program in pseudo code.

program Interactive (input, output);

var Number: integer;

begin

writeln (’This program interacts with its user.’);

writeln (’Please enter an integer value.’);

readln (Number);

write (’The number you entered was:’);

writeln (Number)

end.

Fig. 3.The example program in Pascal.

public class Interactive {

public static void main(String[] args) {

int Number;

System.out.println("This program interacts with its user.");

System.out.println("Please enter an integer value.");

Number = Input.readInt();

System.out.print("The number you entered was:");

System.out.println(Number);

}

}

Fig. 4.The example program in Java.

solution of the problem, but by the structure of the language: classes and objects, visi-
bility, access rights, method definitions and calls, and return values.

One may argue that this example program favors imperative programming and that
the first programs used in object-oriented courses do not contain this much input and
output. Even if that were the case, the first Java program willcontain almost all of the
above concepts.



Thus, the shift to object-orientation and Java has made a revolution at the notational
level even though this might not be obvious at first sight: thelengths of the programs in
Figures 3 and 4 are practically the same; yet the number of newnotations and concepts
is remarkably higher in the Java case. This rise is not due to the programming problems
that are solved, but due to the requirements of the language used.

3 The Notional Machine Revolution

In order to be able to understand what individual constructsof a programming language
mean and how programs written in that language work, a student must understand how
the notional machine [15] underlying that language works. Programs cannot be under-
stood as strings of characters only, but students must understand, e.g., what a variable is
and how it is affected by assignments. A more thorough understanding of programming
includes, e.g., knowledge of typical uses of variables and control structures [13], which
also relies on proper understanding of the notional machine. The machine needed for
understanding the first programs should be simple as otherwise learning programming
becomes hard [15].

In the procedural approach, instruction typically starts with the imperative con-
structs: variables, input/output, conditionals and looping constructs. The notional ma-
chine needed to explain these notions consists of:

– variable: location or slot with a name and contents
– input/output: two devices connecting variables to external world
– program execution: a program counter referring to a certainpoint at the program

A notional machine that consists of the above parts is clearly capable of execut-
ing the program in Figure 3 and can be used in teaching the firststeps in imperative
programming.

An extension to this notional machine is needed when pointers are included:

– pointer: contents of a variable may be the location of another variable

Further extensions are needed when procedures are introduced:

– procedure call: a call stack
– parameter: room for parameters in the call stack and parameter passing mechanisms
– return value: mechanism for return value, possibly with room for it in the call stack

It should be noted that these extensions are fully compatible with the initial notional
machine and they can be introduced gradually along the introduction of new program-
ming language constructs.

In contrast to the procedural approach, object-orientation requires a much larger and
more complicated notional machine from the very beginning.A notional machine that
is capable of executing the program in Figure 4 must contain all of the following parts
(see the list of concepts of the program given in the previoussection):



– object: a heap for objects
– method: a call stack
– parameter: room for parameters in the call stack and parameter passing mechanisms
– return value: mechanism for return value, possibly with room for it in the call stack
– variable: location or slot with a name and contents (in the call stack)
– input/output: two devices connecting methods to external world
– object reference: contents of a variable or a parameter may be the location of an

object in the heap
– program execution: a program counter referring to a certainpoint at the program

Moreover, there are concepts that are needed even though they are not directly ex-
pressed in the notional machine: visibility and access rights concern validity of the
program, and the relationship between classes and objects concerns the relationship
between the program text and the object heap.

Compared with the notional machine in the procedural case, the difference is huge.
The OO notional machine described above and needed for the simple program in Fig-
ure 4 is not only larger than the corresponding notional machine needed for the equiv-
alent program in Figure 3, but it is much larger than the totalnotional machine in the
procedural case. Furthermore, the notional machine described above does not even con-
tain parts needed to describe other OO constructs that are typically introduced in the first
programming course: subclasses and inheritance, implicitcalls of superclass construc-
tors, and polymorphism.

One might argue that there is no need for students to understand notations and
the notional machine completely—students can simply put aside unnecessary parts as
“boilerplate” when first learning. The problem with this thinking is that novices have
no means to decide which issues are unnecessary and which must be taken care of
when reading or writing programs. The use of “boilerplate” code mystifies program-
ming and obscures concepts that should be learned. Programming should not be taught
as a copy-paste art that only incidentally results in a correctly functioning program,
but as a clearly defined activity that deals with unambiguousconstructs. Otherwise, the
central concepts remain blurred.

In summary, the shift to object-orientation and Java has made a revolution at the
notional machine level. Not only is the size of the required notional machine much
larger than in the procedural case, but the initial notionalmachine needed in order to
understand the first programs is much more complicated, also.

4 The Orientation Revolution

Sajaniemi et al. [46] have studied example programs in elementary programming text-
books among three programming paradigms: procedural, object-oriented, and func-
tional. They found major differences in the programming problem types used in dif-
ferent programming paradigms. The most important issue in procedural programming
textbooks is the functionality of programs: example programs compute meaningful val-
ues based on input and print the results to users through simple output mechanisms.
Object-oriented textbooks deal with data modeling on one hand and demonstrate spe-
cific language features on the other hand. Even though message passing structures may



be complex, their net effects are trivial from the user’s perspective. Finally, functional
programming textbooks stress data manipulation techniques. Thus, the orientation, i.e.,
what programs are for, is very different in these paradigms.

This finding means that also students’ tasks are different depending on the pro-
gramming paradigm used for learning. In procedural programming, students try to
write programs thatdo meaningful actions and computations whereas in OO program-
ming students concentrate on creating conceptual models for (usually concrete) data.
Détienne [12] notes that when novices design OO programs, theactivity of finding
classes consumes novices’ attention, and they think about functionality only late in the
design activity. Ebrahimi and Schweikert [16] found that students have problems in
understanding object-orientation and incorporating OO concepts into problem solving.
Students tend to spend more time trying to understand objects and less time on problem
solving. Thus, the shift to object-orientation has made a revolution at the orientation
and students’ tasks in programming.

5 Research Support

In the previous sections we have seen that the shift from imperative and procedural
programming education to object-orientation has denoted arevolution in the complex-
ity of notations, concepts and the notional machine needed,and in the orientation and
tasks carried out by students as programming exercises. In this section, we will look at
research literature3 and see what it says about this revolution.

Imperative and procedural programming: Classic works on programming educa-
tion and psychology of novice and expert programming (e.g.,[4, 10, 11, 20, 29, 39, 41,
43, 52]; see [44] and [60] for excellent reviews) are based onmostly imperative and to
some extent also procedural programming—in many cases Pascal programming, which
is why we used Pascal in Figure 3. It is evident from this literature that learning pro-
gramming is hard even in the imperative case. Novices have problems in understanding
basic concepts, such as variables and basic imperative control structures [1, 49, 53]—
that is, they have problems in understanding the basic notional machine required for
imperative programming.

Novices’ knowledge about imperative parts of programming languages has been
found to be at first fragile [41], such as inert knowledge thatstudents cannot readily
master, or misplaced knowledge migrated to inappropriate contexts. As a consequence,
students have problems in applying their knowledge even though the knowledge itself
may be correct. From a cognitive perspective, the causes of fragile knowledge include
a sparse network of associations in long-term memory, i.e.,weak connections between
different concepts, and underdifferentiation of languagecommands. Yet, the hardest
part of learning is not to learn the syntax and semantics of some language, but to learn
how to construct larger program units that are needed to solve the problem at hand (see,
e.g., [60]).

A specific source of problems is the limited capacity of working memory. Even
when writing simple imperative programs consisting of a fewlines only, expert

3 In this literature review, we look at programming only. Thus, we do not include system design
literature even though we do include program design literature.



programmers—let alone novices—cannot form a complete mentalrepresentation of the
program in their working memory [21]. Highly economical chunking of knowledge
is therefore crucial for good performance in programming. As novices’ programming
knowledge is fragile, efficient chunking is hard for them.

In summary, educational and psychological research into novice imperative and pro-
cedural programming tells us that even the simplest imperative notional machine is hard
for students to learn, students’ knowledge is fragile, and they have serious problems
in combining basic constructs of a programming language to form larger, meaningful
structures.

OO programming: For object-oriented novice programming, there exists verylit-
tle psychological and educational research. Most papers (e.g., [2, 3, 8, 24, 25, 27, 33–35,
50, 56, 57]) introduce various pedagogic techniques and tips, such as visualization tools
or curriculum changes, without consideration for educational or psychological theo-
ries. Only very few articles (see Table 1) analyze object-orientation from a cognitive or
educational perspective, i.e., increase our understanding of OO programming learning
and how it differs from the imperative and procedural cases.We will next review these
results.

Corritore and Wiedenbeck [9] and Wiedenbeck et al. [59] havestudied novices and
experts comprehending short programs and found that in the OO case the overall func-
tion of programs is understood better than details of, e.g.,control flow; with procedural
programs, comprehenders’ knowledge is more balanced. Thisindicates that program-
mers’ mental representations of procedural and OO programsdo differ qualitatively. As
the nature of mental representations is strongly related with learning programming, this
finding proposes the existence of fundamental differences between learning procedural
programming and learning OO programming.

Eckerdal and Thuńe [17] have studied novices’ understanding of class and object
and found several categories of conception of these concepts. Détienne [12], Holland et
al. [23] and Teif and Hazzan [54] have found that students have severe misconceptions
about fundamental OO concepts, such as classes and inheritance. Fleury [19] has found
several misconceptions concerning the construction and use of objects in Java. In pro-
cedural programming, misconceptions about parameter passing [18] and recursion [30]
have been found; in imperative programming only fragile knowledge instead of miscon-
ceptions has been reported. In consequence, problems in learning seem to have different
roots in OO programming than in imperative programming.

Mead et al. [37] have compared cognitive problems in learning procedural and OO
programming and developed a set of central concepts in the form of “anchor concept
graph” for each paradigm. The two graphs differ considerably providing more evidence
for the assumption that learning procedural programming and learning OO program-
ming are very different in nature.

Thomas et al. [55] found that students did not perform betterin tracing OO code
fragments when they were provided with ready-made partial object diagrams, nor did
they draw their own diagrams more often in a follow-up test. On the other hand, Lis-
ter et al. [31] found that many students were able to track values of numeric variables
on paper, and Vainio and Sajaniemi [58] found that students were able to draw val-
ues of primitive types, but not object references. Taken together, these results imply



Table 1.Psychological and educational research on OO programming.

Topic of investigation Expert Novice Cognitive Programming
performance performance development education

Mental representations
Notional machine: structure
Notional machine: detailed contents
Notional machine: misconceptions
OO programs: structure
OO programs: detailed contents [9] [59]
OO programs: misconceptions
OO programming: structure
OO programming: detailed contents [17] [37]
OO programming: misconceptions [12, 19, 23, 54]
Skills and strategies
Program comprehension
Tracing and debugging [31, 58] [55]
Program design [12, 28, 40, 45] [12]

that students have more problems in making external representations of OO parts than
imperative parts of the notional machine, i.e., the OO notional machine is even more
poorly understood by students.

In her state-of-art review of empirical research on object-oriented design,
Détienne [12] examined the processes involved in designing in the OO paradigm and
in the procedural paradigm. Among other things, she reportson findings of Lee and
Pennington [28], Pennington et al. [40] and Rosson and Gold [45] concerning the dif-
ferences between OO designers and procedural designers. OOdesigners seem to base
their solutions on the problem domain itself, whereas procedural designers use generic
programming constructs for structuring their solutions. Thus, the overall approach in
program design differs between procedural and OO programming, and their teaching
should acknowledge this difference.

Discussion: Even though studies into OO programming are few, the above results
make it clear that both OO programming itself and learning OOprogramming are very
different from their imperative and procedural counterparts: mental representation of
programs is different, problems have different roots, conceptual contents of knowledge
is different, the level of understanding the underlying notional machine is different, and
the overall approach to program design is different. These differences are so fundamen-
tal to learning processes that we dare to claim that the classic educational and cognitive
results of novice imperative and procedural programming should not be used in the OO
context.

Furthermore, the number of educational and cognitive studies of learning OO pro-
gramming is small. Lister et al. [32] studied several popular claims about learning OO
programming and found practically no evidence for them in scientific literature. Neither
do we know of any results that would provide evidence for the desirability or efficiency
of replacing imperative/procedural programming education by object-orientation. On
the contrary, Chen et al. [6] found no effects of the first programming paradigm and



later design skills; D́etienne [12], Pennington et al. [40] and Sharp and Griffyth [51]
found positive transfer effects of traditional structuredand procedural approaches to
OO design.

6 Proposal for Research Agenda

Table 1 collects together research on OO programming described in the previous sec-
tion. We have tabulated research articles according to two dimensions: the first describ-
ing the cognitive content or skill targeted in an investigation; the second telling whether
the investigation deals with experts’ performance, novices’ performance or problems,
development of novices’ mental representations and skills, or ways to improve this de-
velopment with educational techniques. The table makes it clear that large areas are
totally neglected; even the most researched areas—novices’misconceptions in OO pro-
gramming knowledge and experts’ program design processes—have been both studied
in few papers only.

If novices are to be helped in their struggles when learning OO programming, we
need to know their problems and misconceptions as well as what experts know and how
they apply their knowledge. Only then can we devise efficientteaching methods and
contents that have a strong cognitive basis. Many studies intraditional programming
have compared expert and novice performance and mental representations, thus provid-
ing information on what distinguishes experts from novices. In the OO domain, such
studies are rare; all but a single study in Table 1 cover both experts and novices. We
therefore suggest that research intoexpert and novice differencesshould be carried out
in all cognitive aspects listed in the table.

A notable gap in Table 1 covers the OO notional machine. Thereare no studies on
experts’ or novices’ understanding of the notional machinebehind OO programming;
neither are there studies on teaching a viable notional machine to students. There are
some suggestions for visualizing OO program execution (e.g., [22, 38, 47]) but their
correspondence to experts’ or novices’ mental representations or their efficiency in pro-
viding a mental model of a correct notional machine has not been studied in detail. In a
recent study [48], students were found to be poor in visualizing relationships between
objects and method calls during program execution and students’ understanding of these
relationships, i.e., the structure of the notional OO machine, was found to contain many
errors. We therefore suggest thatexperts’ mental representations of the notional OO
machineshould be studied in detail. Moreover, effectiveways to convey this knowledge
to novicesshould also be investigated.

Another gap in Table 1 is the lack of studies into cognitive development of novices’
mental representations and skills. In order to support learning by teaching, steps in cog-
nitive development must first be known. Basic cognitive activities—such as chunking—
do, of course, appear in the context of OO programming also, but the building of the
notional machine, construction of OO programming knowledge, and detailed develop-
ment of OO programming skills and strategies presumably have components that are
specific to OO programming. We therefore suggest thatnovices’ cognitive development
in OO programmingshould be studied.



Investigations of mental representations of OO programs [9, 59] have probed par-
ticipants’ knowledge with yes/no questions divided into categories determined by the
researchersa priori. Such a method reveals whether participants do possess knowledge
in those categories but it does not reveal what other types ofknowledge they might
have. As a consequence, exact contents of experts’ mental representations of OO pro-
grams are largely unknown and teachers have only vague ideasof how to best explain
important program elements and their relationships to students. We therefore call for
exploratory research into experts’ mental representations of OO programs.

Studies in cognitive processes, i.e., skills and strategies, cover mainly experts’ pro-
gram design. In imperative programming, research into experts’ and novices’ program
comprehension has increased our understanding of the comprehension processes and,
moreover, of the mental representations of imperative programs and imperative pro-
gramming knowledge. The structure of OO programs differs somuch from imperative
and procedural programs that one may assume that their comprehension processes do
also differ considerably. Again, some elements (e.g., hypothesis driven comprehension)
are the same, but issues related to program structure can be assumed to differ. We there-
fore suggest research intoexperts’ and novices’ OO program comprehension processes.

Finally, results of the research suggested above should be utilized in devising
effective methods for teaching OO programming. However, wedo not include this
work in the research agenda proposal for two reasons. Firstly, the right time for such
educational-oriented research will come only after there is a large body of results ob-
tained from the research agenda. Secondly, it may well be that effective ways to transfer
experts’ mental representations, skills and strategies are at least partially revealed dur-
ing the earlier research covered by the agenda.

7 Conclusion

The question in the title of this paper was“What Have We (Not) Done?”To please in-
dustry and students,we haveshifted from imperative and procedural programming edu-
cation to object-orientation without studying its necessity or consequences and without
studying how OO programming education should be carried out. Moreover, we have
used classic results from imperative and procedural programming even though their
applicability in the OO case can be questioned. The shift from imperative/procedural
programming to object-orientation in elementary programming education is so revolu-
tionary that the use of research results obtained in the imperative and procedural cases
is doubtful in the OO case. The amount of notations and concepts needed, the size of
the notional machine required, and the whole orientation ofprogramming are so dif-
ferent that the assumptions of imperative and procedural programming research do not
necessarily hold for object-orientation.

What we have notdone is systematic research into the fundamental cognitiveand
educational issues in learning and teaching OO programming. Lister et al. [32] conclude
their paper by noting that “our community needs to discuss—and debate—this issue”,
but we claim that the computer science education research community and psychology
of programming community need to rigorouslystudythese issues. For that purpose, we
have presented a research agenda comprising:



– experts’ and novices’ differences in mental representations, skills and strategies in
OO programming

– novices’ cognitive development in OO programming
– experts’ mental representations of the notional OO machine
– ways to convey the notional OO machine to novices
– exploratory research into experts’ mental representations of OO programs
– experts’ and novices’ OO program comprehension processes

Only with rigorous research into the psychological and educational issues we can
attack the problems in learning OO programming.

References

1. Y. Ben-David Kolikant and B. Haberman. Activating ”black boxes” instead of opening ”zip-
pers” - a method of teaching novices. InProceedings of the Sixth Annual Conference on In-
novation and Technology in Computer Science Education (ITiCSE’01), pages 41–44. ACM
Press, 2001.

2. J. Bennedsen and M. E. Caspersen. Programming in context: a model-first approach to CS1.
In SIGCSE ’04: Proceedings of the 35th SIGCSE technical symposium on Computer science
education, pages 477–481, New York, NY, USA, 2004. ACM Press.

3. K. Bierre, P. Ventura, A. Phelps, and C. Egert. Motivating OOP by blowing things up: an
exercise in cooperation and competition in an introductory Java programming course. In
SIGCSE ’06: Proceedings of the 37th SIGCSE technical symposium on Computer science
education, pages 354–358, New York, NY, USA, 2006. ACM Press.

4. R. E. Brooks. Towards a theory of the comprehension of computerprograms.International
Journal of Man-Machine Studies, 18:534–554, 1983.

5. L. B. Cassel, A. McGettrick, M. Guzdial, and E. Roberts. The current crisis in computing:
what are the real issues? InSIGCSE ’07: Proceedings of the 38th SIGCSE technical sym-
posium on Computer science education, pages 329–330, New York, NY, USA, 2007. ACM
Press.

6. T.-Y. Chen, A. Monge, and B. Simon. Relationship of early programming language to novice
generated design. InSIGCSE ’06: Proceedings of the 37th SIGCSE technical symposium on
Computer science education, pages 495–499, New York, NY, USA, 2006. ACM Press.

7. D. Cooper and M. Clancy.Oh! Pascal!W. W. Norton & Company, New York, 1982.
8. S. Cooper, W. Dann, and R. Pausch. Teaching objects-first in introductory computer science.

In SIGCSE ’03: Proceedings of the 34th SIGCSE technical symposium on Computer science
education, pages 191–195, New York, NY, USA, 2003. ACM Press.

9. C. Corritore and S. Wiedenbeck. Mental representations of expertprocedural and object-
oriented programmers in a software maintenance task.International Journal of Human-
Computer Studies, 50:61–83, 1999.

10. C. L. Corritore and S. Wiedenbeck. What do novices learn during program comprehension?
International Journal of Human-Computer Interaction, 3(2):199–222, 1991.

11. S. P. Davies. Models and theories of programming strategy.International Journal of Man-
Machine Studies, 39(2):237–267, 1993.

12. F. D́etienne. Assessing the cognitive consequences of the object-oriented approach: A survey
of empirical research on object-oriented design by individuals and teams. Interacting with
Computers, 9:47–72, 1997.

13. F. D́etienne.Software Design—Cognitive Aspects. Springer-Verlag, 2002.



14. B. du Boulay. Some difficulties of learning to program. In E. Solowayand J. C. Spohrer,
editors,Studying the Novice Programmer, pages 283–299. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1989.

15. B. Du Boulay, T. O’Shea, and J. Monk. The black box inside the glass box: Presenting
computing concepts to novices.International Journal of Man-Machine Studies, 14:237–
249, 1981.

16. A. Ebrahimi and C. Schweikert. Empirical study of novice programming with plans and
objects.SIGCSE Bulletin, 38(4):52–54, 2006.

17. A. Eckerdal and M. Thuńe. Novice Java programmers’ conceptions of “object” and “class”,
and variation theory. InProceedings of the 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education ITiCSE’05, pages 89–93. ACM, 2005.

18. A. E. Fleury. Parameter passing: The rules the students construct.In Proc. of the 22nd
SIGCSE Technical Symposium on CS Education, volume 23(1) ofACM SIGCSE Bulletin,
pages 283–286, 1991.

19. A. E. Fleury. Programming in Java: student-constructed rules. InSIGCSE ’00: Proceedings
of the thirty-first SIGCSE technical symposium on Computer science education, pages 197–
201, New York, NY, USA, 2000. ACM Press.

20. D. J. Gilmore and T. R. G. Green. Comprehension and recall of miniature programs.Inter-
national Journal of Man-Machine Studies, 21:31–48, 1984.

21. T. R. G. Green, R. K. E. Bellamy, and J. M. Parker. Parsing and gnisrap: A model of device
use. In G. M. Olson, S. Sheppard, and E. Soloway, editors,Empirical Studies of Program-
mers: Second Workshop, pages 132–146. Ablex Publishing Company, 1987.

22. P. Gries and D. Gries. Frames and folders: A teachable memory model for Java.The Journal
of Computing in Small Colleges, 17(6):182–196, 2002.

23. S. Holland, R. Griffiths, and M. Woodman. Avoiding object misconceptions. SIGCSE Bul-
letin, 29:131–134, 1997.

24. M. A. Holliday and D. Luginbuhl. CS1 assessment using memory diagrams. InSIGCSE
’04: Proceedings of the 35th SIGCSE technical symposium on Computerscience education,
pages 200–204, New York, NY, USA, 2004. ACM Press.

25. J. I. Hsia, E. Simpson, D. Smith, and R. Cartwright. Taming Java forthe classroom. In
SIGCSE ’05: Proceedings of the 36th SIGCSE technical symposium on Computer science
education, pages 327–331, New York, NY, USA, 2005. ACM Press.

26. P. Kinnunen and L. Malmi. Why students drop out CS1 course? InICER ’06: Proceedings
of the 2006 international workshop on Computing education research, pages 97–108, New
York, NY, USA, 2006. ACM Press.

27. M. Kölling and P. Henriksen. Game programming in introductory courses with direct state
manipulation. InITiCSE ’05: Proceedings of the 10th annual SIGCSE conference on Inno-
vation and technology in computer science education, pages 59–63, New York, NY, USA,
2005. ACM Press.

28. A. Lee and N. Pennington. The effects of programming on cognitive activities in design.Int.
J. Human-Computer Studies, 40:577–601, 1994.

29. S. Letovsky. Cognitive processes in program comprehension. In E. Soloway and S. Iyen-
gar, editors,Empirical Studies of Programmers, pages 58–79, NJ: Norwood, 1986. Ablex
Publishing Company.

30. D. Levy. Insights and conflicts in discussing recursion: A case study. Computer Science
Education, 11(4):305–322, 2001.

31. R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm, R. McCartney, J. E.
Moström, K. Sanders, O. Seppälä, B. Simon, and L. Thomas. A multi-national study of
reading and tracing skills in novice programmers.ACM SIGCSE Bulletin, 36(4):119–150,
2004.



32. R. Lister, A. Berglund, T. Clear, J. Bergin, K. Garvin-Doxas, B.Hanks, L. Hitchner,
A. Luxton-Reilly, K. Sanders, C. Schulte, and J. L. Whalley. Researchperspectives on the
objects-early debate.SIGCSE Bulletin, 38(4):146–165, 2006.

33. R. E. Lopez-Herrejon and M. Schulman. Using interactive technology in a short Java course:
an experience report. InITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on
Innovation and technology in computer science education, pages 203–207, New York, NY,
USA, 2004. ACM Press.

34. Q. H. Mahmoud, W. Dobosiewicz, and D. Swayne. Redesigning introductory computer
programming with HTML, JavaScript, and Java. InSIGCSE ’04: Proceedings of the 35th
SIGCSE technical symposium on Computer science education, pages 120–124, New York,
NY, USA, 2004. ACM Press.

35. W. Marrero and A. Settle. Testing first: Emphasizing testing in early programming courses.
In ITiCSE ’05: Proceedings of the 10th annual SIGCSE conference on Innovation and tech-
nology in computer science education, pages 4–8, New York, NY, USA, 2005. ACM Press.

36. M. McCracken, T. Wilusz, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. Ben-David
Kolikant, C. Laxer, L. Thomas, and I. Utting. A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students. InWorking Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education ITiCSE’01, pages
125–140. ACM, 2001.

37. J. Mead, S. Gray, J. Hamer, R. James, J. Sorva, C. S. Clair, and L. Thomas. A cognitive
approach to identifying measurable milestones for programming skill acquisition. SIGCSE
Bulletin, 38(4):182–194, 2006.

38. A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. Visualizing programs with Jeliot 3.
In Proceedings of the International Working Conference on Advanced Visual Interfaces AVI
2004, Gallipoli (Lecce), 2004.

39. N. Pennington. Comprehension strategies in programming. In G. M.Olson, S. Sheppard, and
E. Soloway, editors,Empirical Studies of Programmers: Second Workshop, pages 100–113.
Ablex Publishing Company, 1987.

40. N. Pennington, A. Lee, and B. Rehder. Cognitive activities and levels of abstraction in
procedural and object-oriented design.Human-Computer Interaction, 10(2&3):171–226,
1995.

41. D. N. Perkins and F. Martin. Fragile knowledge and neglected strategies in novice pro-
grammers. In E. Soloway and S. Iyengar, editors,Empirical Studies of Programmers, pages
213–229, NJ: Norwood, 1986. Ablex Publishing Company.

42. A. Radenski. ”Python first”: a lab-based digital introduction to computer science. InITICSE
’06: Proceedings of the 11th annual SIGCSE conference on Innovation and technology in
computer science education, pages 197–201, New York, NY, USA, 2006. ACM Press.

43. R. S. Rist. Schema creation in programming.Cognitive Science, 13:389–414, 1989.
44. A. Robins, J. Rountree, and N. Rountree. Learning and teaching programming: A review

and discussion.Computer Science Education, 13:137–172, 2003.
45. M. B. Rosson and E. Gold. Problem-solution mapping in object-oriented design. Technical

report, 1989. IBM Research Report RC 14496.
46. J. Sajaniemi, M. Ben-Ari, P. Byckling, P. Gerdt, and Y. Kulikova. Roles of variables in three

programming paradigms.Computer Science Education, 16(4):261–279, 2006.
47. J. Sajaniemi, P. Byckling, and P. Gerdt. Metaphor-based animation of OO programs. In

Metaphor-Based Animation of OO Programs (Extended Poster abstract). Proceedings SOFT-
VIS 06 ACM Symposium on Software Visualization, New York, NY, USA, 2006. ACM Press.

48. J. Sajaniemi, M. Kuittinen, and T. Tikansalo. A study of the development of students’ visu-
alizations of program state during an elementary object-oriented programming course. Sub-
mitted.



49. R. Samurçay. The concept of variable in programming: Its meaning and use in problem-
solving by novice programmers. In E. Soloway and J. C. Spohrer, editors, Studying the
Novice Programmer, pages 161–178. Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.

50. V. Shanmugasundaram, P. Juell, and C. Hill. Knowledge building using visualizations. In
ITICSE ’06: Proceedings of the 11th annual SIGCSE conference on Innovation and technol-
ogy in computer science education, pages 23–27, New York, NY, USA, 2006. ACM Press.

51. H. Sharp and J. Griffyth. The effect of previous software development experience on under-
standing the object-oriented paradigm.Journal of Computers in Mathematics and Science
Teaching, 18(3):245–265, 1999.

52. E. Soloway and J. C. Spohrer, editors.Studying the Novice Programmer. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1989.

53. J. C. Spohrer, E. Soloway, and E. Pope. A goal/plan analysis of buggy Pascal programs.
In E. Soloway and J. C. Spohrer, editors,Studying the Novice Programmer, pages 355–399.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.

54. M. Teif and O. Hazzan. Partonomy and taxonomy in object-oriented thinking: Junior high
school students’ perceptions of object-oriented basic concepts.SIGCSE Bulletin, 38(4):55–
60, 2006.

55. L. Thomas, M. Ratcliffe, and B. Thomasson. Scaffolding with object diagrams in first year
programming classes: Some unexpected results. InProc. of the 35th SIGCSE Technical
Symposium on CS Education, pages 250–254, 2004.

56. N. Truong, P. Bancroft, and P. Roe. Learning to program through the web. InITiCSE
’05: Proceedings of the 10th annual SIGCSE conference on Innovation and technology in
computer science education, pages 9–13, New York, NY, USA, 2005. ACM Press.

57. I. Utting. Problems in the initial teaching of programming using Java: thecase for replacing
J2SE with J2ME. InITICSE ’06: Proceedings of the 11th annual SIGCSE conference on
Innovation and technology in computer science education, pages 193–196, New York, NY,
USA, 2006. ACM Press.

58. V. Vainio and J. Sajaniemi. Factors in novice programmers’ poor tracing skills. In Pro-
ceedings of the 12th Annual Conference on Innovation and Technologyin Computer Science
Education (ITiCSE’07). ACM Press, 2007.

59. S. Wiedenbeck, V. Ramalingam, S. Sarasamma, and C. L. Corritore. A comparison of the
comprehension of object-oriented and procedural programs by novice programmers.Inter-
acting with Computers, 11:255–282, 1999.

60. L. E. Winslow. Programming pedagogy — a psychological overview. SIGCSE Bulletin,
28:17–22, 1996.




