PPIG'07 Full paper

From Procedures to Objects:
What Have We (Not) Done ?

Jorma Sajaniemi and Marja Kuittinen

University of Joensuu, P.O.Box 111, FI-80101 Joensuu, Finland
{sajalmarja}@cs.joensuu.fi

Abstract. Programming education has experienced a shift from imperative and
procedural programming to object-orientation. This shift has beenvatet by
educators’ desire to please information technology industry and potsttial
dents; it is not motivated by psychology of programming nor by compate
ence education research—there are practically no results that wouldtathiat
such a shift is desirable, needed in the first place, or even effectivedrning
programming. Moreover, there has been an implicit assumption thaiches
sults on imperative and procedural programming education and lgaaply to

OO programming, also, but we argue that this is not the case and,dreredill

for systematic research into the fundamental cognitive and educaissoals in
learning and teaching OO programming.

In order to understand the huge shift from imperative and proceduwgram-
ming to object-orientation, we compare these paradigms at three levilions

of languages, the notional machine that describes how programseceted,
and the orientation of a paradigm describing what programs are fovhatican

be done with them. We will also review research literature and see how-it sup
ports our claims. Finally, we present a research agenda intended tovienie
understanding of OO programming and OO programming education.

1 Introduction

During the last ten years, programming education has exqpegd a shift from impera-
tive and procedural programming to object-oriented (O@pprmming. This shift has
been motivated by educators’ desire to please informatiohrtology industry on one
hand and potential students on the other hand. Objecttatien and Java have been
spreading as the most important implementation platfonnmésv, web-based applica-
tions with wide-spread visibility among computer usersichithas created the illusion
that programming equals to object-oriented Java programniihus, students want to
learn Java from the very beginning of their programming igsicand teachers may fear
that if an institute is not offering Java as the first prograngranguage, students will
go elsewhere. With the current fall in enrollments to acaderomputing programs [5]
educators’ thirst for pleasing potential students willbly even increase. Moreover,
many companies want to hire students who know how to prognalava and educators
may think that if an institute is not teaching Java, its rafioh among those companies
is gone.

It should be noted that the shift to object-orientation ismotivated by psychology
of programming or computer science education researcte #re practically no results

86

that would indicate that such a shift is desirable, needdddfirst place, or even effec-
tive for learning programming [32]. Yet, learning programmshould be the most im-
portant issue—not learning the peculiarities of a singleg@igm or a certain language.
Note that “learning programming” does not refer to impetor procedural—neither

functional nor logic—programming, but learning programgiin a way that can be

applied in many programming paradigms and many programtaimguages.

Indeed, we are surprised to find out that the cognitive carseees of the shift
to object-orientation have been studied neither beforesHike nor after it. This lack
of research covers both comprehension of programming ptsesed development of
programming skills. There has been an implicit assumptiai ¢lassic results on im-
perative and procedural programming education and legrgsee [44] and [60] for
reviews) apply to OO programming, also, but we fear thatithisot the case. Object-
oriented programming is so much more complicated than iatjwer and procedural
programming—both at the concrete notational level and at i@ mlbstract conceptual
level—that there are good grounds to question whether tissicleesults can be gener-
alized to object-orientation.

What this means in practice is that educational institutisrind the world are
using curricula and teaching methods that are not basedseaneh, but on intuition.
There are practically no theories on the development ofraragiing skills or compre-
hension of programming concepts in the OO case. It is ho wothde¢ educators are
fighting against high drop-out rates (e.g., [26]) and poarriég outcomes (e.g., [36])
of programming courses. Research has offered them varenegpgic tricks (e.g., [2,
3,8,24,25,27,33-35,50, 56, 57]), but the lack of solid psymgical and educational
theories makes a holistic approach impossible.

This paper presents a case for systematic research intarebemsion of program-
ming and development of skills in the object-oriented payad In order to understand
the huge shift from imperative and procedural programmingkject-orientation, we
start by comparing these paradigms at three of the five danthat du Boulay [14]
presents as issues that a learner must masbéationsof the particular language, the
notional machineghat describes how programs in the particular languagexa®u&d,
and theorientationdescribing what programs are for and what can be done with.the
Differences between programming paradigms in du Boulaytsremaining domains,
structuresandpragmatics are not so clear and will not be treated in this paper.

This paper is structured as follows. First, we will look a¢ tifferences between
imperative and procedural programming versus objecthtate®n with respect to no-
tations (Section 2), notional machine (Section 3), andnteition (Section 4). Then, in
Section 5, we will review research literature and see howgpsrts our claims. Finally,
Section 6 contains a research agenda for OO programmingeartid® 7 concludes the
paper.

1 Imperative and procedural programming are often consideredsprimmyms, but in this paper
“imperative” refers to programming with variables, assignment anglsiimperative control
structures such as sequence, iteration and conditionals whereasdprall covers proce-
dures, parameters and recursion, also.

87

2 The Notational Revolution

Notations needed in Java programs do differ remarkably fftoae of imperative and
procedural programmirig This is partially due to the larger number of programming
concepts needed, but also due to the structure of the Jayadge [42].

For example, consider the algorithm for simple user inté&wadn Figure 1, given
in a natural language, English. The pseudo code versioniofthorithm is given in
Figure 2, and a Pascal program for the same task in Figur@® @rpopular textbook
of its time [7, p. 15]). Even though the notations differ irithlevel of formality, they
look strikingly similar. When we compare the natural languagrsion (that should be
in a notation familiar to students) in Figure 1 to the Paseasion (that the students
should learn to understand) the new notations and the detatecepts are:

— “program”, name of the program: program
— interaction ports needed: input/output
— “integer” and the variable name: variables

— “write”, “writeln” and “readIn”: input/output
— “var”, “begin”, “end” and punctuation: language syntax

The first two of these are required by the language, but arglsito students (this
is a program with input and output); the next two are just whatdtudents are learning
(the concepts of variable and input/output); the last orsoieething cryptic required
by the language. Parts required by the language vary fronfemgeage to another; e.g.,
in Python there would be no special punctuation or statefmaakets and the program
line would not be needed.

Now, let us turn to the Java version of the same program givétigure 4, which
must be stored in a file with a certain name, Interactive.j&k@ assume the existence
of another class for user input stored in the file Input.ja@@mpared with Figure 1 the
new notations and the related concepts are:

— “public™; visibility

— “class”, name of the class: classes and objects

— “static”; access rights

— “void”: return values

— “main”: program

— method name and its argument: methods and their arguments
— “String”, “[I", “System”, “Input”: predefined classes

— “int” and the variable name: variables

— “println”, “readInt”: input/output

punctuation: language syntax

This list is much longer than the corresponding list for Rhsnd, what is more
important, it contains a large number of difficult concepiattare not required by the

2 \We are here interested in differences that are inherent to object-dideréad the way object-
related concepts are implemented in Java. We do not treat Java prablgmoecur within
imperative parts of Java, e.g., that using “=" as the assignmenatmpaenakes some students
to confuse assignment with mathematical equality.

88

4

Tell the user that this is an interactive program.
Ask the user to enter an integer value.

Get the number from the user.

Tell the user what the entered number was.

Fig. 1. An example program in English.

write 'This program interacts with its user.’
write 'Please enter an integer value.’

read Number

write 'The number you entered was:’
write Number

Fig. 2. The example program in pseudo code.

program Interactive (input, output);
var Number: integer;

begin
writeln (’This program interacts with its user.’);
writeln (’Please enter an integer value.’);
readln (Number);
write (’The number you entered was:’);
writeln (Number)

end.

Fig. 3. The example program in Pascal.

public class Interactive {
public static void main(String[] args) {

int Number;
System.out.println("This program interacts with its user.");
System.out.println("Please enter an integer value.");
Number = Input.readInt();
System.out.print ("The number you entered was:");
System.out.println(Number) ;

Fig. 4. The example program in Java.

solution of the problem, but by the structure of the languatesses and objects, visi-
bility, access rights, method definitions and calls, andrretvalues.

One may argue that this example program favors imperatwgramming and that
the first programs used in object-oriented courses do ndatothis much input and
output. Even if that were the case, the first Java programecwiitain almost all of the
above concepts.

89

Thus, the shift to object-orientation and Java has madeddution at the notational
level even though this might not be obvious at first sight:lémgths of the programs in
Figures 3 and 4 are practically the same; yet the number ofwa¢ations and concepts
is remarkably higher in the Java case. This rise is not dugetptogramming problems
that are solved, but due to the requirements of the languseg u

3 The Notional Machine Revolution

In order to be able to understand what individual constrotcésprogramming language
mean and how programs written in that language work, a studast understand how
the notional machine [15] underlying that language workegPams cannot be under-
stood as strings of characters only, but students must staohet, e.g., what a variable is
and how it is affected by assignments. A more thorough utaigding of programming
includes, e.g., knowledge of typical uses of variables amdrol structures [13], which
also relies on proper understanding of the notional macHihe machine needed for
understanding the first programs should be simple as otsefd@arning programming
becomes hard [15].

In the procedural approach, instruction typically starithvthe imperative con-
structs: variables, input/output, conditionals and loagptonstructs. The notional ma-
chine needed to explain these notions consists of:

— variable: location or slot with a name and contents
— input/output: two devices connecting variables to extenmald
— program execution: a program counter referring to a cefaint at the program

A notional machine that consists of the above parts is glezapable of execut-
ing the program in Figure 3 and can be used in teaching thesfepts in imperative
programming.

An extension to this notional machine is needed when pa@raer included:

— pointer: contents of a variable may be the location of arrothgable
Further extensions are needed when procedures are ing@duc

— procedure call: a call stack
— parameter: room for parameters in the call stack and paeaupassing mechanisms
— return value: mechanism for return value, possibly withmdor it in the call stack

It should be noted that these extensions are fully comatiith the initial notional
machine and they can be introduced gradually along thednttion of new program-
ming language constructs.

In contrast to the procedural approach, object-orientagguires a much larger and
more complicated notional machine from the very beginnfkgotional machine that
is capable of executing the program in Figure 4 must contaof ¢éhe following parts
(see the list of concepts of the program given in the prevemesion):

90

object: a heap for objects

— method: a call stack

parameter: room for parameters in the call stack and paeaupassing mechanisms
return value: mechanism for return value, possibly withnndor it in the call stack
variable: location or slot with a name and contents (in tHiestack)

input/output: two devices connecting methods to exterrmaldv

object reference: contents of a variable or a parameter reaahélocation of an
object in the heap

program execution: a program counter referring to a cepaint at the program

Moreover, there are concepts that are needed even thoughrih@eot directly ex-
pressed in the notional machine: visibility and accesstsigioncern validity of the
program, and the relationship between classes and objentems the relationship
between the program text and the object heap.

Compared with the notional machine in the procedural casefifference is huge.
The OO notional machine described above and needed forrttpesprogram in Fig-
ure 4 is not only larger than the corresponding notional rimecheeded for the equiv-
alent program in Figure 3, but it is much larger than the totdlonal machine in the
procedural case. Furthermore, the notional machine destabove does not even con-
tain parts needed to describe other OO constructs that@ioatly introduced in the first
programming course: subclasses and inheritance, impéd# of superclass construc-
tors, and polymorphism.

One might argue that there is no need for students to understatations and
the notional machine completely—students can simply puteagnnecessary parts as
“boilerplate” when first learning. The problem with thisrking is that novices have
no means to decide which issues are unnecessary and whig¢hbetizken care of
when reading or writing programs. The use of “boilerplatetle mystifies program-
ming and obscures concepts that should be learned. Progngrshould not be taught
as a copy-paste art that only incidentally results in a obigrdunctioning program,
but as a clearly defined activity that deals with unambigummursstructs. Otherwise, the
central concepts remain blurred.

In summary, the shift to object-orientation and Java hasenaacdevolution at the
notional machine level. Not only is the size of the requiretional machine much
larger than in the procedural case, but the initial notionathine needed in order to
understand the first programs is much more complicated, also

4 The Orientation Revolution

Sajaniemi et al. [46] have studied example programs in elang programming text-
books among three programming paradigms: proceduralcobjeented, and func-
tional. They found major differences in the programminghpem types used in dif-
ferent programming paradigms. The most important issuedngalural programming
textbooks is the functionality of programs: example progga@ompute meaningful val-
ues based on input and print the results to users througHesioupput mechanisms.
Object-oriented textbooks deal with data modeling on ormedtend demonstrate spe-
cific language features on the other hand. Even though megseaging structures may

91

be complex, their net effects are trivial from the user’sspective. Finally, functional
programming textbooks stress data manipulation techsidulaus, the orientation, i.e.,
what programs are for, is very different in these paradigms.

This finding means that also students’ tasks are differepedging on the pro-
gramming paradigm used for learning. In procedural prognarg, students try to
write programs thatlo meaningful actions and computations whereas in OO program-
ming students concentrate on creating conceptual modelsisoally concrete) data.
Détienne [12] notes that when novices design OO programsadheity of finding
classes consumes novices’ attention, and they think abaatibnality only late in the
design activity. Ebrahimi and Schweikert [16] found thatdgints have problems in
understanding object-orientation and incorporating O@cepts into problem solving.
Students tend to spend more time trying to understand abject less time on problem
solving. Thus, the shift to object-orientation has madevaltgion at the orientation
and students’ tasks in programming.

5 Research Support

In the previous sections we have seen that the shift from riatipe and procedural
programming education to object-orientation has denoted@ution in the complex-
ity of notations, concepts and the notional machine neealsdijn the orientation and
tasks carried out by students as programming exercisesisisection, we will look at
research literatufeand see what it says about this revolution.

I mperative and procedural programming: Classic works on programming educa-
tion and psychology of novice and expert programming (§4g10, 11, 20, 29, 39,41,
43,52]; see [44] and [60] for excellent reviews) are basecdhostly imperative and to
some extent also procedural programming—in many caseslpasgeamming, which
is why we used Pascal in Figure 3. It is evident from this ditere that learning pro-
gramming is hard even in the imperative case. Novices haM#gms in understanding
basic concepts, such as variables and basic imperativeotstructures [1, 49, 53]—
that is, they have problems in understanding the basic maitimachine required for
imperative programming.

Novices’ knowledge about imperative parts of programmiagguages has been
found to be at first fragile [41], such as inert knowledge ttatients cannot readily
master, or misplaced knowledge migrated to inappropriat¢exts. As a consequence,
students have problems in applying their knowledge eveaghdhe knowledge itself
may be correct. From a cognitive perspective, the causaagifd knowledge include
a sparse network of associations in long-term memoryyi@ak connections between
different concepts, and underdifferentiation of languagemmmands. Yet, the hardest
part of learning is not to learn the syntax and semantics mslanguage, but to learn
how to construct larger program units that are needed t@dbb/problem at hand (see,
e.g., [60]).

A specific source of problems is the limited capacity of wogkimemory. Even
when writing simple imperative programs consisting of a fémes only, expert

3 In this literature review, we look at programming only. Thus, we do nduik system design
literature even though we do include program design literature.

92

programmers—Iet alone novices—cannot form a complete mesgedsentation of the
program in their working memory [21]. Highly economical ctking of knowledge
is therefore crucial for good performance in programming.nlvices’ programming
knowledge is fragile, efficient chunking is hard for them.

In summary, educational and psychological research intwadmperative and pro-
cedural programming tells us that even the simplest imperabtional machine is hard
for students to learn, students’ knowledge is fragile, dreythave serious problems
in combining basic constructs of a programming languagetm flarger, meaningful
structures.

OO programming: For object-oriented novice programming, there exists Viery
tle psychological and educational research. Most papegs [, 3, 8, 24, 25, 27, 33-35,
50, 56, 57]) introduce various pedagogic techniques asdsipch as visualization tools
or curriculum changes, without consideration for educeticor psychological theo-
ries. Only very few articles (see Table 1) analyze objettation from a cognitive or
educational perspective, i.e., increase our understgrafi®@O programming learning
and how it differs from the imperative and procedural cagéswill next review these
results.

Corritore and Wiedenbeck [9] and Wiedenbeck et al. [59] lsudied novices and
experts comprehending short programs and found that in the&3e the overall func-
tion of programs is understood better than details of, eantrol flow; with procedural
programs, comprehenders’ knowledge is more balanced.ifthisates that program-
mers’ mental representations of procedural and OO progdandéffer qualitatively. As
the nature of mental representations is strongly relatéiulle@rning programming, this
finding proposes the existence of fundamental differeneesden learning procedural
programming and learning OO programming.

Eckerdal and Thum[17] have studied novices’ understanding of class andcobje
and found several categories of conception of these condegtienne [12], Holland et
al. [23] and Teif and Hazzan [54] have found that student® Isavere misconceptions
about fundamental OO concepts, such as classes and imieritdeury [19] has found
several misconceptions concerning the construction aaatisbjects in Java. In pro-
cedural programming, misconceptions about parameteinggds] and recursion [30]
have been found; in imperative programming only fragilewisalge instead of miscon-
ceptions has been reported. In consequence, problemsririgaeem to have different
roots in OO programming than in imperative programming.

Mead et al. [37] have compared cognitive problems in legrpirocedural and OO
programming and developed a set of central concepts in tine & “anchor concept
graph” for each paradigm. The two graphs differ considgrplbdviding more evidence
for the assumption that learning procedural programmirdylaarning OO program-
ming are very different in nature.

Thomas et al. [55] found that students did not perform béttéracing OO code
fragments when they were provided with ready-made parbipdab diagrams, nor did
they draw their own diagrams more often in a follow-up test.t®e other hand, Lis-
ter et al. [31] found that many students were able to trackesbf numeric variables
on paper, and Vainio and Sajaniemi [58] found that studemsevable to draw val-
ues of primitive types, but not object references. Takerttugy, these results imply

93

Table 1.Psychological and educational research on OO programming.

Topic of investigation Expert Novice Cognitive |Programming
performance| performance/development education

Mental representations
Notional machine: structure
Notional machine: detailed contents
Notional machine: misconceptions
OO programs: structure
OO programs: detailed contents [9] [59]
OO programs: misconceptions
OO programming: structure
OO programming: detailed contents [17] [37]
OO programming: misconception [12,19,23,54]
Skills and strategies
Program comprehension
Tracing and debugging [31,58] [55]
Program design [12, 28, 40, 45| [12]

7]

that students have more problems in making external repigsens of OO parts than
imperative parts of the notional machine, i.e., the OO mationachine is even more
poorly understood by students.

In her state-of-art review of empirical research on obm@nted design,
Détienne [12] examined the processes involved in desigmirige OO paradigm and
in the procedural paradigm. Among other things, she repmrtfindings of Lee and
Pennington [28], Pennington et al. [40] and Rosson and GHitidoncerning the dif-
ferences between OO designers and procedural designerdesiihers seem to base
their solutions on the problem domain itself, whereas mtaca designers use generic
programming constructs for structuring their solutionkug, the overall approach in
program design differs between procedural and OO progragynaind their teaching
should acknowledge this difference.

Discussion: Even though studies into OO programming are few, the aboudtse
make it clear that both OO programming itself and learning@&ramming are very
different from their imperative and procedural counterpiamental representation of
programs is different, problems have different roots, emtgal contents of knowledge
is different, the level of understanding the underlyingamal machine is different, and
the overall approach to program design is different. Théferences are so fundamen-
tal to learning processes that we dare to claim that theicladsicational and cognitive
results of novice imperative and procedural programmimykhnot be used in the OO
context.

Furthermore, the number of educational and cognitive etudf learning OO pro-
gramming is small. Lister et al. [32] studied several popualaims about learning OO
programming and found practically no evidence for them iargdfic literature. Neither
do we know of any results that would provide evidence for theibility or efficiency
of replacing imperative/procedural programming educabyg object-orientation. On
the contrary, Chen et al. [6] found no effects of the first pamgming paradigm and

94

later design skills; Btienne [12], Pennington et al. [40] and Sharp and Griff{ah] [
found positive transfer effects of traditional structuisat procedural approaches to
OO0 design.

6 Proposal for Research Agenda

Table 1 collects together research on OO programming destin the previous sec-
tion. We have tabulated research articles according to tmermkions: the first describ-
ing the cognitive content or skill targeted in an investigatthe second telling whether
the investigation deals with experts’ performance, na/iperformance or problems,
development of novices’ mental representations and shillazays to improve this de-

velopment with educational techniques. The table makekedr¢hat large areas are
totally neglected; even the most researched areas—nowiiesonceptions in OO pro-

gramming knowledge and experts’ program design processage-Heen both studied
in few papers only.

If novices are to be helped in their struggles when learni@y@ogramming, we
need to know their problems and misconceptions as well asexiparts know and how
they apply their knowledge. Only then can we devise efficieathing methods and
contents that have a strong cognitive basis. Many studiémditional programming
have compared expert and novice performance and mentakexgations, thus provid-
ing information on what distinguishes experts from novidaghe OO domain, such
studies are rare; all but a single study in Table 1 cover begierts and novices. We
therefore suggest that research iaxpert and novice differencelould be carried out
in all cognitive aspects listed in the table.

A notable gap in Table 1 covers the OO notional machine. Thereno studies on
experts’ or novices’ understanding of the notional mactuekind OO programming;
neither are there studies on teaching a viable notional madb students. There are
some suggestions for visualizing OO program execution,(§8, 38, 47]) but their
correspondence to experts’ or novices’ mental representatr their efficiency in pro-
viding a mental model of a correct notional machine has nenlstudied in detail. In a
recent study [48], students were found to be poor in visimgizelationships between
objects and method calls during program execution and steldederstanding of these
relationships, i.e., the structure of the notional OO miaehivas found to contain many
errors. We therefore suggest thedperts’ mental representations of the notional OO
machineshould be studied in detail. Moreover, effectivays to convey this knowledge
to novicesshould also be investigated.

Another gap in Table 1 is the lack of studies into cognitiveedepoment of novices’
mental representations and skills. In order to supporhlagry teaching, steps in cog-
nitive development must first be known. Basic cognitivevdiiéis—such as chunking—
do, of course, appear in the context of OO programming alsothe building of the
notional machine, construction of OO programming knowtedmd detailed develop-
ment of OO programming skills and strategies presumably ltavnponents that are
specific to OO programming. We therefore suggestrbatces’ cognitive development
in OO programmingshould be studied.

95

Investigations of mental representations of OO programS9Phave probed par-
ticipants’ knowledge with yes/no questions divided inttegaries determined by the
researchera priori. Such a method reveals whether participants do possesdddysv
in those categories but it does not reveal what other typdsafvledge they might
have. As a consequence, exact contents of experts’ meptaksentations of OO pro-
grams are largely unknown and teachers have only vague adédeamsv to best explain
important program elements and their relationships toesited We therefore call for
exploratory research into experts’ mental representaiohOO programs

Studies in cognitive processes, i.e., skills and strasegi@ver mainly experts’ pro-
gram design. In imperative programming, research into gpand novices’ program
comprehension has increased our understanding of the ebesion processes and,
moreover, of the mental representations of imperative narog and imperative pro-
gramming knowledge. The structure of OO programs differsigch from imperative
and procedural programs that one may assume that their ebesion processes do
also differ considerably. Again, some elements (e.qg., thgms driven comprehension)
are the same, but issues related to program structure casbmead to differ. We there-
fore suggest research int@perts’ and novices’ OO program comprehension processes

Finally, results of the research suggested above shouldtilized in devising
effective methods for teaching OO programming. However,deenot include this
work in the research agenda proposal for two reasons. \its# right time for such
educational-oriented research will come only after thera large body of results ob-
tained from the research agenda. Secondly, it may well heffective ways to transfer
experts’ mental representations, skills and strategiesleast partially revealed dur-
ing the earlier research covered by the agenda.

7 Conclusion

The question in the title of this paper wa&'hat Have We (Not) Done?To please in-
dustry and studentsje haveshifted from imperative and procedural programming edu-
cation to object-orientation without studying its necser consequences and without
studying how OO programming education should be carried Moteover, we have
used classic results from imperative and procedural progriag even though their
applicability in the OO case can be questioned. The shiftfimperative/procedural
programming to object-orientation in elementary prograngneducation is so revolu-
tionary that the use of research results obtained in theratige and procedural cases
is doubtful in the OO case. The amount of notations and cdacegeded, the size of
the notional machine required, and the whole orientatioprogramming are so dif-
ferent that the assumptions of imperative and proceducgiramming research do not
necessarily hold for object-orientation.

Whatwe have notlone is systematic research into the fundamental cogratice
educational issues in learning and teaching OO programrisigr et al. [32] conclude
their paper by noting that “our community needs to discussd-edbate—this issue”,
but we claim that the computer science education researomemity and psychology
of programming community need to rigoroustydythese issues. For that purpose, we
have presented a research agenda comprising:

96

— experts’ and novices’ differences in mental represematiskills and strategies in
OO programming

novices’ cognitive development in OO programming

experts’ mental representations of the notional OO machine

ways to convey the notional OO machine to novices

exploratory research into experts’ mental representsd®©O programs

experts’ and novices’ OO program comprehension processes

Only with rigorous research into the psychological and etiooal issues we can
attack the problems in learning OO programming.

References

1. Y. Ben-David Kolikant and B. Haberman. Activating "black boxesstead of opening "zip-
pers” - a method of teaching novices. Pnoceedings of the Sixth Annual Conference on In-
novation and Technology in Computer Science Education (ITICSHR@bes 41-44. ACM
Press, 2001.

2. J.Bennedsen and M. E. Caspersen. Programming in context:el-firetlapproach to CS1.
In SIGCSE '04: Proceedings of the 35th SIGCSE technical symposiurorapi@er science
education pages 477-481, New York, NY, USA, 2004. ACM Press.

3. K. Bierre, P. Ventura, A. Phelps, and C. Egert. Motivating OOP bwinlg things up: an
exercise in cooperation and competition in an introductory Java progragnourse. In
SIGCSE '06: Proceedings of the 37th SIGCSE technical symposiunomp@er science
education pages 354—-358, New York, NY, USA, 2006. ACM Press.

4. R. E. Brooks. Towards a theory of the comprehension of computgrams.International
Journal of Man-Machine Studie$8:534-554, 1983.

5. L. B. Cassel, A. McGettrick, M. Guzdial, and E. Roberts. The cureesis in computing:
what are the real issues? 8IGCSE '07: Proceedings of the 38th SIGCSE technical sym-
posium on Computer science educatipages 329-330, New York, NY, USA, 2007. ACM
Press.

6. T.-Y.Chen, A. Monge, and B. Simon. Relationship of early prognémg language to novice
generated design. BIGCSE '06: Proceedings of the 37th SIGCSE technical symposium on
Computer science educatigmages 495-499, New York, NY, USA, 2006. ACM Press.

7. D. Cooper and M. Clancyoh! Pascal'W. W. Norton & Company, New York, 1982.

8. S. Cooper, W. Dann, and R. Pausch. Teaching objects-first imlirdtory computer science.
In SIGCSE '03: Proceedings of the 34th SIGCSE technical symposiurorap@er science
education pages 191-195, New York, NY, USA, 2003. ACM Press.

9. C. Corritore and S. Wiedenbeck. Mental representations of egpecedural and object-
oriented programmers in a software maintenance tdskernational Journal of Human-
Computer Studie$0:61-83, 1999.

10. C. L. Corritore and S. Wiedenbeck. What do novices learn duriogram comprehension?
International Journal of Human-Computer Interactj@{(2):199-222, 1991.

11. S. P. Davies. Models and theories of programming strateggrnational Journal of Man-
Machine Studies39(2):237-267, 1993.

12. F.Detienne. Assessing the cognitive consequences of the object-oripptedah: A survey
of empirical research on object-oriented design by individuals andstelmeracting with
Computers9:47-72, 1997.

13. F. Detienne.Software Design—Cognitive AspecBpringer-Verlag, 2002.

97

14. B. du Boulay. Some difficulties of learning to program. In E. Soloaag J. C. Spohrer,
editors, Studying the Novice Programmarages 283—-299. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1989.

15. B. Du Boulay, T. O'Shea, and J. Monk. The black box inside thesghas: Presenting
computing concepts to novicednternational Journal of Man-Machine Studie®4:237—
249, 1981.

16. A. Ebrahimi and C. Schweikert. Empirical study of novice prograng with plans and
objects.SIGCSE Bulletin38(4):52-54, 2006.

17. A. Eckerdal and M. Thun Novice Java programmers’ conceptions of “object” and “class”,
and variation theory. IfProceedings of the 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education ITiCSH@ges 89-93. ACM, 2005.

18. A. E. Fleury. Parameter passing: The rules the students construétroc. of the 22nd
SIGCSE Technical Symposium on CS Educatiotume 23(1) ofACM SIGCSE Bulletin
pages 283-286, 1991.

19. A. E. Fleury. Programming in Java: student-constructed ruleSIGICSE '00: Proceedings
of the thirty-first SIGCSE technical symposium on Computer scienaataoly pages 197—
201, New York, NY, USA, 2000. ACM Press.

20. D. J. Gilmore and T. R. G. Green. Comprehension and recall oataie programsinter-
national Journal of Man-Machine Studie&l:31-48, 1984.

21. T.R. G. Green, R. K. E. Bellamy, and J. M. Parker. Parsing aistap: A model of device
use. In G. M. Olson, S. Sheppard, and E. Soloway, editmgirical Studies of Program-
mers: Second Workshppages 132-146. Ablex Publishing Company, 1987.

22. P. Gries and D. Gries. Frames and folders: A teachable mematglfioo Java.The Journal
of Computing in Small College$7(6):182-196, 2002.

23. S. Holland, R. Griffiths, and M. Woodman. Avoiding object miscqticas. SIGCSE Bul-
letin, 29:131-134, 1997.

24. M. A. Holliday and D. Luginbuhl. CS1 assessment using memoryraiag. InSIGCSE
'04: Proceedings of the 35th SIGCSE technical symposium on Congmiggice educatign
pages 200-204, New York, NY, USA, 2004. ACM Press.

25. J. I. Hsia, E. Simpson, D. Smith, and R. Cartwright. Taming Javah®iclassroom. In
SIGCSE '05: Proceedings of the 36th SIGCSE technical symposiunomp@er science
education pages 327-331, New York, NY, USA, 2005. ACM Press.

26. P. Kinnunen and L. Malmi. Why students drop out CS1 coursd@HER '06: Proceedings
of the 2006 international workshop on Computing education resegates 97-108, New
York, NY, USA, 2006. ACM Press.

27. M. Kolling and P. Henriksen. Game programming in introductory courses \itiatdstate
manipulation. INTiCSE '05: Proceedings of the 10th annual SIGCSE conferencera In
vation and technology in computer science educatgages 59-63, New York, NY, USA,
2005. ACM Press.

28. A.Lee and N. Pennington. The effects of programming on cograitivities in designint.

J. Human-Computer Studie$0:577-601, 1994.

29. S. Letovsky. Cognitive processes in program comprehensio&. $oloway and S. lyen-
gar, editors Empirical Studies of Programmerpages 58-79, NJ: Norwood, 1986. Ablex
Publishing Company.

30. D. Levy. Insights and conflicts in discussing recursion: A caseyst@dmputer Science
Education 11(4):305-322, 2001.

31. R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. ldidhR. McCartney, J. E.
Mostriom, K. Sanders, O. Seffi, B. Simon, and L. Thomas. A multi-national study of
reading and tracing skills in novice programmefSCM SIGCSE Bulletin36(4):119-150,
2004.

98

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

R. Lister, A. Berglund, T. Clear, J. Bergin, K. Garvin-Doxas, Heanks, L. Hitchner,
A. Luxton-Reilly, K. Sanders, C. Schulte, and J. L. Whalley. Resepethpectives on the
objects-early debatesSIGCSE Bulletin38(4):146-165, 2006.

R. E. Lopez-Herrejon and M. Schulman. Using interactive teclgyatoa short Java course:

an experience report. ITiICSE '04: Proceedings of the 9th annual SIGCSE conference on

Innovation and technology in computer science educapages 203-207, New York, NY,
USA, 2004. ACM Press.

Q. H. Mahmoud, W. Dobosiewicz, and D. Swayne. Redesigningdattory computer
programming with HTML, JavaScript, and Java. SiIGCSE '04: Proceedings of the 35th
SIGCSE technical symposium on Computer science educatges 120-124, New York,
NY, USA, 2004. ACM Press.

W. Marrero and A. Settle. Testing first: Emphasizing testing in earlgrproming courses.
In ITICSE '05: Proceedings of the 10th annual SIGCSE conferencermvétion and tech-
nology in computer science educatjgrages 4-8, New York, NY, USA, 2005. ACM Press.
M. McCracken, T. Wilusz, V. Almstrum, D. Diaz, M. Guzdial, D. Hag&'. Ben-David
Kolikant, C. Laxer, L. Thomas, and I. Utting. A multi-national, multi-institutibstudy of
assessment of programming skills of first-year CS studentdlorking Group Reports from
ITICSE on Innovation and Technology in Computer Science EducatiorlSEHT, pages
125-140. ACM, 2001.

J. Mead, S. Gray, J. Hamer, R. James, J. Sorva, C. S. Cldit,.arhomas. A cognitive
approach to identifying measurable milestones for programming skillisitign. SIGCSE
Bulletin, 38(4):182—194, 2006.

A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. Visualizing pragrs with Jeliot 3.
In Proceedings of the International Working Conference on Advance@Misterfaces AVI
2004, Gallipoli (Lecce)2004.

N. Pennington. Comprehension strategies in programming. In Glddn, S. Sheppard, and
E. Soloway, editordEmpirical Studies of Programmers: Second Worksipgges 100-113.
Ablex Publishing Company, 1987.

N. Pennington, A. Lee, and B. Rehder. Cognitive activities anddeseabstraction in
procedural and object-oriented desighluman-Computer Interactiorl0(2&3):171-226,
1995.

D. N. Perkins and F. Martin. Fragile knowledge and neglected sieatég novice pro-
grammers. In E. Soloway and S. lyengar, edit&mspirical Studies of Programmergages
213-229, NJ: Norwood, 1986. Ablex Publishing Company.

A. Radenski. "Python first™: a lab-based digital introduction to corepscience. INTICSE
'06: Proceedings of the 11th annual SIGCSE conference on Innavatid technology in
computer science educatigpages 197-201, New York, NY, USA, 2006. ACM Press.

R. S. Rist. Schema creation in programmi@ggnitive Sciencel3:389-414, 1989.

A. Robins, J. Rountree, and N. Rountree. Learning and teachigggmming: A review
and discussionComputer Science Educatioh3:137-172, 2003.

M. B. Rosson and E. Gold. Problem-solution mapping in object-odetgsign. Technical
report, 1989. IBM Research Report RC 14496.

J. Sajaniemi, M. Ben-Ari, P. Byckling, P. Gerdt, and Y. KulikovaldRwf variables in three
programming paradigm&£omputer Science Educatioh6(4):261-279, 2006.

J. Sajaniemi, P. Byckling, and P. Gerdt. Metaphor-based animdti@®grograms. In
Metaphor-Based Animation of OO Programs (Extended Poster abstRropeedings SOFT-
VIS 06 ACM Symposium on Software Visualizathdew York, NY, USA, 2006. ACM Press.
J. Sajaniemi, M. Kuittinen, and T. Tikansalo. A study of the developmiestudents’ visu-
alizations of program state during an elementary object-oriented pragranpcourse. Sub-
mitted.

99

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

R. Samurcay. The concept of variable in programming: Its mgand use in problem-
solving by novice programmers. In E. Soloway and J. C. Spohré&gredStudying the
Novice Programmemages 161-178. Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.
V. Shanmugasundaram, P. Juell, and C. Hill. Knowledge buildinggudgualizations. In
ITICSE '06: Proceedings of the 11th annual SIGCSE conferencarwvhtion and technol-
ogy in computer science educatjgrages 23-27, New York, NY, USA, 2006. ACM Press.
H. Sharp and J. Griffyth. The effect of previous software gment experience on under-
standing the object-oriented paradigdournal of Computers in Mathematics and Science
Teaching 18(3):245—-265, 1999.

E. Soloway and J. C. Spohrer, editdssudying the Novice Programmerawrence Erlbaum
Associates, Hillsdale, NJ, 1989.

J. C. Spohrer, E. Soloway, and E. Pope. A goal/plan analysisggybBascal programs.
In E. Soloway and J. C. Spohrer, edito&udying the Novice Programmerages 355—-399.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.

M. Teif and O. Hazzan. Partonomy and taxonomy in object-orientakitiy: Junior high
school students’ perceptions of object-oriented basic conc8p&BCSE Bulletin38(4):55—
60, 2006.

L. Thomas, M. Ratcliffe, and B. Thomasson. Scaffolding with digiéegrams in first year
programming classes: Some unexpected resultsPrde. of the 35th SIGCSE Technical
Symposium on CS Educatjgrages 250-254, 2004.

N. Truong, P. Bancroft, and P. Roe. Learning to program thrahg web. InITICSE
'05: Proceedings of the 10th annual SIGCSE conference on Innavatid technology in
computer science educatigpages 9-13, New York, NY, USA, 2005. ACM Press.

I. Utting. Problems in the initial teaching of programming using Javacéke for replacing
J2SE with J2ME. INTICSE '06: Proceedings of the 11th annual SIGCSE conference on
Innovation and technology in computer science educapages 193-196, New York, NY,
USA, 2006. ACM Press.

V. Vainio and J. Sajaniemi. Factors in novice programmers’ pocmgaskills. In Pro-
ceedings of the 12th Annual Conference on Innovation and Techniol@pymputer Science
Education (ITICSE'07)ACM Press, 2007.

S. Wiedenbeck, V. Ramalingam, S. Sarasamma, and C. L. Cerritocomparison of the
comprehension of object-oriented and procedural programs bdgenprogrammersinter-
acting with Computersl1:255-282, 1999.

L. E. Winslow. Programming pedagogy — a psychological overvi8AGCSE Bulletin
28:17-22, 1996.

100

