
A Roles-Based Approach to Variable-Oriented

Programming

Juha Sorva

Helsinki University of Technology
jsorva@cs.hut.fi

Abstract. Delocalized variable plans pose problems for novice program-
mers trying to read and write programs. Variable-oriented programming
is a programming paradigm that emphasizes the importance of variable-
related schemas and brings actions pertaining to each variable together
in one place in program code. This paper revisits the idea of variable-
oriented programming and shows how it can be founded on roles of vari-
ables, stereotypes of variable use suitable for teaching to novices. The pa-
per sketches out how variable-oriented, roles-based programming could
be implemented using either a new programming language or a frame-
work built on an existing language. The possible applications, merits
and problems of a roles-based approach and variable-oriented program-
ming in general are discussed. This paper points at possible research
directions for the future and provides a basis for further discussions of
variable-oriented, roles-based programming.

1 Introduction

It has been widely noted that novice programmers have great difficulty in com-
prehending and creating computer programs (see [1, 2] for recent reports). A
partial explanation for this is provided by novices’ lack of programming-related
schemas or plans [3, 4]. Schemas are mental knowledge structures for storing
abstract information that can be applied when planning solutions to specific
problems that fall within the scope of the schema. An expert in a domain pos-
sesses a wide array of rich, domain-specific schemas that reduce cognitive load
during problem-solving tasks such as programming and enable the solving of
more complex problems. An expert’s problem-solving process is characterized
by planning ahead and forward development [5, 6].

Many schemas in programming are related to the use of variables [7]. For
instance, a basic programming schema could describe how variables can serve
as ’counters’ whose values start at zero and are then repeatedly incremented by
one. Commonly, the ways in which a variable is used in a program are not defined
by a single line of code or even by consecutive lines; references to each variable
are spread out in the program code. In the terminology of Soloway et al., the
plan for such a variable is delocalized [8]. Delocalization of a plan increases the
cognitive load of a programmer trying to comprehend it, since multiple separate
units have to be kept in working memory at once in order to figure out the plan.



Delocalized plans can be clarified with documentation [8] or software tools [9].
In recent years, roles of variables have been introduced as a means to describe,
discuss and think about common stereotypes of variable usage [10, 11]. Roles of
variables have been used to document delocalized variable plans and for other
purposes in teaching introductory programming [12, 13].

This paper presents ongoing work on variable-oriented programming, a pro-
gramming paradigm that places an emphasis on localizing variable-related ac-
tions in program code. This work draws on prior work on roles of variables,
and uses roles as a basis for creating variable-oriented programs. The paper is
structured as follows. Section 2 introduces related work on roles of variables and
variable-oriented programming. Section 3 describes a new roles-based approach
to variable-oriented programming, and discusses how it could be implemented
either using a custom-made programming language or existing programming lan-
guages. The possible uses, merits and downsides of the approach are examined in
Section 4. Section 5 takes a look at possible future work and Section 6 provides
a short conclusion.

2 Related Work

2.1 Roles of Variables

Roles of variables are stereotypes of variable use in computer programs [10].
Roles embody expert programmers’ tacit knowledge on variable usage patterns,
which can be made explicit and taught to students [14]. Roles can help teach-
ers explain delocalized variable-related schemas in programs and assist in the
stepwise refinement of pseudocode designs of algorithms [13]. Prior research sug-
gests that introductory-level students who are taught programming using roles
of variables gain better program comprehension skills than students taught in
an otherwise similar way but without using roles [12], and that roles-based in-
struction also facilitates the development of program construction skills better
than traditional instruction especially if roles-based visualizations of programs
are also used in teaching [15].

The following list, replicated from [13], briefly introduces each variable role.
For a more verbose introduction to roles of variables, and concrete program
examples of each role, see [11].

1. A variable has the role fixed value if the variable’s value is not changed
after it is initialized.

2. A variable has the role stepper if it is assigned values in a systematic and
predictable order. An example of a stepper is an index counter used when
looping through array elements.

3. A variable has the role most-recent holder if it holds the latest value
in a sequence of unpredictable data values. For instance, a most-recent

holder could be used to store the latest element encountered while iterating
through a collection of data elements, or the latest value that has been
assigned to an object’s attribute (i.e., to an instance variable that is a most-

recent holder) by a setter method.



4. The role most-wanted holder describes variables that hold the ’best’
value encountered in a sequence of values. Depending on the program and the
type of the data, the ’best’ value may be the largest, smallest, alphabetically
first, or otherwise most appropriate value.

5. A variable has the role gatherer if the variable is used to somehow combine
data values that are encountered in a sequence of values, and the variable’s
value represents this accumulated result. For instance, a variable keeping
track of the balance of a bank account object (the sum of deposits and
withdrawals) is a gatherer.

6. A follower is a variable that always holds the most recent previous value
of another variable. Whenever the value of the followed variable changes,
the value of the follower is also changed. For example, the ’previous node
pointer’ used when traversing a linked list is a follower.

7. A variable is a one-way flag if it only has two possible values and if a
change to the variable’s value is permanent. That is, once a one-way flag

is changed from its initial value to the other possible value, it is never changed
back. For example, a boolean variable keeping track of whether or not errors
have occurred during processing of input is a one-way flag.

8. A variable has the role temporary if the value of the variable is needed only
for a short period. For example, an intermediate result of a calculation can
be stored in a temporary in order to make it more convenient or efficient
to use in later calculations.

9. An organizer is a variable that stores a collection of elements for the
purpose of having that collection’s contents rearranged. An example of an
organizer is a variable that contains an array of numbers during sorting.

10. A variable is a container if it stores a collection of elements in which more
elements can be added (and, typically, can be removed as well). For example,
a variable that references a stack could be a container.

11. A walker is a variable whose values traverse a data structure, moving from
one location in the structure to another. For instance, a variable that contains
a reference to a node in a tree traversal algorithm, and a variable that keeps
track of the search index in a binary search algorithm can be considered to
be walkers.

2.2 Variable-Oriented Programming

In traditional procedural and object-oriented programming, the behavior of a
variable, i.e., the logic that dictates how the variable is used, is often defined
by multiple distinct locations in program code. Depending on the scope of the
variable, the behavior may be described by unconsecutive lines of code within a
function or method, or may be located in a number of functions or even several
program modules. Declaring a variable, if it is explicitly done in the language at
all, is a matter separate from the variable’s behavior.

There is an alternative way to organize variable behavior in programs. If a
variable’s behavior pattern is defined at the variable’s declaration, the ’usage
plan’ of the variable becomes localized in one place. This idea is central to the



variable-oriented way of programming discussed in this paper. In a variable-
oriented program, each variable declaration is accompanied by a definition of
how the variable’s value is initialized and later updated. A variable declaration
could also include information of when the variable’s value is read, and depen-
dencies with other variables. In a variable-oriented program, such rich variable
declarations serve as the basis for, and indeed drive, the creation of algorithms.

Variable-oriented programming has made an appearance in literature before.
It was introduced in connection with the program editor VOPE, which makes
use of variable-orientation to provide multiple views to program code written in
the Pascal language [9]. In addition to a traditional control-flow oriented view
of Pascal programs, VOPE shows a purely variable-oriented view, which groups
code fragments so that all references to each variable are gathered together.

The next section explores how roles of variables could be used as a basis for
variable-oriented programming and shows concrete examples of variable-oriented
programs.

3 A Roles-Based Approach

Let us take a look at how an algorithm could be devised using roles of variables.
Below are shown the musings of a student of programming, who has been taught
using roles of variables, and is faced with the task of creating an algorithm for
computing the nth Fibonacci number.

I need some way of keeping track of consecutive Fibonacci numbers that
I compute to reach the nth one. That’s a job for a gatherer, I guess,
since a gatherer gets its values by computing a new accumulated value
based on the current one. Oh, and since in this case each new value is
computed based on two older values, I’ll also need a follower to store
the older value of the gatherer. If I start from the first Fibonacci
number (one), then after n-1 updates to the gatherer, I’ll have the
result.

This example is hypothetical and idealized, but gives an idea of how roles-
based reasoning might proceed and make use of the common patterns of variable
use embodied by roles of variables. It is also an example of thinking ahead: the
programmer uses existing schemas to plan in advance how they will use the two
variables. Figure 1 shows a somewhat more formal and complete description of
the algorithm, using a pseudocode notation that closely reflects the reasoning
process described above.

In the pseudocode in Figure 1, two variables are declared, each with a different
role. For each variable, its behavior has been declared together as a part of the
variable definition. The example illustrates how an algorithm can be built by
attaching behavior to variable definitions. Further, it shows how roles of variables
can serve as templates for common patterns in a variable-oriented program.
Each variable is declared as an instance of a role, which determines the kinds of
behaviors that need to be defined for each instance of the role. For example, all



define gatherer curr:
initial value is 1
always updated by computing value of curr + prev

define follower prev:
initial value is 0
follows curr (and always receives its old value)

make n-1 updates to curr (results in changes to both curr and prev)
print curr (which now holds the nth Fibonacci number)

Fig. 1. Variable-oriented pseudocode

gatherers receive a definition of how their values change as a function of the
same variable’s old value, whereas a follower is dependent on another variable
whose old values it receives. For a fixed value (not shown in the example)
only an initialization is needed, for a most-wanted holder a function would
be defined to determine whether a given value is ’more wanted’ than the current
value, and so on.

The next two subsections explore possible implementations for variable-oriented,
roles-based algorithms such as that in Figure 1. Subsection 3.1 sketches out a
variable-oriented programming language that uses roles of variables as language-
level abstractions. Subsection 3.2 then takes a look at how a similar framework
could be implemented in an existing programming language.

3.1 A Roles-Based Language

Figure 2 shows an example of variable-oriented code based on roles of variables.
It is written in a speculative language called ROTFL1. The reader should note
that ROTFL is at a draft stage and lacks a full syntactical and semantical
specification. The notation is used here to provide ’food for thought’.

Gatherer curr:

inits to: 1

updates with: curr + prev

Follower prev:

inits to: 0

follows: curr

update curr times n-1

print(curr)

Fig. 2. The Fibonacci algorithm in the language ROTFL

1 Role-Oriented, Titillating but Fictional Language



In ROTFL, there are no ’traditional’ variable definitions. Instead, all vari-
ables are defined in terms of roles and associated with behaviors appropriate for
those roles. Roles of variables are language-level constructs, and keywords related
to defining or using variables with particular roles (e.g. Follower, update) are
reserved words. ROTFL does not feature assignment operators or statements
in the traditional sense. Instead, variables’ values are changed in role-specific
ways. For instance, values are assigned to gatherers by using the reserved
word update, which uses the updates with function to compute the new value
for the variable, and followers receive new values implicitly as the value of
the followed variable changes.

Traditional-style loops are also conspicuous by their absence in Figure 2, de-
spite the fact that the algorithm is an iterative one. In this example, repetition
is achieved using the keyword times in association with updating the value of
the gatherer curr. Another mechanism for achieving repetition is illustrated
in Figure 3, where a do each command repeatedly updates a most-recent

holder variable until a condition associated with the variable is reached. The
same example also shows a most-wanted holder dependent on a most-

recent holder that serves as its ’source’.

MostRecentHolder input:

updates with: readLine()

until: input == ’stop’

MostWantedHolder longestInput:

source: input

wants value if: value.length() > longestInput.length()

do each input

print(longestInput)

Fig. 3. A ROTFL code fragment to read in lines and print out the longest one.

3.2 Implementing Roles in an Existing Language

Variable-oriented programming can also be done in an existing programming
language, provided a suitable framework is available for this purpose. Figure 4
shows how the variable-oriented, roles-based program from Figures 1 and 2 can
be written in Python.

The program in Figure 4 relies on a framework that defines roles of variables
as Python classes, and role-related actions (such as updating the value of a
gatherer) as methods of these classes. A partial framework for this purpose,
defining the classes Gatherer and Follower, is given in Appendix A.



curr = Gatherer(1, lambda: curr + prev)

prev = Follower(0, curr)

curr.updateTimes(n-1)

print(curr)

Fig. 4. A variable-oriented code fragment in Python. (Makes explicit use of lambda
calculus [16].)

4 Discussion

4.1 Uses of Roles-Based Programming

According to Sajaniemi’s research, the behavior of 99% of variables can be char-
acterized with a small set of roles, at least in novice-level programs [10]. It
does not immediately follow that 99% of even novice-level programs can be
conveniently written as variable-oriented programs using roles as templates for
variable behavior. Nevertheless, it seems roles form a solid foundation for creat-
ing variable-oriented programs, as the small role set provides a very substantial
number of variables with templates that capture some key aspects about how
those variables are used. This matter calls for further study.

Variable-oriented programming localizes variable plans in program code. Prior
findings in cognitive psychology of programming suggest that it is likely that this
facilitates the extraction and construction of variable-related schemas and there-
fore in one way aids novices in acquiring some key programming skills. With this
in mind, and in light of previous experiences of using roles of variables in teach-
ing, one can speculate whether a variable-oriented, roles-based language could
be useful for teaching introductory programming. Clearly, there could be merits
to such an approach if variable-orientation helps students construct variable-
related schemas, if roles can be used to encourage forward development, and
if there were roles-aware program development tools that could provide help-
ful feedback and error messages. There are also clearly problems with such an
approach. Not least of these is that while variable-oriented programs empha-
size variable-related plans and the data flow of programs, the control flow of
the program is not in focus. Understanding ’what happens when’ during the
execution of a variable-oriented program may be quite difficult especially for
the beginner. There is a trade-off between emphasizing variable-related schemas
and emphasizing control-flow-related schemas. Using tools similar to VOPE [9],
which provides multiple views to programs, could be useful in combining these
different aspects of programs. A notation based on roles of variables could be
used to build variable-oriented views and to link them to procedural or object-
oriented views.

Depending on the notation used, a variable-oriented program can be very
self-documentative of variable-related schemas (see e.g. Figure 2). Roles of vari-
ables help in this, as role names succinctly describe patterns of variable use. It is
not immediately obvious what the documentative value of variable-oriented no-
tations is compared to non-variable-oriented notations that use code comments



to note the role of each variable. Documenting delocalized variable behavior us-
ing role names may often do enough and using a variable-oriented language may
be ’overkill’ for this purpose.

Even beginners are not taught variable-oriented, roles-based programming
directly, they might indirectly benefit from it. In [17], Bergin suggests that in-
structors of programming (and others) could benefit from ’etudes’ that take
one particular programming technique to an extreme. While such etudes have
no intrinsic value of their own, they can help to hone one’s skills in a partic-
ular technique and to ingrain that technique into one’s thinking. Specifically,
for helping instructors (not novice programmers) to make use of polymorphism,
Bergin suggests the following etude:

“Find some old program that you have around and that you are proud
of. [...] Strictly as an etude, rewrite that program with NO if/switch
statements: no selection at all. Solve all of the problems your ifs solve
with polymorphism.” [17]

In a similar vein, doing roles-based programming could serve as an etude
for using roles of variables in general. The intellectual exercise of rewriting pro-
grams in a variable-oriented way, using roles as templates for variables, with no
traditional-style assignment and perhaps with no traditional-style loops, could
help deepen instructors’ understanding of roles and help them think of algo-
rithms in terms of variables and roles. At least, the exercise has expanded the
mind of this author.

4.2 Variable-oriented ’purity’

According to [9]:

“Variable-oriented programming is a new programming paradigm which
collects all actions concerning any single variable together. [...] [T]he
plan of a variable is clearly visible and totally described in the variable
definition.” (emphases added)

A ’purely’ variable-oriented program, then, would gather all references to a vari-
able (assignments and reads) into one complete variable definition, irrespective
of the location of these references in the control flow of the program. The reader
may note that the examples shown in this paper are not ’pure’ by this strict
definition. For instance, in Figure 2, neither the command update nor reading
the variable’s value for printing purposes (the last two lines) is located within the
variable definition. The example can be seen as a hybrid that is largely variable-
oriented but partially procedural and control-flow-oriented. It can be contrasted
with the purely variable-oriented views displayed by the VOPE tool [9].

Roles of variables are concerned with assignment, with change (or lack of
change) in the values of variables, and with the way consecutive values of vari-
ables are related to each other. Roles are not concerned with when a variable’s
value is updated or read, or with what is done with the value after it has been



read (Is it printed, passed as a parameter, or something else?). A variable-
oriented program based solely on roles of variables will not be ’pure’.

A more complete discussion of the ’purity’ of variable-orientation is beyond
the scope of this paper. The next subsection also touches on the issue of purity,
however, as it briefly explores the relationship between object-oriented program-
ming, variable-orientation, and roles-based programming.

4.3 Compatibility with object-orientation

The original set of roles of variables was discovered by analysing procedural
programs. Since then, roles of variables have been applied to object-oriented as
well as functional programs [18]. Roles seem to be a useful tool irrespective of
the programming paradigm used.

What, then, is the relationship between variable-orientation and object-orientation?
Quoting again from [9]:

“In object-oriented programming all operations applicable to objects of
a class are described in one place. [...] In variable-oriented programming
programs center around the variables. A variable, and all the actions
using that particular variable, are described in one place.”

One of the two paradigms elevates classes to be a key abstraction around
which program code is structured; the other does the same to variables. These
two abstractions are competing, but not incompatible. It is quite possible to
envision a hybrid of the object-oriented and variable-oriented paradigms, as il-
lustrated by the small example in Figure 5.

class Account:

private Gatherer balance:

inits to: 0

updates with (FixedValue amount):

if (balance + amount < 0) then:

0

else:

balance + amount

public method deposit(FixedValue depositSize):

update(depositSize) balance

public method withdraw(FixedValue withdrawalSize):

update(-withdrawalSize) balance

public method getBalance():

balance

Fig. 5. A ROTFL class representing simple bank accounts



It is easy to see that Figure 5 is not ’pure’ in terms of variable-orientation.
The generic plan for using the instance variable balance, a gatherer, is defined
at the variable declaration. However, the precise ways in which the three methods
make use of this generic plan are spread out in the code.

Another issue that needs to be considered when applying roles of variables
to object-oriented programs was noted in [13]:

“Annotating a member variable and a local variable with the same role
name indicates that we think of them as similar. However, our experi-
ence suggests that in many people’s perception a most-recent holder

member variable, for instance, is used rather differently than a most-

recent holder local variable. A settable attribute of an object (the
name of a person object, say) is experienced as being quite different
from a local variable that stores the most recent element encountered
in a collection during iteration. [...] This kind of dividedness of roles is
potentially confusing[.]”

It may be that in order to apply roles-based programming to object-oriented
programs, new roles for instance variables are needed. For instance, a role name
’settable attribute’ could better describe the purpose of most-recent holder

instance variables. If needed, the roles-based language or framework could pro-
vide a somewhat different template for ’settable attributes’ than for other most-

recent holders.

5 Future Work

This paper has only introduced the idea of using roles of variables in variable-
oriented programming. There are many research paths that could be followed
in the future. Roles-based languages or frameworks could be developed further
from the drafts presented, investigating the suitability of the variable-oriented
approach for more complex programs. Ways of defining dependencies between
variables could be explored, as could the idea of actions that trigger when vari-
ables’ values change. Here, inspiration could perhaps be drawn from earlier work
such as the language EDEN, which, although not variable-oriented, allows the
programmer to associate ’action specifications’ to variables [19].

The suitability of the current set of roles of variables for roles-based program-
ming needs exploring, as does the idea of custom roles defined by the program-
mer. The possible usefulness of roles-based programming outside educational
settings could be investigated.

The effects of a variable-oriented notation on understanding programs’ con-
trol flow will need to be explored if this approach is to be taken further. Roles-
based tools supporting both variable-oriented and other views of programs could
be developed. If the approach looks promising, the potential of variable-oriented
programming in instruction could be evaluated.

Using roles-based programs as ’etudes’ for instructors to deepen their under-
standing of roles of variables seems like a promising avenue to take in the future.
This can be done even using a speculative language such as ROTFL.



6 Conclusions

In this paper, I have revisited the notion of variable-oriented programming and
shown how variable-orientation can be founded on roles of variables. The paper
has described ongoing work on tools for roles-based programming, and discussed
the possible applications, merits and problems of the approach. I have pointed
at possible research directions for the future, and it is my hope that this pa-
per can serve as a basis for further discussions of variable-oriented, roles-based
programming.

References

1. Lister, R., Seppälä, O., Simon, B., Thomas, L., Adams, E.S., Fitzgerald, S., Fone,
W., Hamer, J., Lindholm, M., McCartney, R., Moström, J.E., Sanders, K.: A
multi-national study of reading and tracing skills in novice programmers. SIGCSE
Bulletin 36 (2004) 119–150

2. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.,
Laxer, C., Thomas, L., Utting, I., Wilusz, T.: A multi-national, multi-institutional
study of assessment of programming skills of first-year CS students. SIGCSE
Bulletin 33 (2001) 125–180

3. Soloway, E., Ehrlich, K.: Empirical studies of programming knowledge. In: Read-
ings in artificial intelligence and software engineering. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA (1986) 507–521

4. Detienne, F.: Expert programming knowledge: A schema-based approach. In Hoc,
J.M., Green, T.R.G., Samurcay, R., Gilmore, D.J., eds.: Psychology of Program-
ming. Academic Press, London (1990) 205–222

5. Rist, R.S.: Schema creation in programming. Cognitive Science 13 (1989) 389–414
6. Byckling, P., Sajaniemi, J.: A role-based analysis model for the evaluation of

novices’ programming knowledge development. In: ICER ’06: Proceedings of the
2006 international workshop on Computing education research, New York, NY,
USA, ACM Press (2006) 85–96

7. Soloway, E., Ehrlich, K., Bonar, J., Greenspan, J.: What do novices know
about programming? In Badre, A., Shneiderman, B., eds.: Directions in Human-
Computer Interactions. Ablex Publishing (1982) 27–54

8. Soloway, E., Lampert, R., Letovsky, S., Littman, D., Pinto, J.: Designing docu-
mentation to compensate for delocalized plans. Communications of the ACM 31

(1988) 1259–1267
9. Sajaniemi, J., Niemeläinen, A.: Program editing based on variable plans: a cog-

nitive approach to program manipulation. In: Proceedings of the third interna-
tional conference on human-computer interaction on Designing and using human-
computer interfaces and knowledge based systems (2nd ed.), New York, NY, USA,
Elsevier Science Inc. (1989) 66–73

10. Sajaniemi, J.: An empirical analysis of roles of variables in novice-level procedural
programs. In: Proceedings of IEEE 2002 Symposia on Human Centric Computing
Languages and Environments, IEEE Computer Society (2002) 37–39

11. Sajaniemi, J.: The Roles of Variables Home Page. http://cs.joensuu.fi/~saja/
var_roles/ (2003)

12. Sajaniemi, J., Kuittinen, M.: An experiment on using roles of variables in teaching
introductory programming. Computer Science Education 15 (2005) 59–82



13. Sorva, J., Karavirta, V., Korhonen, A.: Roles of variables in teaching. Journal of
Information Technology Education (2007) [in press]

14. Sajaniemi, J., Navarro Prieto, R.: Roles of variables in experts’ programming
knowledge. In: Proceedings of the 17th Annual Workshop of the Psychology of
Programming Interest Group (PPIG). (2005) 145–159

15. Byckling, P., Sajaniemi, J.: Roles of variables and programming skills improvement.
SIGCSE Bulletin 38 (2006) 413–417

16. Lambda calculus. In: Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/wiki/Lambda_calculus (retrieved June 8th, 2007)

17. Bergin, J.: Variations on a polymorphic theme: An etude for computer
programming. http://www.cs.umu.se/~jubo/Meetings/ECOOP05/Submissions/

Bergin-full.pdf (2005)
18. Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., Kulikova, Y.: Roles of variables

in three programming paradigms. Computer Science Education 16 (2006) 261 –
279

19. Yung, E., Joy, M., Ward, A.: Eden - the Engine for DEfinitive Nota-
tions. http://www2.warwick.ac.uk/fac/sci/dcs/research/em/software/eden/

(Retrieved April 15th, 2007)

Appendix A: A Partial Framework for Variable-Oriented,

Roles-Based Programming in Python

The classes below form a partial (but working) framework for writing variable-
oriented programs in terms of roles of variables in the Python language. The
partial framework shown here has implementations for only some main features
of two roles (gatherer and follower). For an example of using the classes,
see Figure 4.

import types

class Role:

def __init__(self, initsTo):

self.followers = []

if (type(initsTo) == types.FunctionType):

self.value = initsTo()

else:

self.value = initsTo

def __add__(self, x):

return self.value + x

__radd__ = __add__

def __str__(self):

return repr(self.value)

def addFollower(self, follower):

self.followers.append(follower)



class Gatherer(Role):

def __init__(self, initsTo, updatesWith):

Role.__init__(self, initsTo)

self.updatesWith = updatesWith

def update(self):

oldValue = self.value

self.value = self.updatesWith()

for f in self.followers:

f.update(oldValue)

def updateTimes(self, times):

for time in range(times):

self.update();

class Follower(Role):

def __init__(self, initsTo, followedVariable):

Role.__init__(self, initsTo)

followedVariable.addFollower(self)

def update(self, newValue):

oldValue = self.value

self.value = newValue

for f in self.followers:

f.update(oldValue)




