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Abstract 
We describe a technique that allows end-users to specify automated transformations of structured text 
by inferring an underlying model. Inference is achieved with a novel algorithm, Structured Prediction 
by Partial Match (SPPM), a generalisation of the well-known PPM approach to predictive text entry 
and compression. We created two simple applications, as examples of "first steps" end-user 
programming tasks that can be achieved using SPPM. In empirical evaluations, each of these 
applications proved to be substantially superior to equivalent facilities in leading commercial 
products. 

1. Introduction 
Many digital text documents have regular structure. An unfortunate consequence for a large number 
of users is that editing highly structured texts can be boring and repetitive. But regular structure also 
brings the opportunity to automate repetitive operations by exploiting information redundancy. If a 
computational model can be constructed to describe that regularity, then information-efficient 
interaction techniques become possible. Such models of redundancy in text are proving valuable in 
user interfaces for text entry, where redundancy in the English language (which has information 
content of only around 1.3 bits per character) allows text to be entered efficiently using a predictive 
model. This then allows the designers of text entry interfaces to reduce the size of the keyboard 
(Grover et al. 1998), reduce the need for accuracy in striking the keys (Zhai & Kristensson 2003) or 
even replace the keyboard altogether (Ward et al. 2000). 

We build on the predictive model inference technologies that are proving effective in text entry, to 
create a system for efficient modification of text. We have created a structured text interaction method 
that uses machine learning techniques to infer a model of the text structure, and as a result, makes 
repetitive editing far more efficient. The construction of the model, and the specification of the 
required repeated modifications, can be considered a kind of end-user programming, in which case the 
application of machine-learning methods offers a “programming by example” interaction paradigm. 

We were initially inspired by the approach of Miller (2002), who developed an interaction technique 
for editing texts with a regular structure by using multiple edit-point cursors. If the same structure 
appeared at 100 places in a document, Miller’s Lapis system would display 100 cursors, and every 
user keystroke would simultaneously update the text at all 100 locations. In addition to being 
powerful, this technique promotes user confidence through directly visible and incremental feedback 
of every change. In the simplest case, the Lapis interaction style might be regarded as a novel 
alternative to search-and-replace, incorporating a preview of the results, and with single-click rather 
than sequential replacement. In more complex cases, Lapis could be used to specify and execute 
global structure transformations, of the kind supported by sophisticated programmers’ tools. 

Structured editors like Lapis, and indeed most programming editors, rely on a grammar that specifies 
the language to be edited. Many programming editors can be customised to support different language 
models by changing the grammar. Lapis also supported a selection of different grammars. However 
most users do not deal with programming languages, but with texts that can only partially be 
described in terms of a formal grammar. Even in those portions of the text that can be described 
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formally, the repetitive structure in the text might well be an ad hoc invention of the user rather than a 
known language standard. If users are to interact efficiently with such texts, it is therefore necessary 
to help the user specify the grammar model, either with a guided grammar editor such as Lieberman’s 
Grammex (1998), or a machine-learning approach such as Witten and Mo’s TELS (1993).  

Machine-learning approaches can either be deterministic (Blackwell 2001), in which case the user 
must accurately specify a training set as a basis for generalisation, or they can be based on statistical 
inference, in which case the system can anticipate which model structures are most likely, with 
guidance from the user. Our research focuses on this last method, of statistical rather than 
deterministic model inference. 

In the remainder of this paper, we start by describing two simple demonstrator applications, in order 
to illustrate the basic interaction principles that we propose, showing how those principles apply in the 
context of a realistic end-user task. We then present a generalised view of the interaction approach 
that underlies both demonstrator applications. This approach is built around an interactive guided 
learning technique that assists end-users in constructing models of local repeated structure within a 
document. The technique combines a novel statistical inference method with multi-point editing in the 
style of Miller’s Lapis (2002). 

The statistical inference approach is also capable of supporting a far larger variety of models, and we 
therefore discuss the details of the inference technique in order to illustrate the generality of the 
approach for future applications. 

We briefly report evidence from user trials, demonstrating that the resulting editing methods, as 
implemented in our simple demonstrators, can be substantially more effective than conventional 
techniques for repetitive editing that are provided by industry-standard applications. Finally, we 
review the trade-off between power and ease of use that is an inevitable concern in the design of end-
user programming tools, and consider how our approach is located within this design space. 

2. Sample applications 
To illustrate our approach, we built two simple multi-point editing tools; one for search-and-replace in 
documents, and the other for bulk renaming files. 

2.1. SmartRegex 

SmartRegex is, like Lapis, an application that facilitates multipoint editing of a document. However, 
whilst Lapis offers a powerful approach to building programming editors, it offers sophisticated 
functionality beyond the requirements of many end-users. We therefore applied the multi-point 
editing approach to the simple case of supporting more effective global find and replace operations. 
Whilst find and replace might appear to be trivial as an example of end-user programming, it 
demonstrates the applicability of the underlying principles while also dealing effectively with a 
tedious and repetitive real task. Find and replace also happens to be the experimental test case that 
was used to validate the original cognitive model of Attention Investment (Blackwell 2002), and as 
we discuss later, Attention Investment is a particularly relevant explanatory model for this work. 

2.2. FileRenamer 

The second application we developed employs a similar technical approach, but for an application that 
would be perceived by end-users as very different from structured word processing. FileRenamer uses 
pattern matching to facilitate renaming a large number of files. Such bulk editing and renaming tasks 
would be simple for many skilled programmers, who would typically use a regular expression based 
tool (the second author, for example, habitually carries out complex file renaming by constructing 
regular expression-based macros within the EMACS directory edit mode). However, as noted by 
Blackwell (2001) regular expressions are particularly hard for non-programmers to learn; Perl texts 
such as (Christiansen 1998 and Herrman 1997) warn their readers before the chapters on regular 
expressions that difficulties are in store. It is for this reason that our own applications have applied the 
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interactive guided learning approach, in which a suitable regular expression is inferred from examples 
that the user provides. 

 
Figure 1 – Screenshot of SmartRegex in use. All strings that match the currently inferred regular 
expression are highlighted. Placing the cursor within any of these strings allows the user to type 

modifications that simultaneously change all of them. The screenshot also shows how user can extend 
or refine the regular expression by selecting a new string, and clicking one of two icons to either 

accept this string or exclude it from the regular expression 
 

 
Figure 2 - Screenshot of FileRenamer in use. Using the same interaction paradigm as SmartRegex, 
users generate a match pattern by selecting those parts of the file names that should be changed (in 

this case, removing unwanted parts of an automatic filename generated by a digital camera). All 
candidates for renaming are highlighted, and the user can change all highlighted instances together 

by typing within any of them. 
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3. Interactive guided learning 
The aim of guided learning is that the user ‘trains’ the computer to perform some task, in our case 
matching strings. Our computational perspective on the training process is a Bayesian one. The 
computer initially has some model (a Bayesian “prior”) of the text structure that the user wishes to 
match. The user then interacts with the computer to modify this model by providing new Bayesian 
evidence – for example a new string that the user would like the model to match in future, or a string 
already being matched that the user would prefer not to be matched in future. This negotiation 
continues until the user is satisfied with the model. In order for the user to provide appropriate 
evidence, and indeed for the user to evaluate when the computer’s model is adequately complete, it is 
necessary that the computer’s internal model be communicated to the user, and also that the user is 
able to manipulate the model.  

This communication and manipulation could be performed by direct manipulation of a notation 
representing the model. The SWYN system (Blackwell 2002) took this approach, displaying the 
inferred regular expression grammar to the user in the form of a visual language specifically designed 
to improve the understanding of regular expressions by end-users. However, this approach retains a 
number of problems: Firstly, whilst it makes the learning slope of the language gentler, it doesn’t fully 
remove the need for the user to understand potentially complex syntax. Secondly, the requirement to 
visualise the model constrains the choice of modelling language. This would make the use of more 
expressive languages, such as context free grammars, difficult. 

Rather than displaying and manipulating the model directly, an alternative approach is to show the 
effect of the model on the user’s own data. The model can then be manipulated by changing the 
training set, the data from which the computer inferred the model, rather than the model itself. This is 
the approach we chose.  

Various design possibilities were sketched. A selection of the sketches that led to the simple direct 
technique for refining the selection model are shown in figures 3-5. The final technique chosen, as 
shown earlier in the two demonstrator applications, is that text strings in the document are selected 
and the user instructs the computer whether a selected string should or should not be included in the 
model. A Lapis-like display of the current multi-point selections is provided to the user, so that they 
can determine if the model is complete (because the current set of selections corresponds to their 
intention) or what further refinements are needed. 

 
Figure 3 – An early design sketch showing text being ‘painted’ to indicate inclusion or exclusion from 

the model 
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Figure 4 – Concerns with decreasing the modal behaviour of the interface led to a refinement of 

‘select and click’ interaction rather than painting 
 

 
 

Figure 5 – Final design sketch, inspired by the ‘SmartTag’ paradigm of MS Office: when some text 
has been selected, floating buttons appear below it that can be used to mark the text as either included 

or excluded in the model  
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This section has addressed the question of how an interactive guided learning approach can be 
presented to end-users. However, we also need to consider the question of how the computer can 
work from the evidence (a series of positive and negative text examples provided by the user) to a 
hypothetical model of the general class of text structures that the user wishes to refer to. This task 
involves inferring a model for structured text, which we shall discuss next. 

4. Inferring models of structured text 

4.1. Models for natural language 

Natural language has been modelled explicitly by many different disciplines over the centuries, from 
cryptanalysis to linguistics. Our view of text modelling was motivated by a passage in Shannon’s 
famous description of communications theory (Shannon 1948). Shannon asks how many guesses it 
takes, on average, to determine the next character in an English sentence. The number of guesses 
needed is considered to be an estimator for the information gained by learning that character. 

This view of characters as information has inspired a number of user interfaces, notably Dasher (Ward 
et al. 2000), in which the user zooms through a field of characters with probable characters being 
allocated a larger area, making them easier to select. A statistical model of English (PPM – Prediction 
by Partial Match) is used in Dasher to estimate the probability of the next character, given the 
previous characters.  

Generally, PPM predicts the next symbol in a stream of characters by considering the relative 
frequencies that have been seen for the next symbol given the context (i.e. the previous few characters 
in the stream) as shown in figure 6. The ‘order’ of the PPM model (denoted by a numeral after PPM) 
is the number of previous characters that make up the context. 

 

 
Figure 6 – PPM2 operating on an English text stream. The yellow highlighted area indicates the 

context being used to predict the position labelled '?'. The table indicates the relative frequencies of 
the next symbol given the context ‘th’ in the Canterbury Text Corpus 

. 

Our algorithm, SPPM (Structured Prediction by Partial Match), generalises PPM by modelling 
arbitrary contexts, instead of just the previous symbols in the character stream. For example, when 
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modelling natural language it can use a combination of previous characters (like PPM) and also Part 
Of Speech (POS) tags for previous words, see figure 7. We found that the use of POS tags improves 
the efficiency of prediction of the next character for the same memory usage for models over order 
four. 

POS-tagging is a useful predictor as it starts to include information about the structure of the text in 
the model. Due to the nature of human languages, there are limits to what can be achieved in this 
manner for natural language applications. However, for applications to programming languages and 
other formal systems SPPM can do much better, because these languages typically have much more 
explicit structure. 

 

 Figure 7 – Shows a single text stream (centre) being converted into a Part Of Speech (POS)-Tag 
stream (top) and a PPM stream (bottom). Using only POS Tags, the prediction would depend on the 

items highlighted above in pink; using only PPM the prediction would only depend on the items 
highlighted below in green. SPPM combines both of these streams, with a model that depends on both 

the green items (below) and the pink items (above).  DT is the POS tag for ‘determiner’ and VBZ is 
the tag for ‘verb, present tense 3rd person single’  

 

4.2. Models for formal languages 

As an example of a highly structured formal language, figure 8 shows the parse tree of the partial 
regular expression ‘[A-Za-z0-9’. Whilst PPM can only model the lexical stream, SPPM can also 
directly take into account structure of the tree, allowing far more context to be incorporated into the 
model and used for prediction. 
 

The ability of SPPM to take account of the formal structure of a language means that SPPM 
implementations need to make several decisions that were not needed for PPM. Principally, it is 
necessary to implement a scheme to decide what elements of the structure to use as context. In PPM 
the decision as to what to use for the context was simple – it is always the previous characters. 
However in SPPM the data could come from, for example, a higher level in a parse tree or a 
neighbour in a parse tree, or the previous characters. Whilst balancing the use of those additional 
contexts involve extra optimisation work, the flexibility allows for modelling of data more efficiently 
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than in PPM, and also for modelling languages in which simple character matching is of limited use, 
such as source code. 
 

 

Figure 8 – A PPM3 view on predicting characters in a regular expression. The ‘?’ denotes the symbol 
being predicted, and the highlighted context is the only posterior information that is considered by 

PPM, whereas SPPM considers both the highlighted context and the implicit repeated structure 

To demonstrate its generality and understand challenges in features such as error support, we 
implemented SPPM models for a number of different languages, at various levels of support. These 
are summarised in the Table 1. 

 
Language Reason for support 

Regular Expressions Support for commonly used subset of Perl 
style regular expressions 

English and POS tagging Demonstrates multiple stream support 

XHTML Demonstrates techniques for error recovery 

C# Demonstrates complex grammar support 

Parsed English Demonstrates integration with a NLP library 

Table 1 – SPPM support for various languages 

This generality provides interesting research possibilities for the future, including using SPPM as a 
predictive model for Integrated Development Environments, either as an enhancement to code 
completion systems or to support a novel programming interface like #Dasher (Church 2005). 

5. Empirical comparison  
As observed earlier, there are many ways in which a predictive language model could be used. To 
demonstrate the practical value of the approach, we empirically compared the two demonstrator 
applications discussed in section two to equivalent features in leading commercial products. The basis 
for comparison was the length of time taken by users to perform representative tasks. These included 
two conventional find and replace tasks for SmartRegex, and pattern-match bulk renaming (e.g. 
“DSC0035.jpg” had to become “Holiday Photos 0035.JPEG”) for FileRenamer. Our experiment also 
included two search tasks, not related to our principal concern with text transformation, which 
suffered from an experimental design flaw. Those tasks did not show significant differences, and are 
not reported further.  

The group of six test subjects was gender-balanced and chosen from a population intended to be 
representative of end-users who might work with semi-structured text, from students to office 
professionals. The subjects were presented with four editing tasks, of which they performed two in 
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SmartRegex and two in MS Word. They were also given four file renaming tasks, of which they 
performed two in FileRenamer and two in Adobe Bridge. The orders in which they performed the 
tasks were counterbalanced. 

As shown in figure 9 there was a statistically significant difference between time taken to complete 
the editing tasks using MS Word and SmartRegex. The average task completion time, across all 
subjects, was 81% faster when using SmartRegex (Kruskal-Wallis test shows significance at df=1, p < 
0.01).  

As shown in figure 10, there was also a statistically significant difference between time taken to 
complete the renaming tasks in FileRenamer and Adobe Bridge. The average task completion time, 
across all subjects, was 82% faster when using FileRenamer (Kruskal-Wallis test shows significance 
at df=1, p < 0.01). 
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Figure 9 – Reduced task completion time when representative end-users carry out a find-and-replace 

text transformation task using the SmartRegex demonstrator rather than the (familiar) facilities 
provided by industry-standard application Microsoft Word. Lines indicate paired comparisons. The 

observed trend for faster task completion with SmartRegex is statistically significant (p<.01). 
 

 
Figure 10 - Reduced task completion time when representative end-users carry out a file renaming 
task using the FileRenamer demonstrator rather than the facilities provided by industry-standard 

application Adobe Bridge. The observed trend for faster task completion with FileRenamer is 
statistically significant (p<.01). 
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Whilst it must be stressed that these applications are only demonstrators, and that much more 
sophisticated use could be made of the inference techniques that they demonstrate, even these simple 
demonstrators show a clear improvement in task performance over the equivalent features offered in 
industry-standard applications MS Word and Adobe Bridge.  

6. Power / learning trade-off 
Whenever users are given the opportunity to specify and perform multiple actions at the same time, 
this changes the intellectual complexity of their task, to a more abstract level of description. Although 
a shift to more abstract thinking about a problem is completely routine for programmers, non-
programmers can find it challenging. Indeed, the “paradox of the active user” observes that many 
users prefer just to carry on with a repetitive or inefficient task rather than seek out better ways to do 
it (Carroll & Rosson 1987).  

Designers of more efficient UIs can address this by offering “just in time programming” (Potter 
1993), where users normally proceed by manual direct manipulation, but are offered a more abstract 
programming approach only when their task becomes particularly repetitive.  

In terms of end-user programming research, this is a vital component of the “gentle slope” 
requirement that incremental gains in expressive power should be accompanied by no more than 
incremental increases in tool complexity (Pane & Myers 2006). Blackwell’s (2002) Attention 
Investment model of abstraction use unifies these principles. It suggests that users often face a 
strategic choice between relatively mundane direct manipulation, or investment of mental effort in 
more abstract programming-like approaches to a task. This attention investment comes with a cost, 
but also a risk that the program may not work, or that a programming strategy might even incur 
further effort to fix bugs or unintended execution results.  

Our own interaction design has been directly motivated by these principles and theoretical 
observations. Inference is started with a routine selection operation, while generalisation takes place 
in the background, being refined with each further selection. This offers both a “just in time” and a 
“gentle slope” experience. The perceived attention investment cost of building the training set is both 
small and incremental, through the use of the accept/reject checkmark approach. The perceived 
attention investment risk is also minimised, through the fact that all specified execution instances are 
highlighted in context and can be inspected by the user. 

This interaction style has some resemblance to the work of Burnett et. al. on end-user programming of 
spreadsheets, where benefits of assertions and testing are highlighted in context, and can be modified 
using simple checkboxes (Rothermel et al. 1998). Their “surprise-explain-reward” design strategy 
(Wilson et al. 2003) applies the attention investment model to encourage better software engineering 
discipline from end-users programming spreadsheets, while our inference-based strategy is designed 
to encourage the use of a programming approach rather than repetitive direct manipulation in the first 
place. 

A number of other inference systems have taken this approach in the past, most notably Cypher’s 
(1991) Eager, an agent which monitored user actions for opportunities to generalise over repeated 
operations, and “eagerly” popped up to offer automated continuation. An early text interface for 
generalisation over repeated action was Dynamic Macro (Masui 1994). 

These early inference-based interaction prototypes used deterministic generalisation techniques. The 
power and generality of those techniques quickly becomes limited – even in the simple applications 
we describe here, inference of regular expressions is a challenging problem in the general case. The 
more powerful statistical model inference techniques that we have developed promise opportunities 
for a far wider range of abstract expressive languages. Our simple applications have demonstrated that 
statistical techniques are a valid alternative to the deterministic techniques used in Eager, and we have 
empirically verified the usability benefits of such an approach in applications of similar complexity to 
those early systems. Future opportunities offered by our approach extend to a greater range of 
structured texts. 
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7. Conclusion 
We have described the use of a sophisticated statistical inference technique to support programming-
like abstract modifications of structured text. Statistical inference, as a basis for "programming by 
example" systems, is one of the most promising strategies for addressing the end-user programming 
challenges highlighted by Blackwell's attention investment model. 

Firstly, statistical inference, when applied in a guided learning context, can reduce the perceived 
attention cost of an abstract strategy. Secondly, efficient user interface techniques such as multi-point 
editing can reduce both the perceived investment risk (because incremental structure changes can be 
previewed), and also the direct manipulation costs (as shown in our empirical evaluation of two 
simple demonstrator applications). 

Although we have demonstrated the feasibility of this approach using relatively simple demonstrator 
applications, the SPPM inference method offers significant benefits for a far greater range of end-user 
programming applications. We believe that a particularly promising opportunity comes from the fact 
that SPPM can be applied both to natural language models and to more conventional programming 
language grammars. It is often the case, in end-user programming contexts, that end-users deal with 
combinations of more and less formal textual data. In these contexts, a technique that offers a 
common mathematical foundation for representation and inference across different kinds of textual 
structure provides a powerful tool for future end-user programming innovations. 
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