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Abstract. Spreadsheets are computer programs. However, as with programs written in traditional
programming languages, it is very difficult to understand a spreadsheet created by others. This is
because spreadsheet users normally view the superficial numerical (value) view of spreadsheets
although computations are specified through “hidden” cell formulas. The cell formulas also define
the data-flow structure of the spreadsheet. In this paper, we present a technique that highlights
logical areas in spreadsheets which may act as a guide in understanding a spreadsheet. Instead of
focussing their attention on the whole spreadsheet, spreadsheet users may narrow their focus to
one logical area at a time. We identify logical areas in spreadsheets by using the MCL (Markov
Clustering) algorithm on the underlying spreadsheet data-flow graph.
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1 Introduction

Spreadsheet systems are very popular among computer end-users. Computer end-users may
be defined as people for whom conventional computer programming is not their main job al-
though they use computers as part of their daily lives (Blackwell, 2002). End-users are not pro-
fessional programmers although they might find themselves performing “programming” tasks
such as creating spreadsheets. Spreadsheets are computer programs even though they might not
be perceived to be so by their creators (Mittermeir & Clermont, 2002). The simplicity of the
spreadsheet metaphor shields spreadsheet creators from the complexities of programming unlike
in traditional programming. Despite this simplicity in creating spreadsheets, most spreadsheets
contain errors (Panko, 2000; Panko & Sprague, 1998). Moreover, studies indicated that it is
difficult to understand spreadsheets created by others due to the invisibility of the data depen-
dency (data-flow) graph (Ballinger, Biddle, & Noble, 2003; Sajaniemi, 2000).

Spreadsheets have got three views namely the numerical (value) view, the formula view and
the data-flow graph view. An illustration of the three views of a spreadsheet is given in Fig.
1. Normally, spreadsheet users look at the superficial numerical view. However, the key to un-
derstanding spreadsheets is to understand cell dependencies as defined through cell formulas
(Davis, 1996). Sometimes spreadsheet users might use the formula view to understand a spread-
sheet by analyzing individual cell formulas. However, this is tedious and cumbersome (Nardi,
1993). On the other hand, spreadsheet users may not be familiar with analyzing the underlying
data-flow graph of a spreadsheet, since it may appear too complex to comprehend. In addition,
spreadsheet users are used to working in an already familiar environment of the numeric view
of a spreadsheet. Hence, in our effort to provide tools that assist in understanding spreadsheets,
we opted to analyze data dependency graphs of spreadsheets and provide that information in
the form of logical areas on the familiar spreadsheet view.



Fig. 1. An illustration of different views of a spreadsheet from Igarashi et al. (1998)

This paper presents a technique that highlights logical areas in spreadsheets which may act
as a guide when understanding a spreadsheet by enhancing the detection of patterns in spread-
sheets. A logical area in a spreadsheet may be defined as a group of cells which from the
spreadsheet creator/user perspective form a logical unit due to the semantics of the spreadsheet
(Mittermeir & Clermont, 2002). In other words, logical areas are an attempt to construct an
abstract presentation of a given spreadsheet by grouping cells based on the similarity of their
contents (Mittermeir & Clermont, 2002) . Logical areas in a spreadsheet are highlighted using
different cell background colours. Instead of focussing their attention on the whole spreadsheet,
spreadsheet users may narrow their focus to one logical area at a time. We identify the logi-
cal areas in spreadsheets by employing the MCL (Markov Clustering) algorithm (van Dongen,
2000b, 2000a) on the underlying data-flow graph of a given spreadsheet. We believe that for
one to be able to debug a spreadsheet, one must understand the spreadsheet first, therefore we
anticipate that our technique shall also be useful in the spreadsheet debugging process.

The rest of the paper is organized as follows: Section 2 presents related works. We present
details of the MCL algorithm based technique in Section 3. An example on the applicability of
the technique on a spreadsheet is presented in Section 4 while Sections 5 and 6 provide exper-
iment results on the evaluation of the MCL algorithm as well as discussion on the same. We
finally provide concluding remarks and future works in Section 7.

2 Related Work

Software visualization involves the provision of visual cues to enhance detection of patterns in
software. Software visualization techniques provide visual representations of some aspects of a
program, which could otherwise be difficult to notice by merely looking at “plain” source code
of the program. Source code colouring is one software visualization technique that has also been
exploited in the comprehension of source code in traditional programming languages like Java
(Hendrix, James H. Cross, Maghsoodloo, & McKinney, 2000). For example, the jGRASP (James
H. Cross & Hendrix, 2008) Integrated Development Environment (IDE) provides, among many
of its features, syntax colouring of source code which is supposed to aid programmers in the
comprehension of the code. In our case, we highlight generated MCL clusters in a spreadsheet
using different cell background colours. There are also several research works that have exploited
the use of visualization techniques to aid in the comprehension of spreadsheets.



Sajaniemi (2000) developed the S2 and S3 spreadsheet visualization tools in which logical ar-
eas or semantic units in a spreadsheet are highlighted and data-flow between logical areas is
indicated through arrows. A screenshot of the S2 visualization tool is given in Fig. 2. The S3
visualization is a slight improvement to the S2 visualization. Highlighted areas in the visual-
ization describe the plan structure of the spreadsheets and deviations from this structure show
clearly in the visualization hence helping in the spreadsheet debugging process. We believe that
superimposing data-flow arrows on the spreadsheet display introduces cluttering of the spread-
sheet view, hence our technique does not indicate data-flow arrows on the spreadsheet display.

Fig. 2. A screenshot of the S2 visualization by Sajaniemi (2000)

Fig. 3. A spreadsheet with highlighted logical areas (equivalence classes) by Mittermeir & Cler-
mont (2002)

Igarashi, Mackinlay, Chang, and Zellweger (1998) also developed a spreadsheet visualization
tool that depicts a fluid-like flow of data in a spreadsheet. The main emphasis in this visual-
ization tool is the visualization of the hidden data-flow structure behind the tabular layout of
a spreadsheet through fluid-like flow of data in the spreadsheet. Transient local views are used



to visualize data-flow structures associated with individual cells while it is possible to view the
data-flow structure of the entire spreadsheet at once.

Mittermeir and Clermont (2002) developed a spreadsheet visualization toolkit that partitions
a spreadsheet into logical areas known as equivalence classes. Equivalence classes are mainly
based on structural similarity of formulas (Clermont, Hanin, & Mittermeir, 2002). Identified
equivalence classes are then highlighted in the original spreadsheet as in Fig. 3. In our case, we
highlight logical areas based on the cluster of cells that are generated by employing the MCL
algorithm on the underlying spreadsheet data-flow graph.

3 An MCL (Markov Clustering) Algorithm Based Approach

Given a spreadsheet data-flow graph, with nodes representing cells and edges representing cell
dependencies as defined by cell formulas, the need for graph clustering arises so that one should
be able to view a manageable subset of the graph nodes at a time. Graph clustering is indeed
important because normally spreadsheet data-flow graphs have a large number of nodes and as
such the graph display becomes cluttered. However, we require that the cluster of cells which are
displayed at a time should match with logical areas in the corresponding spreadsheet; otherwise,
the clusters produced would be “meaningless”.

The MCL algorithm (van Dongen, 2000b, 2000a) is one clustering algorithm that produces
“natural” clusters from graphs. The algorithm finds clusters in graphs by simulating random
walks on a given graph. This means that MCL clusters are characterized by graph nodes that are
strongly interlinked together since the probability of a random walker in visiting more nodes
in a cluster is high. The first step in the algorithm is to associate a given input graph with
some column stochastic matrix, M , such that entry Mij will indicate the probability of mov-
ing from node j to node i (in that order) in the input graph. Then two operations known as
expansion and inflation are performed alternately starting with the associated stochastic matrix.

The process of expansion involves taking the power of a stochastic matrix using the normal
matrix product; in this case, squaring the stochastic matrix. Inflation involves squaring each
matrix entry in the matrix that results from the expansion operation. The process of alternating
the expansion and inflation operations is repeated until a doubly-idempotent stochastic matrix
is produced. A doubly-idempotent stochastic matrix does not change with further expansion or
inflation operations. The resulting doubly-idempotent stochastic matrix is a very sparse stochas-
tic matrix which is associated with the input graph. The sparse stochastic matrix corresponds
to the separation of the input graph into different connected components of the graph which
are in turn interpreted as clusters.

Due to its ability to find natural clusters in graphs, the MCL algorithm has also been used in
many advanced applications. For example, the algorithm has been reliably used in the assign-
ment of proteins into families based on precomputed sequence similarity information (Enright,
Van Dongen, & Ouzounis, 2002). Our experiments show that the clusters which the MCL algo-
rithm produces match with logical areas in spreadsheets.

We have already implemented a prototype of the spreadsheet visualization tool using the Mi-
crosoft Excel spreadsheet system in conjunction with the Graphael (Forrester, Kobourov, Nav-
abi, Wampler, & Yee, 2004) graph drawing software. We used Microsoft Excel because it is a
popular spreadsheet system. On the other hand, we also used the Graphael graph drawing soft-
ware because it has an implementation of the MCL algorithm. A screenshot of the spreadsheet
visualization tool with a spreadsheet side by side with the Graphael program is depicted in Fig.



4. A detailed description of the conceptual architecture of the visualization tool can be found
in Kankuzi and Ayalew (2008) (Kankuzi & Ayalew, 2008b).

Fig. 4. A screenshot of the spreadsheet visualization with a spreadsheet side by side with the
Graphael program

Upon the click of a command button on the “Visualize” drop-down menu in the spreadsheet
window menu bar, clusters from a corresponding data flow graph for the spreadsheet are gen-
erated and displayed in a Graphael program window side by side with the spreadsheet. The
clusters are represented by nodes. A user then navigates through the cluster nodes by clicking
on the nodes using either the left or right mouse buttons. To see a logical area corresponding to
a selected cluster in the Graphael window, the user clicks on an appropriate command button in
the “Visualize” drop down menu in the spreadsheet window menu bar. The logical area is then
automatically highlighted in the spreadsheet. This process is then repeated until all clusters in
the Graphael window have been selected. Different logical areas in the spreadsheet are high-
lighted using different cell background colours since the colour codes are randomly generated. A
detailed description on how clusters are generated and how one navigates through the clusters
is given in (Kankuzi & Ayalew, 2008a, 2008b). In this paper, we focus on the highlighted logical
areas as a spreadsheet comprehension aid.

4 Example

Consider the spreadsheet given in Fig. 5. The spreadsheet was sourced from the EUSES spread-
sheet corpus (Fisher & Rothermel, 2005). The spreadsheet is used to calculate payments to sales
workers of a certain toy manufacturing company. The payments are based on hours worked, to-
tal sales and commission on sales. Using appropriate commands from the “Visualize” menu
in the spreadsheet menu bar as depicted in Fig. 5, we generate MCL clusters from the un-
derlying spreadsheet data-flow graph. The generated MCL clusters are then highlighted with
different cell background colours in the spreadsheet as in Fig. 5. We have deliberately empha-
sized the highlighted MCL clusters by formatting cluster borders using different border styles.
For example, cell range B4:B12 is highlighted as one MCL cluster. We also use the formula

view of the spreadsheet in this example just to verify whether the clusters generated by the
MCL algorithm conform to what is also defined by formulas. A look at the formula view of the
spreadsheet in Fig. 6 confirms that indeed cells in cell range B4:B12 are in the same logical
area. Similarly for clusters in columns C, D, E, and F. We also observe by using the formula
view of the spreadsheet that calculations for “Hourly Pay” were not performed using formulas.



Fig. 5. Numeric view of a sample spreadsheet with highlighted MCL clusters

Fig. 6. Formula view of the spreadsheet given in Fig. 5

“Hourly Pay” was supposed to be calculated from “Hours worked” and “Hourly Rate”. We
suspect that the calculations were entered manually. We note that this is prone to errors. We
also observe that commission pay (“Com. Pay”) in column F was also calculated manually.
Hence, we see that commission rate as specified in cell C14 does not belong to any highlighted
cluster. This is not an error on the part of the MCL algorithm because cell C14 is correctly not
part of the spreadsheet data-flow graph due to the fact that it is not part of any cell formula
in the spreadsheet. A cell which is part of any cell formula becomes part of the data-flow graph
hence the cell becomes part of the input to the MCL algorithm. This is not the case with cell C14.

We also take note that there are seven single-membered clusters namely; G4, G5, G6, G7,
G8, G9 and G10. These clusters match with their respective logical areas. For example, cluster
with cell G4 is total pay for worker “Jones” in row 4 which is calculated from “hourly pay”
and “com. Pay”. A similar explanation goes for the other single-membered clusters. We also
take note that a cell may belong to more than one logical area but it can belong to only one
MCL cluster at a time. For example, cell F4 could have also belonged to a logical area which
is defined by the formula G4=SUM(E4:F4) (i.e. logical area with cells E4, F4 and G4). But
instead of being put in this row-wise logical area, the MCL algorithm has put the cell as part
of the columwise logical area in column F. This is something that we cannot have control of as



it is up to the MCL algorithm to place a cell in a cluster where it computes that the cell has
a higher probability of being visited in a random walk. We acknowledge that this is one of the
limitations of the MCL algorithm since a cell may sometimes correctly belong to more than one
cluster. In our case, we are mainly interested in whether the MCL algorithm has placed a cell
in at least one correct logical area or not.

We also observe that there is one MCL cluster that does not necessarily match with our antici-
pated logical area. The double-membered cluster with cells G11 and G12 would have been better
if it was split into single-membered clusters as it is the case with the other clusters in column
G. However, we still take note that it is not an error on the part of the MCL algorithm to put
the two cells in one cluster since they are related by the fact that they have the same precedent
range (i.e. G4:G10) through formulas G11=MAX(G4:G10) and G12=AVERAGE(G4:G10).

5 Evaluation of the MCL Algorithm

As with the spreadsheet in Fig. 5, we proceeded to generate MCL clusters for seven more
spreadsheets (i.e. we used eight spreadsheets including the one used in the previous example).
All the spreadsheets used were randomly selected from the EUSES spreadsheet corpus (Fisher
& Rothermel, 2005). The main aim of the experiment was to find how well the MCL algorithm
produces clusters that match with logical areas of a given spreadsheet. This is important because
we expect that a clustering algorithm has to produce “meaningful” clusters i.e. each cluster of
cells produced should match with what the user anticipates to be a logical area on a spreadsheet.
We use the success rate as a measure of performance of the MCL algorithm. We define the
success rate of the MCL algorithm in terms of the number of all generated MCL clusters in a
given spreadsheet and the number of those generated MCL clusters that entirely match with
respective logical areas in the spreadsheet. For example, for the spreadsheet in Fig. 5 (the one
used in the previous example), the total number of highlighted MCL clusters is 13. However, 12
of them exactly match with our anticipation of logical area. Therefore the success rate of the
MCL algorithm on this spreadsheet is 12/13 which translates to 92.3%. We present results of
the experiment in Table 1.

6 Discussion

Referring to Table 1, we report a number of observations on the experiment. The success rate
of the MCL algorithm for spreadsheets 2, 4, 5 and 6 was 100% in each individual spreadsheet.
This means that in all these spreadsheets, the MCL clusters produced matched with what we
perceived to be logical areas.

We also observed that for spreadsheet 3, there was one cluster that seemed not to obviously
match with a logical area because the cells were not in a contiguous group (neither row-wise nor
column-wise). However, a closer inspection of the cell formulas revealed that indeed there were
cell dependencies among the cells. This is a case where a logical area might not seem to be obvi-
ous to the one comprehending the spreadsheet. We also observed that there were about fifteen
numeric cells in spreadsheet 3 that were not part of any highlighted MCL cluster. Left-out cells
are not highlighted since they are not part of the spreadsheet data-flow graph. Our inspection
also showed that they were indeed not part of any cell formula. We suspect this to be an error
on the part of the spreadsheet creator or may be the cells were just used for documentation
purposes.

For spreadsheet 4, we observed that although the MCL algorithm perfectly found clusters that



Table 1. Experiment results on the evaluation of the MCL algorithm

Spreadsheet Description Total no. of No. of matching Success
no. MCL clusters clusters Rate
1. Calculation of payments 13 12 92.3%

to sales workers based
on hours worked, total
sales and commission

2. Employee payroll 17 17 100%
based on hours worked

3. Consolidated 14 13 92.9%
statements of
cash inflows

4. Statistics on land 12 12 100%
restitution claims

5. Analysis of a 5 5 100%
financial plan for
a housing scheme

6. financial highlights of 82 82 100%
for some company

7. balance sheet for 44 40 90.9%
some funds

8. Statement of financial 52 48 92.3%
performance

Average Success Rate 96.05%

matched with logical areas, there were also six numeric cells which were not part of any high-
lighted cluster. Our inspection showed that the numeric values in these cells were entered man-
ually and not through cell formula calculations. We suspect that the spreadsheet creator might
have done this unknowingly as performing calculations manually in spreadsheets is error-prone.

We also noted that for spreadsheet 5, some of the highlighted MCL clusters were including
blank cells. Our inspection showed that the spreadsheet creator used cell formulas that were
referencing to cell ranges that included blank cells. Instead of refering to specific cells that had
to be included in a cell formula, the spreadsheet creator was just including all cells in a partic-
ular range. This is also error-prone.

We also observed that for spreadsheet 7, there were four MCL clusters that did not match
with what we anticipated to be logical areas. Closer inspection of the cell formulas revealed
that the spreadsheet creator had performed erroneous calculations in a number of cells by ref-
erencing to blank cells in some cell formulas.

Spreadsheet 8 included four clusters that did not match with anticipated logical areas on the
spreadsheet. We observed that for two clusters, the spreadsheet creator included text cells in
cell formulas. This led to the cells to be included in the spreadsheet data-flow graphs. There
were also numeric cells which were unreferenced. As such, they appeared to be isolated among
a group of highlighted cells. This led to two more clusters which did not match with logical areas.

The average success rate of the MCL algorithm on the eight spreadsheets used in the ex-
periment is 96.05%. Based on the results of this experiment with success rate as a performance
measure, we conclude that the MCL algorithm performs satisfactorily. However, we take note



that determining whether an MCL cluster matches with a logical area or not, depends on the
judgement of the one comprehendng the spreadsheet. This might affect evaluation results of the
MCL algorithm. To improve on the reliability of the approach, we propose that a spreadsheet
should be independently evaluated by more than one spreadsheet user and thereafter com-
pare the evaluation results. We also take note that our experiment was conducted on relatively
smaller-sized spreadsheets. However, we take note that the spreadsheets were actually used in
business enterprises. And as such, we still found them to be appropriate for this experiment.

7 Conclusion and Future Work

In this paper, we have presented a novel technique which can aid in the spreadsheet com-
prehension process. The technique involves the use of the MCL algorithm to find clusters in
a spreadsheet data-flow graph. Identified clusters are then highlighted in the corresponding
spreadsheet. We have also presented experiment results on the applicability of the technique
on a number of spreadsheets. We plan to conduct trials on the usability of the technique on
professionals who use spreadsheets in their daily work. This will be one of our future works.
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