What happens during Pair Programming?

Stephan Salinger and Lutz Prechelt

Freie Universitat Berlin, Institut fiir Informatik,
Takustr. 9, 14195 Berlin, Germany
salinger,prechelt@inf.fu-berlin.de

Abstract. Successful qualitative analysis of pair programming requires a terminology (such as a
set of concepts or a coding scheme) that represents the observed phenomena on an appropriate
abstraction level. On the one hand, different analysis goals will require different specialized termi-
nology, on the other hand it would be helpful, if different studies used common terminology so that
comparing and combining their results will be easier. We suggest to define terminology in layers:
a PP foundation layer that is common to all analyses and more specialized study-specific layers
on top. The present article presents this foundation layer which we have derived from audio/video
analysis of pair programming sessions in Grounded Theory investigation style. Its concepts describe
the individual observable human-to-human utterances and human-to-computer activities that occur
during pair programming.

1 Introduction

Pair Programming (PP) is a practice in which two programmers write a program cooperatively,
both using the same computer together. In the context of agile development methods, in par-
ticular eXtreme Programming (XP, [2]), PP has raised considerable interest and a number of
empirical studies on this topic have been performed. So far, most of these studies [7,10,12,
13,15-20,26-28] use quantiative research methods that treat the PP process as a black box
[23]. Such approaches produce some numbers but are inherently unable to really explain how
these numbers came to be, because a theory of what is going on during PP is not yet available.
The first step to such a theory would be a qualitative description of the behavioral elements
which together compose the PP process. However, the (few) qualitative (or mixed qualitative-
quantitative) studies that exist on PP [3,4,6,24,29] all study individual aspects of the process
only, none has yet attempted to present the process elements as such comprehensively.

We believe that a comprehensive, generic, and generally accepted description of the process
elements will be needed to make multiple studies comparable and complementary, and hence to
obtain deeper insights. We thus aim at producing such a description and will view each process
element as a somewhat abstract concept to be characterized and delineated from the others.

In order to make the description generic and generally accepted, we have neither used any
of the specialized coding schemes from existing studies of PP [3,4,29] or related topics as a
starting point, nor have we adopted any other existing descriptive framework (say, a model of
cooperation). We feel that too little is known about the PP process to make sure that any such
choice would be a sufficiently good fit with PP. Instead we use the most open-minded approach
we know of, namely Grounded Theory (GT, [9]), to derive the concepts directly from our raw
observations (audio, video and desktop recordings of actual PP sessions) in a bottom-up fashion.
For this reason we will devote the space we could have used to discuss related work to a more
detailed description of the concepts themselves.

A few global remarks before we start:

1. We believe the investigation of the PP process should proceed in so-called layers. Each layer
uses a different perspective on the PP process and is investigated in separate studies. The
perspective describes in which respect (say, knowledge transfer in PP, abstraction levels
used by participants, PP decision-making, etc.) we are looking for insights, how to cope
with subjectivity during the analysis, and what form of result we are aiming at (such as a
set of concepts, a coding scheme, a theory) [23].

2. The first layer to be developed, called the foundation layer, is the fundament on which all
other layers will build. The concepts in the foundation layer, called the base concept set,
describe the basic activities that occur during a PP process. The base concept set comprises
concepts describing directly observable communication events, activities pertaining to the
computer, and activities pertaining to the rest of the work environment. The concepts repre-
sent neutral description only, no measuring, grading, rating, or other evaluation. Evaluative
concepts (properties in the language of GT) will be introduced in other layers only.

3. Any other layer will extend (and sometimes also simplify) the base concept set as needed
by its perspective. It may add completely new concepts or may differentiate existing ones.

The present article gives an introduction to the base concept set only, as many details will
have to be left out. We will provide a comprehensive definition of the base concept set in a
detailed technical report a few months from now.

It is the purpose of the foundation layer to supply a basic unified terminology with which
qualitative studies of PP can talk about their subject so that it becomes easier to relate various
studies to one another and to build new studies on top of previous ones.

We will now give a quick introduction to the somewhat customized GT research style we
used, shortly explain the nature of the raw data from which we derived our results, and then
present the base concept set itself.

2 Owur Grounded Theory methodology

Grounded Theory (GT) is the research method of choice whenever wanting to start from as few
prior assumptions as possible. From the two different styles of GT, we picked the more rigorous
variant according to Strauss and Corbin [25], which prescribes to represent the data by means of
conceptual (rather than descriptive) codes that are developed directly from phenomena observed
in the data (“open coding”), and to investigate relationships between those concepts such as
cause/effect or context/element in order to gain a deeper understanding (“axial coding”).

As a minimal requirement for constituting GT work, codes must be explanatory concepts
(“theoretical coding”) rather than merely descriptive labels, and observed phenomena must be
re-viewed and compared again and again (“constant comparison”) in order to create codes that
are highly consistent and fit the data closely [11]. As a result, the codes effectively emerge from
(and are thus firmly grounded in) the data.

Our first attempt at applying GT to our PP data failed miserably: We constantly lost
focus and drowned in the data. As a remedy, we amended GT by four guiding practices [23]:
perspective (as described in Section 1), syntazx rule for concept names, an analysis metamodel,
and pair coding.

The concept name syntax rule is as follows:

conceptname = <actor>.<description>
actor = P1 | P2
description = <verb>_<object>

P1 and P2 are the two members of the programmer pair. This part of the name is irrelevant for
the concept as such (and will usually be left out in the discussion below), but is an important
aid for the analysis process. Verbs and objects will be introduced in Section 4.

The metamodel represents and relates the elements of a GT analysis as a UML class diagram
and explains the structure of the analysis results. For developing the base concept set, we used
the following metamodel elements: A Quotation is a scene in the raw audio/video data, an
Annotation relates a Quotation to a Concept. ConceptClasses hierarchically group related
Concepts; some of them may later become GT categories. ConceptRelations describe certain
relationships between Concepts.

Pair coding means that all coding work is performed by two people together, much like pair
programming, in order to avoid distortions arising from the limited or biased perception of any
single individual. We used pair coding to derive the first version of the base concept set; later
refinements and polishing were performed by one person alone.

3 Underlying data

The data from which we derived the base concept set consists of recordings of complete PP
sessions that contain audio and video of the developers’ conversations and pixel-precise video
of the computer desktop [23].

We analyzed data from three rather different such sessions. Session 1 (of length 2:58 hours)
features a laboratory session of two German graduate students who had worked together as a
pair several times before. They built a small extension to a cleanly designed Java EE web shop
system with which they were modestly familiar. The main task difficulty lay in the need to
apply certain Java EE technologies (JMS, JNDI, JBoss application server) that the developers
had not applied often beforehands.

Session 2 (of length 1:47 hours) features a field session of two professional programmers
who worked for the operator of a very large German community portal and also had worked
together as a pair several times before. They built an extension to the community portal,
which is implemented in PHP. The task difficulty had several aspects including understanding
the design (and design rationale) of the pre-existing code, which had been written by offshore
programmers.

Session 3 (of length 1:14 hours) features a field session of professional programmers from
a mid-sized company specializing in geo-information systems. They worked (in Java) on the
visualization of attributes. One important aspect of their task (though this aspect was never
spelled out explicitly) was to investigate the amount of refactoring needed and also to perform
refactoring. The task had been estimated to require a full day and was not finished during the
session. Compared to the other two pairs, these programmers reported to be less well acquainted
with each other as a pair.

We annotated these data directly (without transcription) in the ATLAS.ti [1] data analysis
software; Session 1 using pair coding, Session 2 and 3 alone. Overall, 2826 instances of codes
were annotated to the sessions at 2443 different scenes.

4 The Base Concept Set

The base concept set is an extensible framework (and not a fixed coding scheme) for classifying
the basic activities that occur during PP. The base concept set should not be assumed to be
fully complete, although we have observed a certain degree of theoretical saturation: once the
first PP session had been coded, only two new concept classes arose during the second session
and only one new concept class during the third, although those sessions came from widely
different PP contexts. Nevertheless, further observations from still very different PP contexts
may perhaps require the addition of further concepts.

We aimed at a set of concepts that is large enough to be quite differentiated, yet small
enough to be used consistently. The choice of (and strict adherence to) perspective and the
use of pair coding were instrumental in achieving this goal and also assured the concept set
is highly coherent. However, the granularity of the base concept set is not at all canonical. It
could as well be defined in a more detailed manner with more concepts or somewhat coarser with
fewer concepts. Besides the perspective used, our main guideline for choice of granularity was
obtaining a uniform structure by using similar discriminations in different areas of the concept
set where possible. In favor of a uniform structure, we left many possible refinements to further
layers to be added later.

Under this analysis regime, a rather regular structure for the concept set emerged from the
data. We will use this structure to guide the presentation of the concepts below.

4.1 Coarse partitioning of the base concept set

Early in the analysis process we introduced the following two fundamental concept classes. The
first class, HHI (human-human interaction), includes all concepts that describe interactions
between the pair members. In the case of the base concept set, these are only concepts for
categorizing verbal utterances.

The other class consists of two parts: HCI (human-computer interaction) concepts classify
activities related to the computer and requiring the use of keyboard or mouse, while HEI
(human-environment interaction) concepts comprise all other activities relating to the work
environment. This means that HCI activities can be performed only by the PP driver [27],
while HEI activities can be performed by both driver or observer.

Notably missing from the base concept set are any concepts relating to purely internal
thought processes. Since such processes are not directly observable, they can, at least in a GT
approach, only be introduced indirectly — which means they belong to layers to be created later.

We will now first describe the HHI concepts and then the somewhat less important HCI and
HEI concepts.

4.2 Elements of the HHI concepts

As mentioned in the concept name syntax rule above, a concept name consists of a verb and an
object. For a first impression of the HHI concepts, this section introduces these verbs (in Table
2) and objects (in Table 1) as the elements composing HHI concepts.

By far not all combinations of a verb and an object from the tables occur in the base concept
set, for the following reasons:

1. Not all combinations make sense. For instance, it is impossible to propose an activity, because
activity always refers to current events, not to future ones.

2. Some combinations would create concepts that overlap semantically with others. For in-
stance, there is no concept explain_step because knowledge transfer of all kinds (including
rationales) is always to be represented by the knowledge object.

3. A few verbs are explicitly constrained to one single object only. For instance, say is meant
to be used with off topic only, as it would be too unspecific otherwise.

4. Many combinations, while semantically possible and even plausible, are missing simply be-
cause we have never seen them in our data; for example disagree_strategy. It is possible to
add such concepts immediately when they occur.

There are two cases where delineations between several verbs or several objects are partic-
ularly important as described in the following two subsections.

explain vs. think aloud We initially tried to discriminate undirected communication (verb
think aloud) from directed communication (verb ezplain), but overly many ambiguous cases
make this discrimination impractical. The definition we finally adopted for the base concept
set requires that think aloud can be used only when it happens in the context of a concurrent
and ongoing HCI or HEI activity of the speaking person. Thus, think aloud suggests that the
speaker is attempting to keep the pair partner informed about the meaning or rationale of the
current activity. In contrast, explain is used when communicating a circumscribed issue, for
instance a new insight.

This decision has far-reaching consequences for the structure of the base concept set: There
is only a single think aloud concept, think aloud_activity', whose rather special role will be
described in Section 4.3.

! This is in contrast to the state of the concept set described in [23].

Table 1. Objects for important HHI concepts

object description

activity An HCI or HEI activity that is currently ongoing.

completion Degree of completion of a tactical (basic) work step. Contrast with state.

design An aspect or element of the possible structure of the program being written.

finding An insight that one pair member has just had and verbalized. Indicator of a knowledge
gain by means of thinking. Contrast with knowledge and standard of knowledge.

gap in The fact that certain knowledge is lacking in the pair (as opposed to just one member of

knowledge the pair). Contrast with standard of knowledge.

hypothesis A hypothesis or conjecture, typically regarding a property of the program, its requirements,
or the technology or environment.

knowledge Explicit declarative knowledge that is neither meta-knowledge (see standard of knowledge
and gap in knowledge) nor a new insight (see finding).

off topic Anything not directly related to the solution process sought.

requirement An actual or assumed requirement of the pair’s task.

source of ...such as source codes, documentation, web pages, etc.

information

standard of

An assessment of the level of knowledge regarding a certain topic that is present in one

knowledge particular member of the pair. Not to be confused with gap in knowledge which concerns
the pair as a whole.

state Degree to which a strategy has been worked through. Contrast with completion.

step A possible next step in the work process; viewed by the actor as an atomic unit of tactical
behavior. Contrast with strategy and todo.

strategy A possible approach or work plan for solving some non-trivial (sub)problem. Strategies
always involve multiple steps.

todo A subtask or work item that will have to be completed in the future but cannot or will
not be completed right now. “future” may refer to the current or a subsequent pair pro-
gramming session.

Table 2. Verbs for important HHI concepts

verb description

amend Add what the speaker considers to be a relevant extension to an utterance or activity.
Implies basic approval of the utterance or activity.

ask Ask a (usually open but sometimes closed) question.

agree State approval with an utterance or activity. Contrast with decide.

challenge State disapproval with an utterance or activity and make a counter-suggestion. Contrast
with disagree.

decide Select one from a set of multiple explicitly proposed options. Contrast with agree.

disagree State disapproval with an utterance or activity without making a counter-suggestion. Con-
trast with challenge.

explain Provide an explanation directed to the other pair member.

propose Make an individual suggestion (see agree, challenge, disagree) or suggest a couple of alter-
native options (see decide, challenge, disagree).

remember Observably remember a specific fact.

say Say something (only used together with the object off topic).

stop Propose stopping or aborting an activity.

think aloud

Verbalize one’s own current activity and related thoughts.

knowledge vs. finding vs. standard of knowledge Knowledge transfer is one of the most-
discussed aspects of PP. The foundation layer’s representation of this aspect can be summarized
as follows.

1. Due to observability limitations we consider only explicit (declarative) knowledge [21].

2. We do discriminate between one particular kind of meta-knowledge (standard of knowledge)
and other knowledge (knowledge). The former refers to knowledge about the presence or
lack of certain knowledge, which often determines degrees of freedom for the subsequent PP
process.

3. We do discriminate between settled knowledge (knowledge) and freshly acquired knowledge
in the form of sudden insights (finding).

Note that these objects and concepts emerged from the data like all others; they were not
introduced a priori.

4.3 HHI concepts

We have found five subclasses of HHI concepts: product-oriented, process-oriented, generic,
facades, and other. Figure 1 provides an overview; further details will be explained below.

Product-oriented concepts There are two kinds of product-oriented concepts. The design
concepts refer to the possible implementation structures of the program to be written (design
decisions, both high-level and low-level). This ranges from naming of variables to implementation
of procedures to configuration settings to interfaces of subsystems. In contrast, the requirement
concepts refer to the functional and nonfunctional properties the program to be written needs
to exhibit and to other external constraints is has to obey.

For the design concepts, HHI events we have observed were propose, agree, decide, disagree,
amend, challenge, and ask. Dependencies among these regulate possible event orders; similar
kinds of dialog sequence dependencies exist for many other concept classes as well.

Starting point is a propose_design, possibly (but not necessarily) followed by one or more of
the other kinds of design event which accept, reject, or complement the proposal or a part of
it. These subsequent events can be produced by either pair member, not always in alternating
order. Sometimes such a sequence begins by ask_design instead, which is an open question
without a proposal.

Example: we observed that one programmer said “We can pull out the not.” (propose_design)
and the partner replied “No, I would last_change if that is larger than last_request, return
something, else return exit.”, (challenge_design).

For the requirement concepts, HHI events we have observed were propose, agree, challenge,
and remember. remember_requirement means a programmer reminds the pair of a given require-
ment, while the other concepts indicate the pair works on clarifiying a vague or ambiguous
requirement, which is very common in the XP contexts [2] for which PP is most typical.

Process-oriented concepts There are five classes of process-oriented concepts that con-
cern strategy (strategy and state), tactical behavior (step and completion) and postponed work
(todo).

step concepts concern utterances regarding potential immediate next work steps that the
speaker apparently considers atomic, such as running a test, reviewing a section of code, or
discussing an issue. We found the same verbs with step that we saw with design.

completion is related to step and refers to utterances regarding the degree of completion
of the presently ongoing step. Verbs seen in this context were explain, agree, and challenge.
completion events can occur even if no corresponding propose_step has ever happened; it is
sufficient that the pair performs actions that could have been started by a propose_step.

uonelaidisyun
10 ybisul pazijeqian
e yum juswsaaibe [eubis

aUO dAITeUIBYE e
1sabbns pue uonelaidiaiul
10 bisur pazijeqan
® JO ju9luod 8yl 108ley

JUaA8 panIasqo ue
Buneadisyul sepnjour sy
“ybisul mau B azZifeqIan

ssaooud ayp
ul Jale| Jo a1ed uaye)l aq 01
pasau ||IM W)l 3JOM urenad
e jeyy Buikes juawalers
e yum jusweaibe [eubis

1 Bunoalas Inoyum
ueyd >om 10 ABarens
pasodoud e pus1x3

Bulpuly 2a.be

Buipuly abuajreys

Buipuly urejdxa

opo} 2aube

AbBajyesys” puawe

s1daouo0d Jayro

iser
Buiwweiboid ayy Buinjos
yum op o1 Buiylou sey
Jeyl oueseNn ue axew

(aeajoun
Ajreonsnoe o Arejuswbely
Aybiy) aouessnn

a|qisuayaidwodur ue axepn

o1doy yJo~ Aes

yis a|qunui

1 Bunoasles 1Inoym
uonejaudiaul 1o ybisul
qIan e puaix3

uoleWIO}UI JUBASISI JO
22.nos a|qissod & 1IN0 JuI0d

Ananoe |13H 10
19H 3ua.Nd 8y Jo ued Jo
Ire yum uswaaibe [eubis

*ssaoo.d
Byl ul 191e| JO ated uaxel
8q 01 paau [IM Wal I0Mm
urenad e eyl 1sabbng

sue|d 3iom
10 selbayens sAneussye
|elanss 10 Buo ®w0&0;_&

sued 3iom
10 salbelens paesodoid
anneusale [esanas

Buowe woly auo 19919S

Buipuly puawe

uoneurIojur Jo
924N0S”_J1agquIaWial

AnAnoe aaube

opoy” asodoud

ABarens ssodouad

ABayens apiosp

Juawalinbai
® 9 01 paopIsuod
agq pinoys Jeyy sonsusloe
-1eyd weiboid anneussye
[esanas 10 auo asodoid

Juswaanbax
“asodoud

noyum Buoim Ajper:
10 ‘Ajrenued ‘Ajny se abpa|
-MOU| paladjsuel) arepaq

3 Bunoafes
noyum aimoafuod uo
sisaylodAy uanib e puaix3

Aunnoe
I3H 10 |OH u8auNd 8yl
yoge Jo doiys 01 3sabbng

ybnoiuyy
paiom usaq sey ued
Miom 10 ABejens juaiind
ayl yoym 01 aaubap
ayy Buipiebas juswarels
e yum jusweaibe [eubis

ueyd >4om 1o ABarelis ayr
Buipsebas jesodosd uanib
e yum jusweaibe [eubis

umo s,auo yum 3 Buisoddo
Aq Buoum A
10 ‘Ajrenued ‘Ajny se abpa|

21moefuod 1o
sisayodAy uanib e 10afey

Aunnoe
I3H 10 IOH 3juaund aylr
01 uoisu9Ixa ue asodoid

usaq sey ueid >jom Jo
ABerens Jualind ayl yaiym
01 @albep e Buiprebas

Sbpa|AOU = — — -
—so.Bes) sisaylodAy puswe Annoe dois o1e1s” saube ABarens oaube
abpajmou ybnoayy paxiom

“uasoyd aq
01 ueld >iom 10 ABarens
ayy bBuiprebas esodosd
912J0U0D B U0} SV

juawalnbal
pasodoad 10 uanib
e yum juswseaibe feubis

peaisul
8uo aAneussle ue asodoid
pue juawsaiinbai pasodoid
10 uanib e 183ley

Jjuswiaiinbax

2a4be

JuSwWBINbal
~abuajeys

wresboud ay3 jo Jusaw
-aanbal peuonouny-uou 1o
leuonouny (payioads-aid)
uanlb e jo Jred ay) pulway

JuswiaIinbal
“asquiswial

lesodoud anneusale ue
Bupjew noyum dajys diom
eonoey 1xau ayy Buiprebaa
lesodoid uanib e 108fey

resodoud ayy
Bunoalas noyum weiboid
8yl Jo uLU0d pue
aumonns eyl bBuiprebaa
resodoud uanlb e pusix3y

lesodoud anpeusaye ue
Bunjew Inoyum weiboid
8y Jo sWOd pue
aimonns eyl Buiprebaa
lesodoid uanib e 03ley

dels™ @aibesip

ubisap puawe

ubisap” saibesip

-mouy| palsysuel) aiePaq JuswaeIs ® ENE
Sbpajmous] SUIodAY = — —
= = ANAL o1e1s” urejdxa ABajens >se
abuajreyo 204BesIp v HARDE puswe 1e1s” ure| 1ens)
-
Qs
abpajmous aAnelepap auo w resodoud ayy Bunoalal
1091400 9Q 0] PABWNSSe| |aAneusale ue ale|nuwioy c A1IAnoE |3H 10 [DH 1Ua1INd mnoyum dais lom
st eyl Jasuped ayl| |pue ainoafuod 1o Of AWAL eanoey 1xau ayy buiprebax
Olayr jo wed Jo (e 108ley
01 uonewiojul Jgjsuel] | |sisaylodAy usnib e 108ley o N resodoud uanib e pueix3
SISay3odAy M
abpajmou urejdxa = 1noe eaubes! dels puswe
P3| > urej sBus|RYD o Ann: p 1s™p
[T

adfy Jo uonew.oul
10y ssuued a8yl sy

10 sisayodAy uanib
e yum jusweaibe [eubis

I3H 10 |OH 3JuU3LNd umo
S,8U0 JO syoadse azijeqiap

Jo uonajdwod jo aaibap
ayy Buipsebai juswaerels
e yum jusweaibe [eubis

Buipsebas jesodosd uanib
e yum jusweaibe [eubis

ue aew pue dels lom
eonoey 1xau ayy Buiprebaa
lesodoid uanib e 108fey

JUSJU0D pue BINONIIS By}
Buipsebas |esodosd uanib
e yum juawoaalbe [eubis

juswuodinua juswalels
Jsuped| [ayy Jo ‘syuswadinbes Auanoe oAneUlSlE ue aew dais >uom dais >iom [eonoe 3xau peatc.d W)
. : o - - 9yl JO JUSIUOD puB| [JO JUSUOD PuUB BINIONAS
ayr Agq payers abpamouw| |su wreiboad ayy aAeusale ue 3sabbns pue pue deis >Jom [eanoe) eonoe) I1xau ayy Buiprebai| [ayy Buipirebas spesodoid
aumonns eyl bBuiprebai| (ayy Buiprebas spesodoid
(3981100 se abpnfl| [jo Auedoid e Buiprebas Ananoe |3H Jo |OH uaLInd juaund a8yl jo uonajdwod sjesodoid aAneusale | |aAneulale [esanas e ey omrenems| |eweweTs S
"a'1) juawoeaibe |eubis| |Ajjeadfy ‘aanyoaluod ayy jo ued Jo (e 1o08ley jJo aaibap ayr Buiprebas [esonas 10 auo ayely| |[Buowe woiy duo 1999S | w i o Al !
[esanes 1o auo ey | [Buowe woiy Buo 199|195
10 sisaylodAy e are|nwio4 JuaWaleIs e j8ley
= SISayIodAy = uonsdwod = = = —
abpajmoud| saibe 1nnoe sbusireyod = de1s esodoud da1s epio9 ubisep asodoud ubisep™ apI29)|
P3| > i Annn ey SNETEE 2t 1S~ 9pIoap I1sap I1Sep ap1oap
peaisul
dEs PEalsul weiboud ayy jo| |resodoad anneusale
,2b6pajmous annerepap, 21moaluod Aunnoe 340M |B2139B] JUS.MINd By} dails >aom [eonoey 1xau ayy| |resodoisd aAneulale -

ue aew pue weibord
a8yl jo jusuod pue
aimonans eyl Buiprebaa
lesodoid uanib e 30aley

abpajmoux >jse

sisaylodAy saube

ATIAIoE pnoje
Uiy

uonsjdwos” saube

de1s ssube

dels abusjeyd

ubisep oaibe

ubisap” abuajjeys

o1doy urepad e
01 108dsa1 yum abpajmou
JO |9A9] umo s.Bu0
ayejnudesas 1o uredx3y

01do} urelao e 03 Jadsal
yum abpasimouy Jo [aAs)]
Jayys1y Joy saurred aul sy

ared a1 Jo Jaquiaw

Jayie Aq passassod
10U st abpajmous|
urenad eyl azZIfequaA

dais >uom [eonoey
juaund ayl jo uonajdwod
jJo aaubap ayr Buiprebas
juswialels e e

*da3s 1om [eonoe) Ixau
ay1 buipsebas esodoid
91910U0D B U0} Sy

SBPIMOUS JO
pJepuels urejdxa

SBpPaAMOU|
10 piepuels yse

s1daouo2 oauab

SBpaAMOU|
ul deb_urejdxa

uonajdwos™ urejdxa

dals yse

s1d22u0d pajuslio-ssadoad

wreiboad ayy
JO Juau0d pue aiMonis
ayy bBuipsebas esodosd
91340U02 e 10} NSy

ubisep dse

s1d22u0d pajuslio-1onpoud

The propose, explain, and remember concepts classify statements, ask concepts classify

Fig. 1. HCI concepts

questions. agree, challenge, amend, decide, and disagree concepts classify statements about other statements
(most often by the other pair member), except for the activity concepts, where the referent is an HCI or HEI

ivity

act

Utterances regarding longer-lasting, pre-planned, multi-step action are described by strategy
concepts. Verbs seen in this context were propose, agree, decide, amend, and ask. Utterances
regarding the degree of completion while working off a strategy are described by state concepts,
for which we have seen the verbs explain and agree. Again, an explicit propose_strategy is not
strictly needed.

todo concepts concern utterances that talk about postponing a certain work item until later
in the same session or a future session; in our sessions this always concerned steps. So far we
have seen only the verbs propose and agree in such contexts.

Obviously, several other verbs could sensibly occur in any of these classes and users of the
base concept set should add the respective concepts when needed.

Generic concepts Generic concepts describe knowledge-related issues and occur in process-
related as well as product-related contexts. There are four classes of generic concepts and three
individual cases.

Three of the four classes (knowledge, finding, standard of knowledge) have already been
introduced in Section 4.2 above.

For concept class knowledge we found five verbs, namely explain, agree, challenge, disagree,
and ask. The core concept is ezplain_knowledge, which describes that knowledge (that is assumed
to be correct) is being transfered from one partner to the other, possibly (but not necessarily) in
response to a query (ask_knowledge) and possibly (but not necessarily) followed by utterances
expressing evaluation. There is no concept amend_knowledge because we found that discrimi-
nating amendments from separate knowledge is often too difficult.

Concept class finding refers to sudden new insights, such as finally having located a long-
searched-for defect or, more trivially, arriving at the understanding that something has worked
(or not worked) as intended. Verbs found with finding are explain (core concept), agree, chal-
lenge, and amend.

Concept class standard of knowledge describes discussions of the level of available knowledge
on a certain topic. ask_standard of knowledge queries the partner regarding how much knowledge
is available. Example: “And you have never worked on this skript before?” explain_standard of
knowledge informs the partner regarding how much knowledge is available. Example: “Can’t
remember where our search has found something.” explain_standard of knowledge may look
almost exactly like explain_knowledge when somebody rephrases a partner’s explanation of
something to make sure s/he has achieved the intended level of understanding.

The final concept class, hypothesis, refers to verbalizations of conjectures and guesses. These
can be explanations of program behavior, interpretations of design elements, etc. Example:
“Oh, maybe we need to enable the chat?” (propose_hypothesis). Verbs seen in this context were
propose, agree, challenge, disagree, and amend.

Now to the individual cases: explain_gap in knowledge refers to utterances concerning a
recognized lack of knowledge of the pair as a whole. remember_source of information refers to
utterances pointing to (or pointing out the existence of) certain sources of information such as
documents. Both of these concepts occurred only rarely and could have been considered special
cases of explain_standard of knowledge and explain_knowledge, respectively. We have included
them in the base concept set nevertheless because we assume that the moments when they occur
are of particular interest for understanding PP processes.

A rather special case is the concept agree_activity, which refers to a consenting utterance
with respect to an ongoing HCI or HEI activity. This is the only member of concept class activity
that is not a facade concept.

Facade concepts In rather loose reference to the Facade design pattern [8], a facade concept
is a concept that provides a simplified view of some more detailed internal structure. activity is

the only class of facade concepts in the base concept set. These concepts describe verbal utter-
ances connected to HCI or HEI activities. The most important one is think aloud_activity (as
mentioned in Section 4.2). It describes that an actor verbalizes aspects of his or her concurrent
HCI or HEI activities, such as:

— What am I doing? Why?

— How am I doing it? Why?

— What decisions am I making? Why?

— What insights do I have while doing it?

This means that a phenomenon annotated with think aloud_activity will often contain one or
several subphenomena of the type propose_design or propose_hypothesis, etc. The instance of
think aloud_activity acts as a facade that bundles these subphenomena into a whole.

While think aloud_activity relates to one’s own activity, the concepts amend_activity, chal-
lenge_activity and disagree_activity relate to HCI and HEI activities (not their verbalizations!) of
the partner. Such phenomena may be utterances such as “remember to set lastRequestTime!”,
which would be annotated as amend_activity plus propose_design.

stop_activity signifies a proposal to stop or abort an HCI or HEI activity, which we felt may
be of sufficient interest to warrant a separate concept.

Other concepts In order to cover all verbal utterances we had to introduce two extra codes:
mumble_sth classifies an utterance as acustically incomprehensible or overly fragmentary; say_off
topic classifies something as not having to do with the PP process proper.

Example For illustrating the use of the concepts, Table 3 shows the encoding of a short episode
from session 3.

One can easily see why we do not use transcription and rather work on the videos directly:
Auditory and visual information is often so closely knit in such specific ways that a sufficiently
information-rich transcription is simply not practical.

4.4 HCI and HEI concepts

HCI and HEI concepts serve two purposes: They provide a basis for investigating nonverbal
activity and they provide context for analyzing verbal activity.

These goals are vague, therefore the base concept set provides only a rather coarse framework
in this area. Further layers should extend these concepts in a way that fits with those layers’
specific goals.

These are the HCI concepts we found in our data:

— write_sth: Typing on the computer, including copy/paste actions.

— search_sth: Searching for one or several well-defined target objects. May use an automated
search function or a manual process such as scrolling.

— explore_sth: Looking around in artifacts or data without a pre-specified search goal in order
to explore or obtain an overview.

— do_sth: All other activity that uses mouse or keyboard. Example: Modifying the IDE view
setup.

These are the HEI concepts we found in our data:

— show_sth: Pointing to a specific location in an artifact using the mouse or a finger.
— werify_sth: Checking/verifying work products (such as changes to a given file) by way of tests
(program execution) or reviews (program reading).

Table 3. Encoding for a short sequence of phenomena; P1 is the driver. The left column represents the audio
information, the middle one the video information. The right column shows the codes assigned. Note that only
HHI codes are shown. For simplification, the HCI and HEI codes have been neglected as they would require a
different, non-compatible granularity of table lines. One HHI code is also not shown: Since P1 verbalizes some of
his HCI activity, the full encoding also includes a P1.think aloud_activity code that covers the period corresponding
to lines 1 through 3 of the table.

#‘utterance ‘further description/context ‘HHI code

1 [P1: “That one needs All,|P1 is currently editing the argument list of a method|P1.ask_knowledge
right?” call. One argument is currently a call to the method
getVisibleAttributes(); P1 is about to change
that. By All, P1 presumably refers to the method
getAllColumnAttributes().

2 |P2: “No idea what this thing|P1 lets the IDE display the names of methods starting|P2.explain_standard
does.” with get. of knowledge

3 |P1: “Yes, OK”. P1 finds method getAllColumnAttributes() among|PI.ezplain_knowledge
the suggested names and inserts a call to it, replacing
the previous getVisibleAttributes(). His utterance
answers his own previous question.

4 |P1: “That is so you have a|After a short pause, P1 amends his previous utterance.|P1.ezxplain_knowledge
unique attribute name.”

5 |P2: “OK, I see. OK.” P2.explain_standard
of knowledge

6 P1 switches into a different file by using the ’problems’
list shown by the IDE. He starts scrolling through that
file, but remains silent.

7 |P2: “Wait a minute.” P2.stop_activity +
P2.propose_step

8 |P1: “That’s again the change|Despite P2’s interjection, P1 first continues scrolling un-| P1.explain_knowledge
from virtualColumn to|til he reaches the point in the file that is marked as
virtualAttributes.” erroneous. Only then does he answer.

— examine_sth: Read some previously unknown material (such as program code or configura-
tion files) closely in order to understand it. This concept can often be recognized only indi-
rectly, for instance by a preceding propose_step or a concurrently ongoing think aloud_activity.

— read_sth: Read text aloud, for instance error messages.

— sketch_sth: Create sketches, etc., usually on paper.

— read_requirement: Reading requirements specifications quietly.

4.5 Auxiliary codes

We have introduced a small number of auxiliary concepts that help understanding a given
encoding for a session. These concepts are not strictly a part of the base concept set and are
thus allowed to break the naming syntax rule.

— P(X).become_driver describes role switching events,

— divide work initiates a phase of non-pair work style,

— nterrupt indicates an external disruption, and

— wait indicates non-activity while waiting for a search or test run to terminate, etc.

5 Using the base concept set

When using the foundation layer, one should be aware that the base concept set is not necessarily
‘complete’. Therefore, adding a new concept to it may be advisable in some (infrequent) cases.

A lot of advice could be given regarding how to use the base concepts successfully. We will
explain only two of the most salient points here.

5.1 Segmentation

When using the base concept set, the unit of analysis, i.e. the granularity at which concepts are
assigned to stretches of data, is the individual “phenomenon”, usually one “utterance”. So far
we have relied on an intuitive understanding of these terms and not defined what we mean by
them. Here are some hints on how to determine the boundaries of phenomena.

In our experience, a syntax-based segmentation of the data [5] does not work well. We rec-
ommend the following implicit rule: A phenomenon (as a stretch of time in the data) ends where
the concept selected for describing it no longer fits or a different concept appears to become more
appropriate. This resembles the criterion used for instance in [22]. Such an approach will often
gather multiple sentences into one phenomenon but will sometimes split an individual sentence
into multiple phenomena. Examples for the latter are sentences that combine a suggestion with
its rationale, which will often be represented as propose_step plus explain_knowledge.

5.2 Multiple annotation

Even when allowing to split a single sentence into pieces and assign a separate concept to each
and even though the concepts in the base concept set, except for the facades, are orthogonal
(non-overlapping), there are cases where more than one concept appears appropriate.

This can happen because natural language utterances can be rather multi-faceted, in par-
ticular when they are ambiguous, ungrammatical, or both. At least for GT analyses, it is un-
problematic to assign more than one concept in such a case.

6 Conclusion and further work

We have presented the PP foundation layer, the bottom tier of a multi-layer terminology for
analyzing pair programming (PP) processes. It takes the form of a set of concepts (“base concept
set”) that describe individual interaction steps.

Its most important characteristic is the fact that it has been found (rather than invented),
because the set contains only concepts grounded in actual observations, i.e. concepts for which
we have seen instances in the PP sessions we have analyzed. This means that the concepts
are likely to fit naturally with observations in future analyses, and annotating data with these
concepts will be relatively easy.

Although the concepts look innocuous, even obvious, we can assure the reader that they are
not. It took a long and rather painstaking process to detect, understand, and untangle them, to
sort out the delineations between them, and to describe them in terms that are understandable
to somebody who has not seen the original observations. The number of resulting concepts
is not small, but the strong internal verb/object structure and resulting concept classes make
understanding and successfully navigating the concept set easy.

Some analyses of PP can be done using the foundation layer alone, but most studies will
probably add another layer on top that defines additional terminology or refines (splits up) a few
concepts from the foundation layer that are of particular interest for that particular study. For
instance we are currently using the foundation layer for studying how the level of abstraction
changes during the PP process and will add concepts that describe abstraction levels with finer
granularity than the foundation layer alone.

These are the next steps we intend to do:

— Validating the PP foundation layer against further PP sessions, in particular with profes-
sionals from other companies.

— Comparing the base concept set with thematically related coding schemes from the literature

such as those from [22, 14].

— Using the PP foundation layer for various PP investigations.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.

23.

24.

ATLAS ti. User’s Manual for ATLAS.ti 5.0. http://www.atlasti.com, 2007.

. Kent Beck. Extreme Programming Ezxplained: Embrace Change, Second Edition. Addison-Wesley Professional,

Boston, 2004.

Sallyann Bryant. Double trouble: Mixing qualitative and quantitative methods in the study of extreme
programmers. In Proceedings of the 2004 IEEE Symposium on Visual Languages — Human Centric Computing
(VL/HCC 2004), pages 55—-61, Washington, DC, USA, 2004. IEEE Computer Society.

L. Cao and P. Xu. Activity patterns of pair programming. In Proc. of the 38th Annual Hawaii International
Conf. on System Sciences (HICSS 2005), page 88a, Washington, DC, USA, 2005. IEEE Computer Society.
Michelene T. H. Chi. Quantifying qualitative analyses of verbal data: A practical guide. Journal of Learning
Sciences, 6(3):271-315, 1997.

Jan Chong and Tom Hurlbutt. The social dynamics of pair programming. In ICSEQ7: Proceedings of the 29th
Int’l Conf. on Software Engineering, pages 354-363, Washington, DC, USA, 2007. IEEE Computer Society.
Marcus Ciolkowski and Michael Schlemmer. Experiences with a case study on pair programming. In Workshop
on Empirical Studies in Software Engineering, 2002.

Erich Gamma, Richard Helm, Ralph Johnson Johnson, and John Vlissides. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman, 1995.

Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine de Gruyter, New York, 1967.

Brian Hanks, Charlie McDowell, David Draper, and Milovan Krnjajic. Program quality with pair program-
ming in CS1. In ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on Innovation and technology
in computer science education, pages 176-180, New York, NY, USA, 2004. ACM Press.

Heiner Legewie and Barbara Schervier-Legewie. Im Gespriach: Anselm Strauss. Journal fir Psychologie,
3:64-75, 1995.

Kim Man Lui and Keith C.C. Chan. When does a pair outperform two individuals? In Eztreme Programming
and Agile Processes in Software Engineering, volume 2675 of Lecture Notes in Computer Science, pages 225—
233. Springer, 2003.

Lech Madeyski. Software Engineering: Evolution and Emerging Technologies, volume 130 of Frontiers in
Artificial Intelligence and Applications, chapter Preliminary Analysis of the Effects of Pair Programming
and Test-Driven Development on the External Code Quality, pages 113—123. 10S Press, 2005.

Anneliese von Mayrhauser and Stephen Lang. A coding scheme to support systematic analysis of software
comprehension. IEEE Trans. on Software Engineering, 25(4):526-540, 1999.

Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. The effects of pair programming on
performance in an introductory programming course. In Proceedings of the 33rd SIGCSE technical symposium
on Computer science education, pages 38—42. ACM Press, 2002.

Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald. The impact of pair programming
on student performance, perception, and persistance. In ICSE ’03: Proc. 25th Int’l Conf. on Software
Engineering, pages 602-607. IEEE Computer Society, 2003.

Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang, Carol Miller, and Suzanne
Balik. Improving the CS1 experience with pair programming. In Proceedings of the 34th SIGCSE technical
symposium on Computer science education, pages 359-362, New York, NY, USA, 2003. ACM Press.
Nachiappan Nagappan, Laurie A. Williams, Eric Wiebe, Carol Miller, Suzanne Balik, Miriam Ferzli, and
Julie Petlick. Pair learning: With an eye toward future success. In XP/Agile Universe, volume 2753 of
Lecture Notes in Computer Science, pages 185—-198. Springer, 2003.

Jerzy R. Nawrocki, Michal Jasinski, Lukasz Olek, and Barbara Lange. Pair programming vs. side-by-side
programming. In P. Abrahamsson & R. Messnarz I. Richardson, editor, Software Process Improvement,
volume 3792 of Lecture Notes in Computer Science, pages 28—-38. Springer, 2005.

John T. Nosek. The case for collaborative programming. Commaunications of the ACM, 41(3):105-108, 1998.
Michael Polanyi. The tacit dimension. Garden City, 1966.

Pierre N. Robillard, Patrick d’Astous, Francoise Détienne, and Willemien Visser. Measuring cognitive activ-
ities in software engineering. In ICSE ’98: Proc. 20th Int’l Conf. on Software Engineering, pages 292—-299,
Washington, DC, USA, 1998. IEEE Computer Society.

Stephan Salinger, Laura Plonka, and Lutz Prechelt. A coding scheme development methodology using
grounded theory for qualitative analysis of pair programming. Human Technology: An Interdisciplinary
Journal on Humans in ICT Environments, 4:9-25, 2008.

Helen Sharp and Hugh Robinson. An ethnographic study of xp practice. Empirical Software Engineering,
9:4, 2004.

25.

26.

27.

28.

29.

Anselm Strauss and Juliet Corbin. Basics of Qualitative Research: Grounded Theory Procedures and Tech-
niques. Sage Publications, Inc., London, 1990.

Laurie Williams and Robert R. Kessler. Experimenting with industry’s ”pair-programming” model in the
computer science classroom. Journal of Software Engineering Education, December 2000.

Laurie Williams, Robert R. Kessler, Ward Cunningham, and Ron Jeffries. Strengthening the case for pair
programming. IEEE Software, 17(4):19-25, 2000.

Laurie Williams and Richard L. Upchurch. In support of student pair-programming. In SIGCSE ’01:
Proceedings of the thirty-second SIGCSE technical symposium on Computer Science Education, pages 327—
331, New York, NY, USA, 2001. ACM Press.

S. Xu, V. Rajlich, and A. Marcus. An empirical study of programmer learning during incremental software
development. In Fourth IEEE Conf. on Cognitive Informatics (ICCI 2005), pages 340-349, Los Alamitos,
CA, USA, 2005. IEEE Computer Society.

