

PPIG, University of Limerick, 2009 www.ppig.org

An evaluation of the inline source code exploration technique

Michael Desmond & Chris Exton

Department of computer science & information systems

University of Limerick

michael.desmond@ul.ie, chris.exton@u.ie

Keywords: disorientation, source code, exploration, inline, navigation.

Abstract

The exploration of source code in modern integrated development environments can lead to

disorientation problems due to a lack of visible exploration context as the programmer moves between

successive source code displays.

Inline source code exploration is a technology which facilitates the exploration of source code in

context. In contrast to explicitly navigating between isolated displays of source code, the programmer

fluidly introduces related source code declarations into the context of a primary or focal source code

document. The inline approach provides an explicit representation of exploration context between

successive source code locations, provides support for the pursuit of exploratory digressions, and

allows the programmer to view multiple related source code locations simultaneously with minimal

interface adjustment.

In this paper we introduce inline source code exploration and describe a user experiment designed to

evaluate the effectiveness of the technique at reducing the level of disorientation experienced by

programmers during source code exploration activities.

1. Introduction

Source code exploration is a core and pervasive aspect of the software engineering process. Prior to

and during software development and maintenance activities, programmers generally spend a

considerable portion of their productive time exploring existing source code in order to identify and

comprehend those areas of a system pertinent to their tasks (Singer et al 1997; Ko et al 2005).

Source code manifests a dense, non-linear information space composed of inter and intra related text

based source code documents. Structural phenomena such as control flow scatter (Chu-Carrol et al

2003), the use of abstraction, and failure to adequately modularize concerns often leads to a scenario

where the portions of source code implementing coherent system operations and features are

fragmented and dispersed over a number of source code documents. As such, source code exploration

is often characterized by frequent switching between source code displays in order to correlate

information and synthesize an overall picture of system implementation across multiple disjoint

source code locations.

However, modern integrated development environments (IDEs), such as Eclipse (Eclipse.org 2009),

have adopted a user interface design in which the programmer is effectively limited to examining a

single source code location or 'display' at any moment during exploration activities (De Alwiss &

Murphy 2006). Furthermore, there is generally no continuity of exploration context from one display

to the next and little or no support for gaining an overview of the exploration task in order to remain

oriented. Essentially source code is explored as a sequence of isolated or 'perceptually independent'

source code displays which can induce a state of programmer disorientation (De Alwiss & Murphy

2006).

 2

PPIG, University of Limerick, 2009 www.ppig.org

2. Disorientation

Disorientation refers to a sense of mental lostness which users experience when browsing or exploring

large information spaces. The phenomenon has been identified and studied in a variety of domains

such as hypertext systems (Conklin 1987) (Foss 1989) (Kim & Hirtle 1995), spread sheets (Watts-

Perotti & Woods 1999) and integrated development environments (De Alwiss & Murphy 2006;

Janzen & De Volder 2003).

De Alwiss & Murphy 2006 summarize the phenomenon as when a programmer “loses the context or

relevancy of their recent actions to their overall goal”.

At the root of disorientation in the computer medium is what Watts-Perotti & Woods (1999) describe

as ‘the navigation phenomenon’. The information space or ‘virtual data field’ maintained in a

computer system is typically far larger, in a spatial sense, than the physical display space available to

the user (the screen real estate). This characteristic is referred to as the “keyhole property” (Woods &

Watts 1997). Working on a large information space via a keyhole type display, it is generally

impossible for the user to examine all of the information required for a given task simultaneously.

Instead the user needs to decide which portions or parts of the information space to call up and

examine in a sequential manner. The decisions and actions which drive this process form the essence

of navigation in the computer medium.

However because the keyhole display restricts examination to a small portion of the information space

at any particular moment, it is often difficult for the user to find and remember information and

synthesize a coherent overall picture from information scattered throughout the information space.

Typical problems that users encounter are ‘getting lost’ or disoriented in the display space, where the

user is unable to determine where they are and the relevance of what they are examining, as display

thrashing (Henderson & Card 1986) where the user has to repeatedly switch between related displays

in order to correlate information and as interface management where the user needs to expend

additional concentration on interface adjustment and manipulation activities (Watts-Perotti & Woods

1999).

The disorientation experienced by programmers during source code exploration activities may be

summarized as problems related to maintaining context and orientation, managing digressions and

synthesizing information from related displays (De Alwiss & Murphy 2006).

• Maintaining context and orientation

When exploring source code in an IDE the programmer is effectively limited to examining a

small portion of source code at a time due to the limited viewport made available by the source

code editor display. However this small portion is generally part of a broader exploration

history and context associated with the programmer’s current task. Context is important for

way finding activities and understanding the meaning and relevance of the current source code

location (Storey et al 1999). Because context is not explicitly represented by the IDE the

programmer needs to maintain a representation of the necessary context in memory. Loss of

context commonly occurs resulting in the programmer getting lost in the source code, unable

to remember how or why they arrived at the current source code location and its relevance to

their overall goal (De Alwiss & Murphy 2006).

• Managing exploratory digressions

An exploratory digression occurs when a programmer temporarily suspends their primary

exploration goal to pursue (or is distracted by) a related digression or side path. This

digression may in turn spawn further digressions (embedded digressions (Foss 1989)) and

eventually the primary goal may be forgotten. Because digressions are not explicitly recorded

by the IDE and the original context of the digression is not maintained, it is easy for the

programmer to forget their original goal or to fail to return from a pursued digression.

 3

PPIG, University of Limerick, 2009 www.ppig.org

• Synthesizing information

The fragmented nature of source code means that it is often necessary to consider information

from a number of related source code locations and synthesize this information an overall

picture or mental model (Chu-Carrol et al 03). Because only a small portion of code is visible

at a time the programmer may need to repeatedly switch or flip between related source code

displays in order gain the necessary overview and interpretative context. This behaviour is

known as thrashing (Henderson & Card 1986) and requires the programmer to concentrate on

interface manipulation activities and maintain additional information in working memory as

they flip between related displays.

To reduce the incidence of programmer disorientation and generally alleviate the mental burden on

programmers during source code exploration activities, the IDE needs to provide support for a visible

representation of exploration context, recording digressions and simultaneously examining related

portions of source code with minimal interface adjustment. This will then allow the programmer to

focus additional mental effort on the primary task of examining and comprehending the source code.

3. Inline source code exploration

One approach to the problem of disorientation during source code exploration activities is inline

source code exploration (Desmond et al 2006). Inline exploration is a technique for exploring source

code in context. The essential premise is that instead of explicitly navigating between individual

displays of source code, resulting in a continuous replacement of visible content with the associated

loss of context, the programmer progressively introduces related portions of source code, inline, into

the context of a focal source code document. The inline exploration approach only applies to

situations where the programmer navigates from one source code location to related source code

location via a reference contained in the source code display.

Inline exploration facilitates a visible exploration history and context which is built up as the

programmer “expands” into the software space related to the primary source code document.

Fundamentally a visible exploration context should reduce the burden on the programmer to maintain

necessary context in memory and also serve as an orientation and navigation aid. Inline exploration

also implicitly provides support for managing digressions. The programmer can explore a digression

or side path without losing track of the original context and the digression itself is also recorded in

terms of visible context. This may be sufficient for the programmer to evaluate a digression without

the risk of forgetting the original goal or neglecting to return from the pursued digression.

Inline exploration also supports the simultaneous examination of related source code elements. The

programmer can introduce and examine a number of source code elements into a single source code

display with minimal interface adjustment. This may reduce the incidence of thrashing and support

the programmer’s task of understanding how program elements are related and how they interact with

one another to achieve system behaviour.

4. The fluid source code editor

To realise the concept of inline source code exploration we developed a prototype inline exploration

interface entitled the fluid source code editor. The fluid source code editor is an open source extension

of the Eclipse IDE which facilitates the inline exploration of Java source code. At the core of the

extension is the fluid editor, a custom Java source code editor with inline exploration capabilities.

4.1 System overview

The inline exploration support provided by the fluid editor is facilitated by two core features, visual

cues embedded in the source code presentation and the inline introduction of source code declarations.

A visual cue is an unobtrusive annotation embedded in the source code editor presentation which

indicates the presence of a related source code declaration to the programmer (See figure 1). When a

 4

PPIG, University of Limerick, 2009 www.ppig.org

visual cue is activated or ‘opened’ by the programmer the associated declaration, including any

leading comments or javadoc, is dynamically introduced into the visible source code editor display

(See figure 2).

Introduced source code declarations may also contain embedded visual cues which can then be

interacted with to achieve nested introduction. Essentially a source code declaration may be

introduced into the context of a previously introduced source code declaration (See figure 3).

Figure 1 Visual cues embedded in the source code presentation. Cue color indicates the type of the

associated declaration.

Figure 2 Introduction of an inline source code declaration, in this case a method declaration.

Figure 3 Nested introduction with shading applied for differentiation.

 5

PPIG, University of Limerick, 2009 www.ppig.org

4.2 Visual cues

When a source code document is opened in a fluid editor a visual cue is associated with each cross-

reference contained in the source code. The default appearance of a visual cue is a single character

underline. The minimal appearance is designed to avoid eroding the readability and editability of the

existing source code. When the programmer moves the mouse into the proximity of a visual cue it

automatically transforms into an interactive widget, a plus affording expansion or an X affording

removal or deletion of the associated inline declaration, depending on the expanded state of the cue

(See figure 4). Inline introduction of the associated source code declaration is achieved when the

programmer clicks on the widget associated with the visual cue.

Figure 4 Interactive widget ‘plus’ associated with visual cue.

4.3 Inline Introduction

Inline introduction refers to the introduction of a related source code declaration into the context of

the visible source code editor display. The fluid editor uses an inter-line introduction technique

(Zellweger et al. 2000). The source code document is split horizontally at the line succeeding the

visual cue and the source code declaration is then inserted as an indented code block. The expansion

of multiple visual cues on a single line of source code results in the ‘stacking’ of inline declarations

horizontally, the last introduced declaration appearing first below the anchor line.

 4.4 Inline source code declarations

Inline source code declarations are read only copies of their native counterparts. The user can copy the

code contained within an inline declaration but editing is explicitly prevented. While editing of the

source code contained in an inline declaration is technically possible we did not pursue this feature as

our focus was on exploration as opposed to out of context editing of source code. The fluid editor

does however support a sophisticated editing and reconciliation system which ensures that open inline

declarations remain synchronized when native declarations are edited.

Inline declarations are differentiated from native source code by a border and a coloured background.

For instance, the default background color for a method declaration is a soft yellow with a grey

border. In order to keep the user oriented during inline source code exploration, inline declarations are

labelled with the name of their native source code document. A toolbar is also provided which allows

the user to ‘collapse’ or delete a given declaration or navigate to the associated source code

declaration in its native context. An introduced inline declaration may be ‘collapsed’ or removed from

the source code display by re-clicking on its associated fluid annotation or clicking on the close button

contained in the inline toolbar.

The fluid editor supports the inline introduction of types, methods, fields and local variables.

4.5 Nested introduction

It is common for the source code contained in an inline source code declaration to contain references

to other source code declarations. To handle this scenario and fully realise the inline exploration

concept, the fluid editor supports the nested introduction of source code declarations. This means that

an inline declaration may be introduced into the context of an existing inline declaration.

To differentiate between nested inline declarations indentation and color coding is used. A child inline

declaration is indented by one tab unit greater than its parent. The fluid editor also uses shading, by

default, to visually differentiate between inline declarations on different levels within an inline

 6

PPIG, University of Limerick, 2009 www.ppig.org

exploration tree. The idea is to indicate to the user that they are exploring ‘deeper’ into the software

space related to the primary document. The background color of a child inline declaration is computed

by taking the parent color and darkening it by a predefined factor using an RGB darkening function.

When the shaded child color is deemed too ‘dark’ the procedure wraps around, the next child starts at

the base default color and the process repeats. The technique assures that inline declarations which

share the same background color are always distinguishable from one another and that no declaration

gets shaded so dark that it would become unreadable. The fluid editor also supports an ‘alternating’

color model in which nested inline declarations are coloured from light to dark in an alternating

sequence.

An entire nested inline exploration tree can be collapsed by clicking the fluid annotation widget

associated with the root inline declaration. Sub-trees are also collapsible by closing the associated root

inline declaration.

4.6 Search results

The core functionality of the fluid editor is the inline introduction of source code declarations.

However the fluid editor framework supports the inline introduction of a number of non source code

elements such as web pages, images and search results. The introduction of search results allows the

user to execute searches in context. The results are displayed in place and may be further explored in

an inline fashion.

Upon expansion of an interface or abstract method reference the fluid editor first runs a workspace

wide search for all corresponding declarations. An inline display is then introduced containing the list

of computed declarations.

Figure 5 The inline introduction of search results, in this case the concrete implementations of an

abstract method.

Each entry in the inline results list contains an associated visual cue. When the cue is expanded, the

associated source code declaration is introduced. Each matching declaration can also be treated as a

hyperlink facilitating explicit navigation to the associated declaration. The introduction of a

polymorphic declaration takes slightly longer than a standard declaration but remains interactive.

Multiple entries in the list of declarations can be simultaneously expanded for comparison and the

resulting inline declarations support further nested exploration.

5. Evaluation - Design

To evaluate the effectiveness of inline source code exploration as a technique to alleviate programmer

disorientation we organized a user experiment in which eight participants were asked to complete a

series of exploration tasks over the source code of a moderately complex, Java based drawing

 7

PPIG, University of Limerick, 2009 www.ppig.org

application. Participants completed half of the tasks using the inline interface provided by the fluid

source code editor and the remaining tasks were completed using the standard interface provided by

the Eclipse IDE.

To measure disorientation we used a combination of quantitative and qualitative data gathered during

the experiment. Quantitative data included task completion times, display switches and the level of

interface adjustment experienced by the programmer. Qualitative data was gathered from a

questionnaire associated with each interface, an exit interview and relevant comments and gestures

observed during the exploration tasks. The questionnaires focused on the programmer’s satisfaction

with the interface as well as their feelings of disorientation and the comprehensibility of the source

code explored.

5.1 Rationale

We used task completion time as a measure of performance degradation. The logic of this approach is

that when the programmer experiences disorientation recovery requires additional time which then

increases the overall task completion time (Edwards & Hardman 1989).

The number of display switches, or more accurately the number of times that a total replacement of

visible content occurs during an exploration task is used as a measure of the ‘visual momentum’ of the

interface. Visual momentum is ‘a measure of a computer user’s ability to extract relevant information

across views and displays’ (Woods 84). The idea is inspired from concepts used in cinematography to

measure the impact from one view to another on the observer’s cognitive process, in particular the

extraction of task relevant information (Hochberg 1986).

When visual momentum in an information display system is low or absent, information is presented

as a series of perceptually independent displays. Woods 84 explains ‘Each transition to a new display

becomes an act of total replacement; both display content and structures are independent of previous

‘glances’ into the database’. Without visual momentum between displays the user carries the burden

of reorienting to the new display with each navigational transition. In contrast, an interface exhibiting

a high level of visual momentum supports the continuity of structure and content from one display to

another. Woods 1984 describes ‘when visual momentum is high, there is an impetus or continuity

across successive views that supports the rapid comprehension of data following the transition to a

new display’. A high level of visual momentum between displays leads to a situation in which

interface mechanisms become transparent and the user is allowed to focus fully on user level goals

and tasks.

5.2 Core design

A within-subject experimental design was used where each participant acted as their own control.

Participants performed a set of four tasks, one task from a set of four task types on both interfaces.

The order of tasks and interfaces were systematically varied to counter-balance any skew due to

practice effects. The independent variables were interface type (Standard, Inline) and task type (Local

Neighbourhood, Control flow, polymorphic, inheritance).

5.3 Participants

The participants involved in the study were recruited from the computer science department at the

University of Limerick. Five of the participants were graduate students one of which was also a

professional programmer, two participants were faculty and one participant was a recently graduated

professional programmer.

All participants were required to have strong programming experience however Java language

experience and experience using the eclipse IDE varied significantly. One participant reported eight

years of Java programming experience and four years using the Eclipse IDE while another reported

being a novice using both Java and Eclipse. A complete list of participants and their associated level

of programming and Eclipse IDE experience is presented in Table 1. The experience descriptions

were transcribed from a profile questionnaire filled out by each participant at the start of their

experiment session.

 8

PPIG, University of Limerick, 2009 www.ppig.org

Although we would have liked to use only participants who were fully comfortable with both Java

and Eclipse we had to compromise due to the limited availability of willing participants during the

study duration.

Participant Programming experience Java Eclipse

P0 4 years, C/C++, Java, Perl Not a lot Not a lot

P1 C, Perl, Java Good Experienced

P2 8 Years, Java/C++ 8 Years 4 Years

P3 Java, C++, Mumps Rusty Very little

P4 C/C++, Java, Prolog One year 2 months

P5 10 years, C/C++, Python 1 semester Novice

P6 2 years C/Java, ASM 2 years Couple of months

P7 3 Years, Java/C/C++ 2 years Intermediate

Table 1 Participant details.

5.4 Tasks

The tasks making up the study addressed both navigation and comprehension of source code during

source code exploration activities. Each task was structured as a set of questions which related to

particular portion of the source code. The participant was asked to read each question then explore

and comprehend the associated source code and verbally or textually provide answers to the

experiment facilitator. Tasks were categorized into four different types, each focusing on a particular

source code exploration ‘scenario’. During each experiment session the participant carried out one

task of each type on both exploration interfaces.

• Local neighbourhood

The local neighbourhood tasks involved the exploration and analysis of the source code

‘neighbourhood’ surrounding a particular source code location. The ‘local neighbourhood’ was

defined as any piece of code which could be reached from a given source code location with three

or less navigation steps.

The local neighbourhood tasks equally emphasized both source code navigation and code

comprehension. The participant was required to explore into the code space to satisfy a particular

question and then backtrack to the root of the neighbourhood or a subsequent location and follow

an alternate route. The participant was also required to compare related source code elements in

the neighbourhood and comprehend the structure and logic of certain portions of the code

spanning across source code displays.

• Control flow

The second task set was described as ‘Control flow’. The control flow tasks focused on the

navigation and comprehension of a complex chain of control flow encompassing source code

from a number of locations and documents across the code base. The average number of disjoint

locations involved in a control flow was 8. The participant was guided to a particular method

invocation in the code and asked to examine the structure and logic of the associated program

operation driven by a number of informational goals.

The control flow tasks emphasized the comprehension of fragmented source code and navigation

through a complex control flow chain. The tasks were somewhat open ended and it was expected

that the programmer would need to deal with digressions, backtracking and the perusal of

alternate routes through the code. The participant was asked describe certain aspects of the

operation as well as provide a high level description of the flow and functionality.

 9

PPIG, University of Limerick, 2009 www.ppig.org

• Polymorphic

The polymorphic task set focused on the exploration and comprehension of a given polymorphic

operation. The participant was guided to an abstract method declaration or interface declaration

and asked to answer a number of questions associated with the corresponding implementation(s)

of the operation. The tasks involved comparison of concrete declarations and analysis of the type

structure. The participant was also required to explore further into code space beyond concrete

declarations thus performing a degree of neighbourhood exploration.

The primary aim of the polymorphic task set was to determine how participants would react to the

display of search results inline and how it would compare to the comparative functionality

provided by the standard Eclipse interface.

• Inheritance

The final task set focused on the exploration and comprehension of the type hierarchy associated

with a given class from the point of view of the class itself. The participant was required to trace

the implementation of behaviour through a number of type related method definitions, compare

source code from various levels in the hierarchy, and generally examine of the structure of the

hierarchy itself.

5.5 Environment

Eclipse version 3.3 was used as the overall experiment platform and provided the standard source

code exploration interface. The fluid source code editor version 1.1.0 was used as the interface for the

inline exploration tasks. The main Eclipse window was presented in full screen mode occupying all of

the available screen space. By default the package explorer, the declaration view and the outline view

were open and visible while the hierarchy view was open but stacked behind the package explorer.

Participants were free to customize the eclipse window, close views and open further views as desired

during the study.

Exploration tasks were based on source code associated with the JHotDraw framework version 7.0.

JHotDraw (JHotDraw 2009) is an open source, Java based, 2D drawing and graphics framework

including a basic drawing editor as a sample application. The JHotDraw source code is relatively

small but moderately complex offering a good balance in terms of task complexity and completion

times.

6. Evaluation results

6.1 Task Completion times

The completion times for all eight exploration tasks are summarized in Table 2. Overall the

participants completed tasks 14 % faster on the inline exploration interface. The average task

completion time on the inline interface was 588 seconds (9.8 minutes) while the average completion

time on the standard interface was 679 seconds (11.9 minutes). This represents an average gain of 91

seconds (1.5) minutes on each task.

 10

PPIG, University of Limerick, 2009 www.ppig.org

 Inline Standard

Task Mean STD Mean STD

Local neighbourhood A 563 283 376 62

Local neighbourhood B 513 52 614 79

Control flow A 513 184 571 240

Control flow B 446 84 576 176

Polymorphic A 481 85 554 131

Polymorphic B 553 85 621 86

Inheritance A 812 85 981 314

Inheritance B 820 216 1141 450

Average 588 134 679 192

Table 2 Task completion times.

On average, participants completed local neighbourhood exploration tasks 8% faster using the

standard interface versus the inline interface. This is the only task set in which the standard interface

yielded a faster completion time. The first local neighbourhood task (task A) was performed 33%

faster using the standard interface however the second neighbourhood task (task B) was performed

17% faster using the inline interface. The average completion time on the standard interface was 495

seconds (8.2 minutes) and the average completion time on the inline interface was 538 seconds (8.9

minutes).

Participants performed the control flow tasks 11% faster using the inline interface. The average

completion time on the inline interface was 479 seconds (7.9 minutes) and the average completion

time on the standard interface was 537 seconds (8.9 minutes).

For the polymorphic task set participants performed the tasks 12% faster using the inline interface.

The average completion time on the inline interface was 517 seconds (8.6 minutes) and the average

completion time on the standard interface was 587 seconds (9.7 minutes).

On the inheritance task set participants performed tasks 23% faster using the inline interface. The

average completion time on the inline interface was 816 seconds (13.6 minutes) while the average

completion time on the standard interface was 1061 seconds (17.6 minutes).

Overall participants spent an average of 78 minutes on the inline interface and 91 minutes on the

standard interface throughout the experiment session. Participants completed the exploration tasks 13

minutes faster using the inline interface.

6.2 Display switches

Overall the average number of display switches per task was 95% lower with the inline interface

versus the standard interface. Using the inline interface display switches were expected to be replaced

with inline introductions and thus the large reduction brought about by the inline interface was to be

expected.

A more interesting look at the data is provided in Table 3 which displays the number of inline

expansions and display switches on the inline interface against with the number of display switches on

the standard interface.

 11

PPIG, University of Limerick, 2009 www.ppig.org

 Inline Standard

Task Expansions Display Switch Display Switch

Local neighbourhood A 13.75 3.8 17.75

Local neighbourhood B 10.25 0 15.25

Control flow A 12.75 2 13.25

Control flow B 10.5 0.5 22.25

Polymorphic A 11 0 15

Polymorphic B 15.75 0 12.25

Inheritance A 21.75 2.3 37.75

Inheritance B 18.5 0.3 43.75

Average 14.3 1.1 22.2

Figure 6 Navigational actions per interface

The average number of inline introductions per task was 14.3 and the average number of display

switches per task on the inline interface was 1.1. Using the standard interface participants performed

an average of 22.2 display switches. As such participants performed 31% less ‘navigational actions’

using the inline interface.

Interestingly, on the inline interface the highest number of display switches occurred on the local

neighbourhood task A. The average number of display switches was 3.8. This coincides with the fact

that the participants performed local neighbourhood task A 33% faster using the standard interface.

Looking at finer grain data participant p0 experienced 11 display switches when performing local

neighbourhood task A and completed the task 57% slower than the average of the other three

participants performing the task.

6.3 Navigational habits and interface adjustment

On the inline interface the use of the back and forward navigation actions, although supported, were

negligible. Over the entire data set (32 tasks) the forward action was invoked three times and the back

action was invoked 15 times. This was expected considering that the inline exploration model

supports a visual exploration history which supersedes the history support provided by the IDE in

most situations.

On the standard interface the back action was used, on average, 6 times per task and the forward

action was used 1.6 times per task.

Horizontal scrolling was negligible and is thus not presented for consideration. Participants vertical

scrolling activity increased 47% in the upward direction and 34% in the downward direction using the

inline interface versus the standard interface.

6.4 Satisfaction

The results of the satisfaction questionnaires are presented in table 6. All questions were answered on

a scale of zero to nine. Overall participants preferred the inline exploration interface over the standard

interface, p = .0016. The inline interface scored better on the scale of terrible to wonderful, p = .018.

Participants also found the inline interface easier to use p = .0012, more pleasant p = .0017, more fun

p = .034 and less confusing p =.0013.

Participants agreed that they had a better idea of where they were in the code using the inline

exploration interface p = .0023. There was no significant difference in how the participants perceived

loss of orientation over the two interfaces p = .44. There was also no significant difference between

both interfaces in terms of perceived confusion, p = .47, and wither too much information was

presented on the screen at once p = .47.

 12

PPIG, University of Limerick, 2009 www.ppig.org

In terms of the inline specific questions, participants agreed that it was easy to determine the

relationship between inline source code and that visual cues were not distracting during exploration

tasks. Participants also agreed that the color coding of the fluid annotations was helpful.

There was no significant difference between the two interfaces regarding the comprehensibility of the

code p = .55, ability to overview the code p = .68 and ease of navigation .059. Participants agreed that

it was easier to locate information in the source code using the inline interface p = .02.

 Inline Standard

Question? Mean STD Mean STD

1. How did you find the inline exploration interface in

general?

Very poor - Very good 7.7 1 5.4 1.4

2.- 6. How was the interface to use?

Terrible - Wonderful 7.3 0.8 5.1 1.6

Hard - Easy 7.6 1 4.4 1.1

Frustrating - Pleasant 7 1 4.4 1.1

Boring - Fun 7.4 1.3 5.1 1.5

Confusing - Clear 7.3 0.5 4.4 1.5

7. It was clear, most of the time, where i was in the source

code.

I disagree - I agree 7 1.4 4.6 1.7

8. I often lost my orientation (got lost) in the source code.

I disagree - I agree 4.7 2.7 5.7 1.7

9. I often felt confused when exploring the source code.

I disagree - I agree 4.9 2 5.4 1.1

10. There was sometimes too much information on the

screen at once.

I disagree - I agree 5.6 2.5 4.1 2.4

11. It was easy to determine the relationships between

expanded pieces of code.

I disagree - I agree 5.7 2.4

12. The visual cues were distracting...

I disagree - I agree 2.3 2.7

 13

PPIG, University of Limerick, 2009 www.ppig.org

13. The coloring coding of the visual cues was helpful..

I disagree - I agree 5.1 2.3

14. How did you perceive the tasks?

Very poor - Very good 5.9 1.3 6.1 1.1

15. How would you rate your answers to the tasks?

Very poor - Very good 4.7 2.4 4.9 1.6

16. - 18. Was the source code...

Hard to understand - Easy to understand 4.6 1.7 4.1 2.1

Hard to overview - Easy to overview 4.4 2.1 4 2.6

Hard to navigate - Easy to navigate 6 2.4 4.1 1.9

19. Was information in the source code...

Hard to locate - Easy to locate 6.3 2 4.4 2.3

Table 3 User satisfaction results.

6.5 Discussion

The results of our experiment suggest that inline exploration approach has a potential to reduce the

level of disorientation experienced by programmers during source code exploration activities, and in

general make source code exploration activities less cognitively demanding.

The data indicates that, on average, participants completed exploration tasks 14% faster using the

inline interface and performed 31% less navigation actions. The results of the questionnaire data also

indicate that participants were, overall, more satisfied with the inline interface. While none of these

figures are particularly compelling on their own, together they suggest a general improvement in

exploration performance.

During the study we observed participants would regularly lose context when navigating between files

on the standard interface and suffer from mild disorientation before they regained context, usually via

backtracking to previously visited locations. After a while participants tended to resort to using the

Eclipse editor tabs to create a sort of ‘working set’ of active files which could then be indexed based

on file name. In essence the participants were creating an adhoc representation of task context which

was workable due to the small number of files associated with the task . Participants would then close

all open editors at the start of the next task, essentially clearing the current context. We also noticed

that participants would often have difficultly remembering the location of a previously visited

program element or source code location and the task of re-location would disrupt the participants

overall concentration on their task. We can assume that interface adjustment, getting lost and recovery

of context were responsible for some of the additional time participants expended using the standard

interface.

One of the participants attempted to use two editor windows in the standard interface, a feature

available in eclipse allowing the user to view a number of files in a simultaneous manner. However

we noticed that the participant had problems with the size of the windows being too small to view the

necessary amount of source code and thus resulted in a continuous need for adjustment of window

 14

PPIG, University of Limerick, 2009 www.ppig.org

size. This participant was also observed to momentarily become disoriented when moving from the

task sheet to the two editor windows, seemingly unable to remember the correct window to focus on.

Using the inline interface the participants were not observed to rely on editor tabs to maintain context

and orientation. The ability to view the exploration context from the focal source code document

seemed to suffice. Based on comments participants appreciated the ability to view the exploration

context and compare multiple source code declarations within a single display. Participants also

commented on the ability to examine a side path without moving away from the primary source code

location. The ability to introduce search results inline was also a significantly commented on feature,

participants mentioned that normally interface methods posed an annoyance as they had to run a

search, leave the source code and continue working from the external search results view. Also once a

number of results have been explored the original context of the search was lost. The average

maximum number of inline declarations open at any one moment by participants was 4.

However while the usage observations and reaction to the inline interface was largely positive we did

notice a number of issues. The most significant being information overload when a large number of

inline declarations were introduced into a focal document. We noticed that after five or six

declarations had been introduced, particularly when nested, the user would begin to become

disoriented when trying to trace the relationships between inline declarations and the original context.

The editor window also started to run out of horizontal space as child inline declarations would be

indented further and further out. We also noticed that large declarations posed a problem in that their

introduction would run off the end of the screen and the participant would need to scroll down to

examine it, thus resulting in a replacement of visible context. In the scenario where participants

suffered from information overload due to too many inline introduction we observed that to regain

orientation participants would close all inline introductions and restart inline exploration from scratch

which is undesirable. We expect that the issue of information overload could be mitigated with more

sophisticated distinguishing mechanisms between nested inline declaration and/or the ability to

minimize individual layers in a nested introduction tree.

Overall our experience deems that the inline exploration approach has merit, however it is also

fundamentally problematic due to the limited amount of horizontal space in the focal source code

document and the increasing visual complexity as a number of declarations are nested inline. The

variable, and often large, size of the information being introduced also poses an issue.

6.6 Limitations

Our user experiment had a number of limitations which we shall discuss here. Possibly the most

significant threat to the validity of the experiment was the design of the tasks. The eight tasks

included in the experiment focused solely on the exploration of source code. However it is more

realistic that programmers would both explore and edit source code simultaneously. Therefore a more

realistic experiment might have participants explore source code and then make changes such as

finding and fixing a bug etc. Another problem was novice effects. Disorientation may be induced by a

lack of knowledge and experience with an interface such as eclipse as well as a lack of familiarity

with source code (De Alwiss & Murphy 2006).

7. Conclusion

The results of our experiment suggests that inline exploration is a promising solution to programmer

disorientation in certain scenarios, namely small scale exploration tasks between directly related

source code locations. The results indicate that programmers spend less time and effort using the

inline interface and are more satisfied with an inline interface as opposed to a standard interface alone.

7.2 Future work

A major limitation of the inline source code exploration approach is that it is only applicable to source

code exploration where the programmer navigates from one source code location to a related source

code location (s) via an embedded visual cue (typically a source code cross reference). However in

reality programmers will navigate between source code locations, elements and documents using a

 15

PPIG, University of Limerick, 2009 www.ppig.org

variety of mechanisms, such as searching and navigating the associated search results, using the

package explorer, via exploratory views such as the type hierarchy view in Eclipse and flipping

between open editor tabs. Furthermore programmers will often visit a variety of other artefacts in their

IDE such as xml files, web pages and so on. The inline exploration technique is unable to record and

manifest this broader exploration context.

An extremely promising future area of research in terms of programmer disorientation would be to

provide an IDE extension which would display a visual and interactive representation of the

programmer’s exploration context. For instance selecting a control key would bring up a transient

semi transparent view containing a temporarily ordered graph of the current exploration

history/context complete with induced digressions and the most recent elements highlighted for

orientation purposes. The programmer could use this display as a reminder of context or a powerful

navigation and orientation aid.

This representation could also open up interesting new areas in terms of using exploration history to

tease out task context, concerns and relationships between source code elements and locations. For

instance a degree of interest model (Kersten & Murphy 2005) could be applied to exploration context

and the resulting model used as a summary of task context. If managed and packaged correctly a

developer could load a previous developer’s exploration context and use it to guide a related task. For

instance a developer working on a bug associated with a particular feature could load the context

recorded by the original developer as they navigated between the various program artefacts during the

initial development effort.

8. References

Chu-Carrol, M.C, Wright, J., Ying, A.T.T. (2003) Visual separation of concerns through

multidimensional program storage. Proceedings of the 2nd international conference on Aspect-

oriented software development, 188-197.

De Alwis, B., Murphy, G.C. (2005). Remaining Oriented During Software Development Tasks: An

Exploratory Field Study. Technical Report TR-2005-23, Dept. of Computer Science, University

of British Columbia.

Conklin, J. (1987) Hypertext: An Introduction and Survey. Computer, 20(9), 17-41.

Desmond, M., Storey, M.A.D, Exton, C. (2006) Fluid source code views. Proceedings of the 14th

IEEE International Conference on Program Comprehension. 260-263.

Eclipse.org home (2009) Retrieved May 01, 2009, from Eclipse.org: http://www.eclipse.org

Eclipse Java Development tools (JDT) (2009) Retrieved May 01, 2009, from Eclipse.org:

http://www.eclipse.org/jdt/

Edwards, D.M., Hardman, L. (1999) Lost in hyperspace: cognitive mapping and navigation in a

hypertext environment. Hypertext: theory into practice, 90-105.

Foss, C.L. (1989) Tools for reading and browsing hypertext. Information Processing and

Management: an International Journal, 407-418.

Henderson, D.A., Card, S., (1986) Rooms: the use of multiple virtual workspaces to reduce space

contention in a window-based graphical user interface. ACM Transactions on Graphics, 211-243.

Hochberg, J., & Gellman, L. (1977) The effect of landmark features on mental rotation times.

Memory and Cognition, 5, 23–26.

Janzen D., De Volder, K. (2003) Navigating and querying code without getting lost. Proceedings of

the 2nd international conference on Aspect-oriented software development, 178-187.

JHotDraw as Open-Source Project (2009) Retrieved May 01, 2009, from jhotdraw.org:

http://www.jhotdraw.org

 16

PPIG, University of Limerick, 2009 www.ppig.org

Kersten, M., Murphy, G.C. (2005) Mylar: a degree-of-interest model for IDEs. Proceedings of the 4th

international conference on Aspect-oriented software development, 159-168.

Kim, H., Hirtle S.C. (1995) Spatial metaphors and disorientation in hypertext browsing. Behaviour &

information technology, 14(4), 239-250.

Ko, A.J., Aung, H., Myers, B.A. (2005) Eliciting design requirements for maintenance-oriented IDEs:

a detailed study of corrective and perfective maintenance tasks. Proceedings of the 27th

international conference on Software engineering, 126-135.

Singer, J., Lethbridge, T., Vinson, N., Anquetil, N. (1997) An examination of software engineering

work practices. Proceedings of the 1997 conference of the Centre for Advanced Studies on

Collaborative research.

Storey, M.A.D, Fracchia, F.D., Muller, H.A. (1999) Cognitive design elements to support the

construction of a mental model during software exploration. Journal of Systems and Software,

171-185.

Watts-Perotti, J., Woods, D.D. (1999) How Experienced Users Avoid Getting Lost in Large Display

Networks. In International Journal of Human-Computer Interaction, 11(4), 269-299.

Woods, D. D. (1984) Visual momentum: A concept to improve the cognitive coupling of person and

computer. International Journal of Man–Machine Studies, 21, 229–244.

Woods D.D., Watts J.C. (1997) How not to have to navigate through too many displays. In: Helander

M, ed. Handbook of Human-Computer Interaction, 2nd edition, 617–650.

Zellweger, P.T., Regli, S.H., Mackinlay, J.D., Chang, B.W., The impact of Fluid Documents on

reading and browsing: An observational study. Proceedings of CHI'00, 249-256.

