
Project Kick-off with Distributed Pair Programming

Edna Rosen, Stephan Salinger, and Christopher Oezbek

Institut für Informatik, Freie Universität Berlin
edna.rosen, stephan.salinger, christopher.oezbek@fu-berlin.de

Abstract Background: More and more software development companies decide to share their workload be-
tween teams which are geographically distributed. One of the biggest challenges is to start up work when new
team members are introduced at a distant site of a global cooperation. Usually existing development processes
do not cover integrating distributed collaboration, hence there is a need to adjust them to make project starts
comfortable, easy and fast. A field study was conducted to introduce distributed pair programming (DPP), a
derivative of pair programming (PP) in a distributed context, as a new development method to support com-
munication and enhance knowledge transfer right from the beginning of the project. Objective: The objective
of the study was to uncover relevant procedures and problems of establishing DPP and to collect supporting
procedure steps for future project starts in distributed collaborations. Methods: A variation of canonical action
research (CAR) was used to both establish DPP, gather insights and allow feedback from the developers in-
volved. Results: This paper describes the establishment of DPP in a corporate project kick-off. It also reveals
some benefits and major problems about distributed collaboration like conflicts in role fulfillment, ambiguity
about session goals and missing awareness. Limitations: The validity of this study is threatened by the small
number of participants and their particular cultural backgrounds.

Keywords: POP-I.A. distributed collaboration, POP-I.B. transfer of competence, POP-II.A. novice/
expert, POP-II.B. coding, POP-V.B. field study

1 Introduction

Software development in the twenty-first century cannot avoid the effects of globalization on production.
One of the biggest challenges for distributed software development is to make knowledge available at
all necessary locations quickly and efficiently (Braithwaite & Joyce, 2005; Herbsleb & Mockus, 2003).
This becomes even more important if distributed collaboration separates the domain experts from newly
assigned developers.

To enhance communication and knowledge transfer between stakeholders, a development practice
like pair programming (PP) may be introduced for project kick-offs. Usually PP is part of other agile
software development practices which are combined to a whole development process called extreme
programming (XP) (Beck, 1999). Nevertheless it is also possible to introduce PP as a single new devel-
opment practice without changing existing development processes (Aveling, 2004). In PP, two program-
mers work jointly while only using one computer, mouse and keyboard. The developers regularly change
between two roles (Williams et al., 2000): One developer is taking the role of the ‘driver’, controlling
the equipment, while the other developer, the ‘observer’, follows what the former is doing. Although
engaging two developers with one task seems to be a lot of additional effort (e.g. Hannay et al., 2009;
Nosek, 1998), PP has shown to increase communication and knowledge transfer between team members
and to produce code of higher quality (e.g. Bipp et al., 2008; Hannay et al., 2009).

Due to newest technologies it is possible to perform PP in a distributed context, then called dis-
tributed pair programming (DPP) (Baheti et al., 2002; Stotts et al., 2003). DPP is similar to PP in that
developers are joined (albeit virtually) to collaborate on a given task, but different in that co-developers
each have their own computer, keyboard and mouse, which allows them to also work independently. With
this advantage though, new challenges arise: non-verbal communication is limited and most actions of
the co-developers are not instantly visible (Gutwin & Greenberg, 1999; Hanks, 2008). To bridge this, de-
veloper’s actions must be made noticeable by awareness functionalities, e.g. code highlighting (Salinger
et al., 2010).

mailto:edna.rosen@fu-berlin.de
mailto:stephan.salinger@fu-berlin.de
mailto:christopher.oezbek@fu-berlin.de
http://www.fu-berlin.de


In cooperation with the German IT companies Teles AG and her holding SSBG a field study was
conducted to establish DPP as an additional development practice for a project kick-off between devel-
opers with little to no experience in DPP or PP (an expert in Vienna and two developers at a new office
in Bangalore). At each of their local offices the developers still worked integrated in their local teams
using a waterfall-based development process.

This paper delineates the establishment of DPP to support a corporate project kick-off. Section 2
highlights what is important about distributed software development and the establishment of a new
development practice. Section 3 discusses the research setting including research background, research
method and offers a short description of the technical infrastructure. Section 4 presents the results,
lessons learned, and an overview of the most significant problems which occurred. Finally, Section 5
contains a conclusion of the establishment process.

2 Related Work

Since the rise of the Internet the software development industry has shown interest in distributed col-
laboration (Olson & Olson, 2000). Several scientific studies and industrial experience reports have dealt
with the desire to optimize global cooperation (e.g. Damian & Lanubile, 2004), offering essential rea-
sons which outline the necessity of distributed collaboration. Poole (2004) and Bass et al. (2007) refer
to outsourcing, a desire to employ best available developers from any location, growing global open
source communities as well as economic necessity such as cost competitiveness or product strategy, i.e.
addressing specific market requirements. Yap (2005) additionally states sharing results and knowledge
between locations as a reason for distributed collaboration.

Most of the studies and experience reports agree that there are three primary aspects for successful
distributed collaboration (e.g. Poole, 2004):

First, the best applicable practices according to the needs of the development process have to be
chosen. Distributed development practices like DPP or loosely coupled development methods such as
distributed party programming (Salinger et al., 2010) allow the establishment of single practices in ad-
dition to existing development processes, while the establishment of distributed extreme programming
(DXP) changes the entire development process to XP in a distributed context. Choosing the best devel-
opment practices also depends on who will be involved in the distributed collaboration. Some companies
may want to change the development practices to create a whole new distributed team from different lo-
cations (Yap, 2005), whereas others only bring together experts and newbies temporarily when necessary
(Bass et al., 2007; Schümmer & Lukosch, 2008).

Second, the distributed process has to be adapted to integrate into an existing organization (Cohn
& Ford, 2003). To this end different perspectives have to be assumed, for instance from the developers,
management or other departments involved. Also cultural, psychological and social aspects need to be
considered (e.g. Bass et al., 2007; Canfora et al., 2003).

Third, a technical infrastructure must be established. Such infrastructure includes the developing
environment, collaboration tools, audio or video connection (Stotts et al., 2003). Individual tool prefer-
ences, platform restrictions as well as resource constraints, e.g. available bandwidth, should be consid-
ered (Schümmer & Lukosch, 2008).

In the field study conducted, DPP was temporarily established as an additional development practice
to transfer expertise from one company site to a new team at a different site. Using DPP as a temporary
practice enabled to focus on the developer’s needs and establish and improve the technical infrastructure.
Cultural, psychological and social aspects were only considered in case they could be attributed to
experiences from existing studies.

3 Research Setting

3.1 Project Background

The project emerged as a cooperation between the Institute of Computer Science at Freie Universität
Berlin and the German IT companies Teles AG and her holding SSBG. The IT company wanted to kick



off a project between an office in Vienna and a new office in Bangalore and looked for a cost-effective
and fast alternative to bring together their domain and programming expert from Vienna with the two
newbies (experienced developers new to the company) from Bangalore. They wanted to transfer exper-
tise from Vienna to Bangalore without having to change local development processes. To support the IT
company in their distributed collaboration, the researchers provided a complete technical infrastructure
including voice communication and a tool for DPP (see Section 3.3). This way the developers could eas-
ily work jointly and concurrently on their project and otherwise remain integrated in their local teams
with individual tasks for each developer and a mostly sequential work flow. To support the developers
in adopting DPP as a distributed development process and support the project kick-off, one researcher
assumed the role of a process coach.

The main goal of the project kick-off was to develop a prototype based on a provisional specification
of a voice recording solution for a VoIP application. To this end, the expert was expected to transfer his
knowledge about the domain to his team colleagues at Bangalore and ensure a high level of understand-
ing of the produced software artifacts and its interaction with existing parts for all participants. After
the project kick-off, the new developers from Bangalore were supposed to be able to implement and
maintain the project on their own.

To achieve these goals, the domain expert in cooperation with the researchers devised the following
development process: First, tasks would be assigned by the expert mainly using the existing prescrip-
tion from the waterfall-based model the company used, i.e. the new developers would receive tasks to
implement independent components based on the provisional specification. Additionally critical parts
of the project were developed by the expert to show and explain existing coding regulations. Second,
it was decided to conduct regular DPP sessions of roughly two hours in length depending on the needs
of the development process (which the expert decided to be once a week). Two different session types
were envisioned by the expert: (1) The new developers would be asked to perform a code walkthrough
(Freedman & Weinberg, 2000) of the code they had written so the expert could assess their progress and
knowledge gains. Each developer was expected to present the code and mention critical and question-
able points, giving the expert opportunity to comment on his interpretation of the specification in case of
deviations. (2) The expert wanted to pair-develop (Williams & Kessler, 2000; Williams et al., 2000) the
software, i.e. jointly create or edit artifacts of the software. The goal of this second type was to explain
critical parts of the software to the new developers and provide opportunities for asking questions.

Starting in April 2009, sixteen weekly sessions using DPP were conducted over a period of four
months. The expert participated in all these sessions, one of the new developers participated in three, the
other in fifteen and both of them together in two sessions. The DPP setting was exploratively extended
to three participants to test further benefits of DPP compared to co-located PP (as described by Salinger
et al. (2010), the technical infrastructure deployed also allowed more than two participants). This was
dropped by the developers not seeing any further advantage compared to the additional effort of a third
developer involved. As one of the newbies was mainly involved in other tasks outside DPP sessions, he
only participated a few times and later on information about the common project was transferred to him
by the other newbie.

3.2 Research Method

The field study was conducted following principles from canonical action research (CAR) as described
by Davison et al. (2004). Most important about this approach is that the researcher (in this case the
process coach) and the participants are cooperating tightly and the direction of the collaboration can
be influenced by either of these parties. This rather explorative research process is structured through
several principles. It is based on an iterative process model (see Figure 1). With each iteration new
insights are collected and interventions are planned to optimize the ongoing process. Process steps and
iteration length can vary depending on individual demands of a particular research process.

One of the main goals of the researcher was to establish DPP according to the needs of the devel-
opers and overall goal of the project. This afforded to look at it from a researcher’s perspective, i.e. the
practicability of DPP in general as well as from the developer’s point of view, i.e. the success of the



planned development project. For initial background information about the developers involved, these
completed a preliminary questionnaire about their experience with and expectations of DPP. Then the
process started with a researcher-developer agreement, which continuously provided a general direction
for the research process. In it the developers involved agreed upon project goals to be achieved, e.g.
to create a prototype, and on the overall structure of the research process, e.g. when to meet for DPP
sessions.

This initiated a cyclic process which contained three main steps (illustrated by the process model in
Figure 1). The first step in each cycle was to determine the actual state of DPP usage with a focus on
occurring problems, the project status regarding the overall project goals and the fulfillment of specific
session goals. Hence before each upcoming session the developers completed a questionnaire stating
their planned tasks, e.g. scope and duration, and what benefit or difficulties they expected. After each
session they completed another questionnaire to evaluate the success of the session, i.e. whether their
session goals were achieved and if expected benefits or difficulties emerged. Additionally, the process
coach participated in each session and gathered information through observation and by analyzing log-
files and videos recorded during the session post-hoc. Last, “reflection meetings” were held after each
session to let developers discuss their experiences with DPP and to support the analysis with first-hand
impressions.

In the second phase of each cycle (ideal state analysis) the previously identified problems or other
phenomena such as last minute changes to planned tasks were analyzed to improve the use of DPP. This
was done by the researchers using scientific literature and regular discussion. Afterwards the results were
discussed with the developers in one of the following reflection meetings or sometimes in individual
interviews, e.g. if only one developer was affected. Finally, new or adjusted process goals were evaluated
and set based on the insights of the actual state to approach a more ideal state.

The third and last phase of each cycle consisted of planning and performing interventions according
to the results of the ideal state analysis, e.g. changing audio settings for better quality.

At the end of the project kick-off the developers were asked to state their final impression of DPP,
their experience with it, the overall project success, as well as anything else about DPP they found
remarkable in a last individual interview.

Actual State 

Analysis

Ideal State 

Analysis
Interventions

Researcher-

Developer 

Agreement

Figure 1. Cyclic research process model with three main phases based on a researcher-developer agree-
ment

In summary, the following data sources were used to collect information about the DPP process:

– Observation: One of the researchers participated as the process coach in every DPP session.
– Preliminary questionnaire: One questionnaire was administered to the developers before the cooper-

ation started to gather background information such as their level of experience with PP.
– Questionnaires before and after each DPP session: Each session was accompanied by a questionnaire

about the session.



– Reflection meetings after each session or at least once a week: The developers and the process
coach reflected together about the most recent session and discussed possible interventions for future
sessions.

– Individual interviews: In total three individual interviews with the domain expert were conducted
over the course of the collaboration.

– Final individual interviews: At the end of the project an interview with open questions about the
overall success of establishing DPP was conducted.

3.3 Technical Infrastructure and Collaboration Tool

The different software packages necessary for conducting distributed pair programming were provided
by the researchers and installed on a company server and on the computers of all participants. The
packages consisted of the collaboration tool Saros1 (Salinger et al., 2010), which integrates in the de-
velopment environment Eclipse2, the VoIP application Mumble and its server component Murmur3, the
instant messaging server OpenFire4 and virtual private network client and server via OpenVPN5.

The most central component in this setup is the collaboration tool Saros, which lets multiple develop-
ers work collaboratively in the development environment. Saros has been developed at Freie Universität
Berlin by a team of students since 2006 (Salinger et al., 2010). To bring developers together for DPP,
the software defines the concept of a session to which one participant in the role of the host can invite
any number of participants as clients. The software then allows to share a software development project
between all participants or synchronize existing copies to match the version provided by the host. During
programming Saros closely models the roles of driver and observer known from PP by granting write
access only to the driver and allowing the observer to follow the movement in files and package of a
driver.

To increase awareness about the activities of the remote peers during a session, Saros also highlights
the cursor, text selection, written text, visible viewport in a file, and the opened files in the project
explorer. An annotated screenshot can be seen in Figure 2 presenting these options.

During the study all sessions were recorded on video both for scientific analysis and to improve
Saros in combination with input from the participants and log-files generated by Saros.

4 Results and Lessons Learned

4.1 Session Overview

The first two of 16 sessions were used by the coach to explain the research process, introduce basic
terms and processes of DPP and to show and explain the technical infrastructure to the developers. The
following sessions mainly involved code walkthrough (sessions 3,7 and 9) and pair-developing including
ad-hoc testing (sessions 4-6, 8 and 10-16).

In the first few research process cycles primarily a lot of adjustments in the technical infrastructure
were needed, such as adjustments to audio settings and equipment to improve audio quality. Since Saros
had never been deployed in an industrial scenario between continents before, it was necessary to find
workarounds and software updates had to overcome several problems such as improving the synchro-
nization of large projects.

After the fifth session a fixed starting time and duration of 90 minutes per session was set. Before,
the expert had chosen a starting time and duration according to his planned task, which did not take
into consideration any delays caused by developers not being on time, the synchronization of their large
project, or answering general questions. Figure 3 gives an overview of the time spent in each session

1 Available for download at http://dpp.sourceforge.net/.
2 http://www.eclipse.org
3 http://mumble.sourceforge.net/
4 http://www.igniterealtime.org/projects/openfire/
5 http://openvpn.net/

http://dpp.sourceforge.net/
http://www.eclipse.org
http://mumble.sourceforge.net/
http://www.igniterealtime.org/projects/openfire/
http://openvpn.net/


6

2

1

3

4

5

Figure 2. Various awareness features used in Saros such as (1) selection, (2) text edits, and (3) viewports
highlighted in each users’ color, (4) opened and active files by current drivers, (5) button for following
the viewport of a driver, and (6) information about Eclipse being the foreground window.

and shows that preparation time declined as the developers became more experienced (with the notable
exception of session 14 in which technical problems prevented any development to be started, but still
allowed the developers to discuss changed requirements and to plan ongoing work).

During later research process cycles the focus then could be shifted to improving the use of DPP
(described in the following sections) and on optimizing the research method, e.g. finding an ideal time
for reflection meetings, and improving communication between developers. Planning reflection meetings
was demanding because it was necessary to get all participants together and not let too much time go by
after the sessions to be reflected. Sometimes only a few days after a session the developers would not
remember what had happened in their last session. Finally, performing one reflection meeting after the
last session of the week showed to be most effective.

4.2 Benefits of DPP

In twelve of the thirteen post-session questionnaires the developers declared the session a success and
stated that most of the times DPP had been helpful to achieve their session goals (the expert agreed for
85% of sessions, the newbies for 89%). In the final interview they confirmed that their project goals were
achieved.

Over the course of the study the following three benefits appeared to most prominently support the
use of DPP:

– First of all, communication between developers was enhanced noticeably throughout the collabo-
ration. Before the DPP sessions started, communication was limited to chat or e-mail. Due to DPP
sessions and reflection meetings the developers talked to each other at least once a week for more
than one hour. Moreover, communication was enhanced due to newly introduced walkthroughs and
pair-developing in DPP sessions which were supplementary to their local, usually rather loosely cou-
pled, development process. The developers used the session time to ask questions or discuss open



17

15

19

10

15

10

17

34

68

12

15

30

10

7

10

1

1

3

59

9

8

36

0

44

75

45

54

37

75

65

61

53

0

83

64

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Length of Session in Minutes

S
es

si
o
n

Lateness Preparation Time Working Time

Figure 3. Length of DPP sessions as a breakdown of time lost due to developers coming late and having
to prepare for the session, and time spent on productive work.

issues with the respective artifacts in plain view. In reflection meetings the developers also talked
about the establishment of DPP in general, i.e. their experience and expectations, or discussed pro-
cedural strategies. In earlier sessions the driver, who was most of the times the expert, talked more
than the observer. Nevertheless, between tasks or during project synchronization the developers used
the pauses to reorder assignments or agree on general procedures. Later on in the collaboration the
new developers integrated themselves more actively in sessions by making suggestions or discussing
development issues.

– Second, the expert stated in eight of thirteen questionnaires after sessions that he transferred all
important information to his co-developer. This was either in sessions where he was pair-developing
or in walkthroughs of code previously created by one of the newbies outside the session giving
feedback on requirements of the provisional specification. In most sessions the expert continued to
write code simultaneously to explaining and teaching his partners, thereby showing a second benefit
of DPP as combining teaching with productive work.

– Third, one of the newbies who presented his code in one of the walkthrough sessions stated in the
questionnaire after the session that the task was accomplished faster than expected because there
was no delay in the feedback. In the reflection meeting that followed he stated that feedback without
DPP (through e-mail and chat) would have been much more complicated in comparison. Another
benefit of DPP was observed in the sessions when errors of the driver could be avoided. In at least
five of the pair-developing sessions the observer made the driver aware of errors and thereby avoid
them, e.g. when the driver was about to write code in the wrong artifact or when the declaration of a
variable he was about to add already existed.

4.3 Problems with Establishing DPP

Three of the problems that occurred in the establishment process could not be resolved even after in-
terventions. These were (1) conflicts with role fulfillment, (2) ambiguity about session goals, and (3)
missing awareness, which will be discussed in turn. The fact that development happened distributedly
possibly influenced all of these problems. Since the developers did not have common office hours or
did not have the possiblity to work co-locatedly might have had intensified these problems. Especially
since the expert stated that he usually waits until common lunch breaks to discuss issues with colleagues,
which did not happen in this project due to the distance.



Conflicts with Role Fulfillment A first problem arose in the context of assuming the roles of driver and
observer, which in DPP—as in PP—stipulate the responsibilities of each developer during a joint session.
For instance, XP recommends the driver to attend to details during programming and the observer to keep
the top-level concerns in mind (Beck, 1999). Nevertheless role assignment in DPP as well as PP is not
self-explanatory and hence can be challenging (Bryant et al., 2008).

The first indication of a problem with role assignment and fulfillment appeared in one of the first
pair-developing sessions when the expert stated in the questionnaire after the session that he had the
driver role for too long. As it is not unusual for an expert to assume the driver role and keep it over
longer times than usually recommended by XP (Schümmer & Lukosch, 2008), this point was brought
up in an interview with the expert to explore the reasons for his statement. The expert explained that he
considered more regular role switching important to achieve the benefits of DPP. In particular he noted
that he felt very exhausted from being driver most of the time and had had little opportunity to assess
the knowledge gains of the new developers.

In the next pair-developing session the expert tried to hand over the driver role to one of the newbies.
Yet, the newbies did not react to his request to assume the driver role and the expert continued being
driver. The developers made no attempt to talk about this in the next reflection meeting. Hence the coach
confronted the new developers with the issue. The newbies stated that from their point of view they
did not have enough knowledge about the artifacts and did not feel comfortable being observed when
taking over the driver role. Although the expert had expressed his wish for more role changes during
sessions, the developers did not want to set up more formal rules for role fulfillment. Instead they agreed
on finding spontaneous solutions on occasions in the session when necessary. In later pair-developing
sessions it was observable that the newbies could integrate themselves more actively in the sessions by
asking questions or making suggestions for code changes, although most of the times they still refused
to take the driver role. Additionally, the final interview with one of the newbies revealed that he still had
not understood how a second developer could integrate himself actively in a DPP session and that for
him the observer role was mainly boring.

In a qualitative analysis based on the data collected through observations in the sessions, question-
naires, personal interviews, reflection meetings, and a discussion with the developers in the final inter-
view it was attempted to build a conceptual model around the role behaviors following the paradigm
model of Strauss & Corbin (1990) to distinguish causal conditions, intervening conditions and conse-
quences.

Three primary causal conditions for the problems with role fulfillment could be identified from the
data (see Figure 4): (1) The developers had little experience with DPP and PP and thus did not know
what the distinct responsibilities of the roles were, when role changes would be best suitable and what
benefits would arise from following the prescriptions of a process model such as XP on role segmentation
or responsibilities. (2) The developers showed little role consciousness during the sessions, but often only
mentioned problems when explicitly queried after the session. Thus instead of resolving conflicts during
the sessions, the reflection meetings were necessary to raise the awareness of the developers on these
issues. (3) Diverging expectations between the expert and the new developers caused them to require
or reject different aspects of the roles. While the expert wanted to transfer the driver role to the new
developers so they would practice writing code under his support, the new developers rather felt under
observation and thus feared being caught making a mistake.

These causes are certainly dependent on each other—increased DPP experience in particular should
both align expectations and raise consciousness about role mismatches—but sufficiently different in the
way they could be addressed to be given separately here. Several other minor causes could be identified,
but none of them had sufficient explanatory value.

As an intervening condition, pair-pressure (Williams, 2000) was identified. Usually such pressure is
welcomed by the developers in a PP session because it increases concentration and helps developers push
each other to complete their task (Williams, 2000). Unfortunately the developers from Bangalore could
not benefit from this pressure, but rather their expectations diverged further and their consciousness



about the development process gave way to feeling uncomfortable to be observed while coding in a
domain in which they were not experienced.

The consequence of suboptimal role usage is primarily to be seen (1) in less productive sessions, in
which less code was produced and less knowledge transferred, (2) boredom and (3) exhaustion on the
side of the new developers and the expert respectively.

C
au

se
s Little 

Experience 

with PP/DPP

Little Role 

Consciousness

Diverging 

Expectations

Intervening 

Condition

Pair-

pressure

Conflicts with Role 

Fulfillment

C
o
n
se

-

q
u
en

ce
s Less 

Productive 

Sessions

Boredom Exhaustion

Figure 4. Possible causes, consequences and intervening conditions of conflicts in role fulfillment.

Lesson learned: Although problems in role fulfillment were identified in an early stage of the es-
tablishment of DPP and discussed in several reflection meetings, they could not be resolved. It seems
as if it was not enough to know and talk about problems with role conflicts in reflection meetings, if
the developers involved are not conscious enough about their conduct during the sessions. Evidently it
happens that participants do not discover or experience the benefits of a new practice. Therefore it is
suggested to try to improve knowledge about PP and DPP topics in particular before and during the
process of establishing DPP. Moreover, it should not be ignored that the success of role fulfillment in
DPP also depends on the fears and attitudes of the participating developers.

Ambiguity about Session Goals A second problematic phenomenon associated with DPP could be
traced to the goals associated with individual sessions and is best explained with one particular session
early on in the project: For this session the expert had scheduled a “code review” with one developer
and his newly written code. In the questionnaire before the session the expert clarified his goal for
the session as “code review presented by [name of newbie] followed by a discussion”, while the new
developer stated as the goal “get the code reviewed by [name of expert] and discuss the open issues if
any”. Thus by using the unqualified term “code review” when scheduling the meeting, the expert had
inadvertently introduced ambiguity into the session goals, which led the new developer to believe that
the expert would be primarily responsible for conducting the review. When the expert at the beginning
of the session then asked the new developer to start presenting his code, the new developer silently
concurred with the request, but obviously was not prepared for this task: First, he stated that he found it
hard to find a good position in the code to start with. Then, a lot of times during the presentation he had
to jump back and forth between different artifacts, his explanations were sometimes halting and several
times he stated in the middle of an explanation that he forgot to mention some precondition.



After the session the expert stated in his questionnaire that the task was completed slower than
expected. He attributed this to the large amount of code to be reviewed, ignoring the halting pace of the
presentation, maybe not even aware that the newbie had been surprised by the expert’s interpretation of
the session goal and unprepared for a code presentation.

The next session designated as a code review then revealed how much time had been wasted by
the ambiguous statement of performing a code review in the first session. Here the new developer had
adjusted to the expert’s interpretation of the goal and was excellently prepared to present the code.

Analyzing all DPP sessions which occurred during the project revealed that problems associated
with ambiguous goals were more prevalent than this single example. Conceptualizing these incidents
resulted in the following three causes to be identified for ambiguous session goals (see Figure 5):

The first cause of ambiguity in session goals, exemplified by the above example, was the lack of
precise communication. In the above case it would have been sufficient to either describe in a single
short sentence what a code review would entail or use the term walkthrough, which usually connotates
the author to present the code (Freedman & Weinberg, 2000).

The second cause identified was the existence of diverging project goals. While the expert wanted to
transfer much of his applicable domain expertise over the duration of the project, a goal to receive such
domain knowledge was never mentioned by the newbies. The newbies’ primary goal as stated both in the
initial questionnaire and the final interview was rather to create code that was executable. This caused
for instance a newbie to state after session 14, in which technical problems kept the developers from
coding, that the session was not successful, although the expert stated it was a partial success because
important questions were discussed and knowledge transfer had taken place.

The third reason why session goals often were ambiguous was session planning was conducted on
short notice. In most cases the expert contacted the newbies only about one hour before the session to
announce what the planned task would be. Since these announcements came in just before the newbies’
lunch break (due to different time zones), this shortened their possible preparation time to zero. In an
individual interview the expert stated that announcements were made on short notice after considering
the latest status of the development process. He stated that he would not change this, ignoring the hint
that this might allow the newbies more time for preparation. The newbies thus remained in a position in
which the session goals were unknown to them until the very last moment.

Two intervening conditions could be identified to affect ambiguity in session goals: (1) The use of
instant messaging chat aggravated the misunderstandings arising from the lack of precise communica-
tion, in particular because chat messages are more terse than voice or e-mail communication, are not
persistently stored, and lack sufficient detail. (2) The emphasize of flexibility over structure within a
session further amplified the ambiguity of session goals. For instance, the developers once performed
lengthy ad-hoc testing of newly written code in a pair-coding session and thereby introducing a newly
emergent goal of increasing quality to the existing goal of producing code for a certain feature.

The consequences of ambiguous goals ultimately were wasted time and resources—as the difference
between the unprepared and slow walkthrough and the improved second session shows— and inade-
quate session results. Yet, more practically the lack of clarity about session goals ahead of time caused
(1) incorrect and insufficient preparation for sessions by developers, and (2) led to an invalidation of
contributions (the expert’s lengthy explanations for instance seem a waste of time under the developers’
assumption that the goal is primarily to produce code as fast as possible).

Lessons learned: Misunderstandings leading to ambiguity in session goals cannot be completely
avoided. Nevertheless a short preparation sufficiently ahead of time to align the understanding of session
goals, in particular who is in charge of what, can economize session time. Better aligned session goals
are also more likely to increase satisfaction with a session as the contributions of all participants will
integrate better and can be more easily valued by all parties.

Missing Awareness It is well known that shared awareness is a crucial element of distributed collab-
oration (Gutwin & Greenberg, 1999; Olson & Olson, 2000), where awareness describes the conscious-
ness about one’s own and the other participants’ actions in the context of the collaborative environment



C
au

se
s Lack of Precise 

Communica-

tion

Diverging 

Project Goals
Short Notice

Intervening 

Conditions

Instant 

Messaging 

Chat
Ambiguity about Session 

Goals

C
o
n
se

-

q
u
en

ce
s Incorrect and 

Insufficient 

Preparation

Invalidation of 

Contributions

Flexibility 

over 

Structure

Figure 5. Possible causes, consequences and intervening conditions of ambiguity in session goals

(Dourish & Bellotti, 1992). Awareness can be challenging to attain at the beginning of a project when co-
developers have never worked together and there is no common understanding of development strategies
yet. Enhancing awareness may have a positive effect on distributed collaboration (Gutwin et al., 1996).

In DPP sessions awareness can be provided by the technical infrastructure as well as by the co-
developers. Gutwin et al. (1996) have made an attempt to divide awareness into different categories such
as technical awareness, workspace awareness, or social awareness (Gutwin et al., 1996). Workspace
awareness covers all types of awareness which help the developers to find the location and actions
of other co-developers in the developing environment. Awareness of the categories social or group-
structural awareness cover social interactions such as expectations and abilities, e.g. if developers are
aware of what other developers expect them to do next. Identifying the latter can be difficult, because
it depends on the motives of the developers involved which are not always known. In the analysis of
problems with role fulfillment mentioned above the motives of the newbies to not take over the driver
role were questionable in that matter. It was not verifiable whether the newbies did not know what
was expected of them or if they just pretended not to know. In the first case it would be a matter of
awareness, in the latter merely ignorance. Although other forms of awareness were an issue in the field
study conducted, this subsection will focus on missing awareness in terms of workspace awareness.

Three causes for missing workspace awareness could be identified by analyzing the collected data
(see Figure 6):

(1) Weaknesses in the technical infrastructure: The technical infrastructure deployed in the field
study and in particular Saros had never been analyzed in commercial software development before and
did not include a video connection showing the remote partner’s face, following advice from other
studies (e.g. Baheti et al., 2002) in which developers had stated that the video connection had not resulted
in additional benefit.

Analyzing the events of the DPP sessions showed that a video connection would have been favorable.
Missing non-verbal communication (in distributed collaboration made visible through a video connec-
tion) was one of the reasons why actions of the observer were not always detectable in sessions. In earlier
pair-developing sessions during the establishment of DPP in which the expert was the driver through-
out the whole session, long phases were observed in which the observer’s actions were not detectable.
Sometimes background noises in sessions suggested that the newbie was distracted, e.g. a mobile phone
rang or laughter could be heard over his microphone. On rare occasions one of the newbies noticeably
started talking to one of his co-located colleagues, even provoking the expert to comment on it.



The problem of possible distraction of the observer was discussed in the following reflection meet-
ing. The newbie stated that he could not remember these episodes of the session. To get more information
about the newbie’s behavior during pair-developing sessions, without breaking the limits of bandwidth,
it was planned to install an additional desktop sharing application between him and the coach. For dif-
ferent reasons the desktop sharing application was never installed. Motivated by the problem, the Saros
developers then improved the collaboration tool to show whether the development environment was the
foreground window (in contrast to a browser for instance). The expert did not comment on any behavior
of the newbies concerning their distractions during sessions. However in later sessions he demanded
more frequently the observer’s attention. This was noticeable through the amount of questions he asked
the observer, e.g. about the location of the observer in the workspace or "what would you do in this
case?".

(2) The second cause identified for missing awareness was the plain non-use of awareness func-
tionalities provided by the collaboration tool. This was noticeable in sessions when the observer asked
the driver at what location the former was, instead of using one of the Saros options, e.g. activating
the “automatic follow mode” or double-clicking on the remote partner’s name in Saros. Even when the
developers used the follow mode, they used line numbers for orientation in the code, e.g. when asking
questions about the code: “here in line number 500 we have an event”, instead of marking the code with
their cursor and thus highlighting it for the co-developer. Neither regular updates about existing and new
Saros functionalities nor pointing out their advantages, e.g. preventing delays in the session by using the
automatic follow mode and hence not having to ask for positions of the co-developers, could convince
the developers of using the awareness functionalities provided by Saros.

(3) A third reason for missing awareness was identified as lack of talk-aloud, which was identified
in one of the rare occasion when one of the newbies became driver in a session: The code he was
typing in this situation was not being displayed in the observer’s view because of a technical problem.
Additionally the driver had not verbalized his actions and hence made it impossible for the observer
to be aware that the driver was about to start writing code at a particular position. Taken together, the
technical problem and the lack of talk-aloud led to the consequence that it took five minutes until the
technical problem was noticed. When the expert as the host of the session tried to remedy the technical
problem, he inadvertently overwrote the text written by the new developer, unaware of the work the new
developer had already invested.

One important intervening condition which increased the problem of missing awareness was the lack
of role changes during the sessions. Since the new developers rarely received the driver role (only in half
of the pair-developing sessions, but never for more than five minutes), they also had little experience
with managing awareness from both perspectives. More troubling, they in general did not expect role
changes, as one of them stated in the final interview, and therefore did pay less attention to the action of
the driver in the workspace, since they felt sure that only a passive role would be required from them. The
fact that there was some evidence of the observer being distracted from sessions and that the observer
had to ask for the position of the driver several times during sessions also led to this conclusion.

Figure 6 shows the discovered conceptual relationships and several consequences of missing aware-
ness in the DPP sessions.

Lessons learned: Any comment from driver as well as observer can enhance awareness in DPP
sessions. As stated by Stotts et al. (2003), constant exchange of information about what developers
can see and commenting on actions keeps attention higher and avoids missing awareness. As later ses-
sions showed, this can be achieved by the driver demanding frequent feedback through questions from
the observer and should be enhanced by frequent role changes. Additionally, desktop sharing and/or a
video connection should be integrated in the technical infrastructure to counteract missing awareness
and to achieve more detailed and faster feedback between co-developers (Schümmer & Lukosch, 2008).
Motivated by the requirements of additional awareness functionalities in the collaboration tool, the im-
plementation of a desktop sharing functionality for Saros was started shortly after the project kick-off
(Salinger et al., 2010).



C
au

se
s Weaknesses in 

the Technical 

Infrastructure

Non-use of 

Awareness 

Functionalities

Lack of 

Talk-aloud

Intervening 

Condition

Few Role 

Changes

Missing Workspace 

Awareness

C
o
n
se

-

q
u
en

ce
s

Not Detectable 

Actions

Delays in the 

Session
Loss of Code

Figure 6. Possible causes, consequences and intervening conditions of missing workspace awareness

5 Conclusion

After sixteen DPP sessions the goal of the kick-off to develop a prototype was successfully accomplished
within the given deadline and the development responsibilities were given exclusively to the Indian
development team.

The field study conducted showed that DPP can be established and integrated into an existing devel-
opment processes to support distributed collaboration in a project kick-off. The research method made it
possible to constantly improve distributed collaboration and at the same time incorporate the developers’
requirements. Frequent questionnaires and reflection meetings in combination with observations were
essential sources of data collection and analysis. Constant improvement of the technical infrastructure
according to the requirements of the development process, e.g. adjusting audio quality or introducing
new awareness features of the collaboration tool, had a positive effect on the collaboration.

The analysis of the data collected confirmed already known insights, but also uncovered new prob-
lems about the establishment of DPP. Benefits such as a high level of communication, combining knowl-
edge transfer and productive work as well as reduced delay in feedback supported the distributed col-
laboration and hence the project kick-off. Some of the lessons learned were that solving problems such
as conflicts in role fulfillment, ambiguity in session goals and missing awareness can be challenging, if
solving them is against the developers priorities.

For future work we are looking to replicate the study in other companies and distributed development
settings to follow up first indications and other aspects such as inter-cultural influences about distributed
collaborations.



Bibliography

Aveling, B. (2004). XP Lite considered harmful? In Proceedings of the International Confer-
ence on Extreme programming and Agile Processes in Software Engineering (XP 2004), Garmisch-
Partenkirchen, volume 3092/2004 of Lecture Notes in Computer Science, (pp. 94–103)., Berlin / Hei-
delberg. Springer.

Baheti, P., Gehringer, E., & Stotts, D. (2002). Exploring the efficacy of Distributed Pair Programming. In
Extreme Programming and Agile Methods — XP/Agile Universe 2002, volume 2418/2002 of Lecture
Notes in Computer Science (pp. 387–410). Berlin / Heidelberg: Springer.

Baheti, P., Williams, D. L., Gehringer, E., & Stotts, D. (2002). Exploring pair programming in distributed
object-oriented team projects. In OOPSLA Educator’s Symposium, Seattle, WA.

Bass, M., Herbsleb, J. D., & Lescher, C. (2007). Collaboration in global software projects at siemens: An
experience report. In Proceedings of the International Conference on Global Software Engineering
(ICGSE 2007), (pp. 33–39)., Washington, DC, USA. IEEE Computer Society.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison-Wesley Professional.
Bipp, T., Lepper, A., & Schmedding, D. (2008). Pair programming in software development teams - an

empirical study of its benefits. Information and Software Technology, 50(3), 231–240.
Braithwaite, K. & Joyce, T. (2005). Xp expanded: Distributed extreme programming. In Proceedings

of the 6th International Conference on Extreme Programming and Agile Processes in Software Engi-
neering (XP 2005), (pp. 180–188)., Berlin / Heidelberg. Springer.

Bryant, S., Romero, P., & du Boulay, B. (2008). Pair programming and the mysterious role of the
navigator. International Journal of Human-Computer Studies, 66(7), 519–529.

Canfora, G., Cimitile, A., & Visaggio, C. A. (2003). Lessons learned about distributed pair program-
ming: what are the knowledge needs to address? In Twelfth International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, (pp. 314–319)., Los Alamitos, CA, USA.
IEEE Computer Society.

Cohn, M. & Ford, D. (2003). Introducing an agile process to an organization. Computer, 36(6), 74–78.
Damian, D. & Lanubile, F. (2004). The 3rd international workshop on global software development. In

Proceedings of the 26th International Conference on Software Engineering (ICSE 2004), (pp. 756–
757)., Washington, DC, USA. IEEE Computer Society.

Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action research. Information
Systems Journal, 14(1), 65–86.

Dourish, P. & Bellotti, V. (1992). Awareness and coordination in shared workspaces. In CSCW ’92:
Proceedings of the 1992 ACM conference on Computer-supported cooperative work, (pp. 107–114).,
New York, NY, USA. ACM.

Freedman, D. P. & Weinberg, G. M. (2000). Handbook of Walkthroughs, Inspections, and Technical Re-
views: Evaluating Programs, Projects, and Products. New York, NY, USA: Dorset House Publishing
Co., Inc.

Gutwin, C. & Greenberg, S. (1999). The effects of workspace awareness support on the usability of
real-time distributed groupware. ACM Trans. Comput.-Hum. Interact., 6(3), 243–281.

Gutwin, C., Greenberg, S., & Roseman, M. (1996). Workspace awareness in real-time distributed group-
ware: Framework, widgets, and evaluation. In People and Computers XI, (pp. 281–298)., Berlin /
Heidelberg. Springer-Verlag.

Hanks, B. (2008). Empirical evaluation of distributed pair programming. International Journal of
Human-Computer Studies, 66(7), 530–544.

Hannay, J., Dybå, T., Arisholm, E., & Sjøberg, D. (2009). The effectiveness of pair programming: A
meta-analysis. Information and Software Technology, 51(7), 1110–1122.

Herbsleb, J. D. & Mockus, A. (2003). An empirical study of speed and communication in globally
distributed software development. IEEE Transactions on Software Engineering, 29(6), 481–494.



Nosek, J. T. (1998). The case for collaborative programming. Communications of the ACM, 41(3),
105–108.

Olson, G. M. & Olson, J. S. (2000). Distance matters. Human-Computer Interaction, 15(2), 139–178.
Poole, C. (2004). Distributed product development using extreme programming. In Extreme Program-

ming and Agile Processes in Software Engineering, (pp. 60–67).
Salinger, S., Oezbek, C., Beecher, K., & Schenk, J. (2010). Saros: An Eclipse plug-in for distributed

party programming. In Proceedings of the 2010 ICSE Workshop on Cooperative and Human Aspects
on Software Engineering. ACM. To appear.

Schümmer, T. & Lukosch, S. (2008). Supporting the social practices of Distributed Pair Programming.
In Groupware: Design, Implementation, and Use, volume 5411/2008 of Lecture Notes in Computer
Science (pp. 83–98). Berlin / Heidelberg: Springer.

Stotts, D., Williams, L., Nagappan, N., Baheti, P., Jen, D., & Jackson, A. (2003). Virtual teaming:
Experiments and experiences with Distributed Pair Programming. In Extreme Programming and
Agile Methods — XP/Agile Universe 2003, volume 2753/2003 of Lecture Notes in Computer Science
(pp. 129–141). Berlin / Heidelberg: Springer.

Strauss, A. L. & Corbin, J. M. (1990). Basics of Qualitative Research: Grounded Theory Procedures
and Techniques. SAGE.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the case for pair
programming. IEEE Software, 17(4), 19–25.

Williams, L. A. (2000). The collaborative software processSM. PhD thesis, The University of Utah.
Adviser-Kessler, Robert R.

Williams, L. A. & Kessler, R. R. (2000). All I really need to know about pair programming I learned in
kindergarten. Communications of the ACM, 43(5), 108–114.

Yap, M. (2005). Follow the sun: Distributed extreme programming development. Agile Development
Conference/Australasian Database Conference, 0, 218–224.


	Project Kick-off with Distributed Pair Programming

