Falling Behind Early and Staying Behind When Learni ng to Program

Alireza Ahadi & Raymond Lister Donna Teague
University of Technology, Sydney Queensland University of Technology
Australia Australia
raymond.lister@uts.edu.au d.teague@qut.edu.au

Keywords POP-I.B. barriers to programming, POP-II.A. novic@OP-V.A. Neo-Piagetian,
POP-VI.E. computer science education research

Abstract

We have performed a study of novice programmersgugudents at two different institutions, who
were learning different programming languagesukficed by the work of Dehnadi and Bornat, we
gave our students a simple test, of our own dayjsimtheir first three weeks of formal instruction
programming. That test only required knowledgessignment statements. We found a wide
performance difference among our two student cah&rirthermore, our test was a good indication
of how students performed about 10 weeks lataheir final programming exam. We interpret our
results in terms of our neo-Piagetian theory of mmwices learn to program.

1. Introduction

Many computing educators have conjectured thatesgcin learning to program requires a special
talent or mental inclination. Some recent workhattarea by Dehnadi and Bornat (Dehnadi and
Bornat, 2006; Dehnadi, 2006) has generated muehestt They devised a test, consisting of nothing
but assignment statements, which they gave to steaeho (it was believed) had no prior instruction
in programming. They found that the test was aaealsle predictor of success in a first programming
course. However, attempts at replicating thosetsestth students from other institutions have met
with mixed results (Caspersen, Larsen and Benne@867; Bornat, Dehnadi and Simon, 2008;
Lung, Aranda, Easterbrook and Wilson, 2008). Thused results have led to some clarifications
and refinements on the original work (Bornat, Detinand Barton, 2012).

A key concept in Dehnadi and Bornat’s work is cetesicy in the application of an algorithmic

model of program execution. They believe that, piedormal instruction in programming, a

student’s model of program execution need not tereect model. Instead, what matters is whether a
student applies a model consistently. For examghen hand executing assignment statements, prior
to receiving formal instruction on programmingtadent might mistakenly assign the value from left
to right rather than right to left, but as longlas student applied that model consistently, goor
receiving formal instruction on programming, Dehiread Bornat found that the student stood a
better chance of learning to program from subsegfioemal instruction.

While our work was influenced by Dehnadi and Boyoat pedagogical interest is in the early
identification of students (as early as weeks 2{fdional instruction) who are in danger of failing
their introductory programming course. Since, a#& weeks, our students have been taught the
correct model for assignment statements, our istésen whether the students have learnt that
correct model. We have therefore designed our @at) tvhich we describe in the next section.

2. The Test

The specific test questions shown below are froerPython version of the test, used at the
Queensland University of Technology (QUT). Givhkattthis test is only concerned with assignment
statements on integer variables, the Java vergitredest used at the University of Technology,
Sydney (UTS) is almost the same. The most commangshin the Java version is that each line of

PPIG, University of Sussex, 2014 WWW.ppig.org

code ends with a semicolon. The UTS Java versisrbhan presented in full elsewhere (Ahadi and
Lister, 2013).

The design of our test was influenced by our priork on applying neo-Piagetian theory to
programming (Lister, 2011; Teague and Lister, 20l)hat work, we proposed a three stage model
of the early stages of learning to program, whigh(&om least mature to most mature):

e Sensorimotor: The novice programmer has an incorrect model efifam execution.

» Preoperational: The novice can reliably manually execute (“tracailtiple lines of code.
These novices often make inductive guesses abaattavbiece of codes does, by performing
one or more traces, and examining the relationsiigreen input and output.

« Concreteoperational: The novice programmer reasons about code dedlygtbyereading
the code itself, rather than using the preoperatimuctive approach. This stage is the first
stage where students begin to show a purposefubagip to writing code.

2.1 Semantics of Assignment Statements — Questions 1(a) and 1(b)

Questions 1(a) and 1(b) tested whether a studelgratood the semantics of assignment statements—
that is, the value on the right of the assignmgwmbpied to the left, overwriting the previous walu
The specific questions were as follows:

Q1 (a). In the boxes, write the values in the \d€es after the following code has been executed:

1
2 The value im is and the value Imis
3

Q1 (b). In the boxes, write the values in the \@da after the following code has been executed:

2
4 The value im is and the value snis
S

QT QO

r

r

Dehnadi and Bornat used similar questions. Du Bo(il889) summarised a number of problems that
students have with variables and assignment statsn@ne of the problems he described was the
analogy of a variable as a “box”, leading to thegonception that a variable may hold more than one
value, and thus the novice does not realize tleablth value in a variable is overwritten by a new
value. The above two questions are intended tatstedents who have misconceptions like these.
According to our neo-Piagetian model, studentggiing with the above two questions are at the
sensorimotor stage of learning to program.

2.2 Effect of a Sequence of Statements — Question 1(c)

Question 1(c) tested whether a student understeodffect of a sequence of assignment statements;
that the statements were executed one at a tineesfécific question was as follows:

Q1 (c). In the boxes, write the values in theafales after the following code has been executed:

p=1
q=28
The value jinis and the value inis
q=p
P =29

Dehnadi and Bornat used a similar question. Soadests mistakenly interpret this code as
swapping the values in variablesandq, which Pea (1986) called an “intentionality bugthere
novices believe “there is a hidden mind somewheitbé programming language that has intelligent
interpretive powers”. (While sequence also matftef@1(a) and Q1(b), the intentionality bug in
Q1(c) exposes novices who apply sequence weaRlwjudent who can do Q1(a) and 1(b), but who
struggles with this question, is working at the ls¢nsorimotor / early preoperational stage.

PPIG, University of Sussex, 2014 WWWw.ppig.org

2.3 Tracking Intermediate Variable Values — Questions 1(d) and 1(e)

Even when students understand both assignmentnstiate and the effect of a sequence of
statements, they can still make frequent erroraloge they cannot reliably track the changing values
in variables through a series of assignment statesnkn many cases this is because the students try
to retain the variable values in their mind (i.@rlsing memory), rather than write down those values
Another source of error is that students use atyitand error prone ways of recording the variable
values on paper (Teague and Lister, 2014). Questid) and 1(e) were designed to test whether a
student could track the changing values of thrembkes in a sequence of three assignment
statements (i.e. the three statements followingrtiialization of the three variables):

Q1 (d). In the boxes, write the values in the \@da after the following code has been executed:

X =7
y =5
z =3
The valuenis yis and is
X =y
z =X
y =2
Q1 (e). In the boxes, write the values in thealdes after the following code has been executed:
X =7
y =5
z =0
The valuenis yis and is
zZ =X
X =y
y =2

Dehnadi and Bornat used similar questions. Accartinour neo-Piagetian model, a student who can
do these questions is at least in the middle rafi¢fee preoperational stage.
2.4 Inductive Reasoning — Question 1(f)

A novice who answers Question 1(f) correctly bubveimswers incorrectly Question 2 (see next
section) is probably reasoning about code indulgtized thus is working at the preoperational stage:

Q1 (). In part (e) above, what do you observe aliweifinal values irx andy? Write your
observation (in one sentence) in the box below.

Sample answethe original value in X is now in y, and vice versa

2.5 Deductive Reasoning and Code Writing — Questions 2 and 3
Questions 2 and 3 were aimed at the novice wh@nsaa a concrete operational fashion:

Q2. The purpose of the following three lines of edglto swap the values in variabteandb, for
any set of possible values stored in those vaigable

c
a
b
In one sentence that you should write in the bdavieedescribe the purpose of the following

three lines of code, for any set of possible ihititeger values stored in those variables.
Assume that variablas j andk have been declared and initialized.

I n
o oo

PPIG, University of Sussex, 2014 WWWw.ppig.org

i

k

J

Sample answeit swaps the values in variables i and k.

]
i
k

Q3. Assume the variablés r st andsecond have been initialized. Write code to swap the
values stored ifi r st andsecond.

Sample answer: tenp = first
first = second
second = tenp

Du Boulay (1989, p. 290) described some of the lprab novices might have when attempting Q3:
Many students get these assignment statements irting order and express individual assignments
back to front. Difficulty in expressing the overaitler of the assignments may be due to a lack of
regard for the sequential nature of the thftéees of code, thatlook a lot like three equations which
are simultaneous statements about the propertigh@three variableshther than a recipe for
achieving a certain internal state” According to our neo-Piagetian model, studesto struggle

with Q2 and Q3 in these (and other) ways are stgdsrthe preoperational stage (or lower). Students
who correctly answer both Q2 and Q3 are probabtlgeatoncrete operational stage.

3. The Conduct and Grading of the Test — including some threats to validity

The introductory programming courses at both instins comprised a 13 week semester where
classes each week comprised a two hour lecturecantinencing in week 2, 2-3 hours of tutorial
and/or lab classes. Students completed our téisé atart of their lecture in either week 2 (at QT
week 3 (at UTS). The test was presented to theestasn a single piece of paper, printed on both
sides. At QUT, we eliminated from our data the $mamber of students who scored zero on the test,
as those students had probably not attended the IMegture. For consistency, at UTS we also
eliminated data from students who scored zero.UT® test contained an extra question that, for
consistency, we have subsequently ignored. Somésdesr the UTS test with that extra question
have been published earlier (Ahadi and Lister, 2048 the test did not contribute to a studentsifi
grade, the students may have had little motivatgperform well on the test, but equally they had
little motivation to cheat. We stopped the testafiround 15 minutes. Very few if any students were
still working on the test when we called a stop.

Questions 1(a) to 1(f) were all worth 1 point, asevQ2 and Q3, for a total of 8 points. No fraciion
points were awarded — answers were treated as b#hmy right or wrong, but English language
issues in Q2, and syntactic errors in Q3, wererngmas long as a student’s intention was clear.

4. Results: Falling Behind Early...

There are many differences in what and how the BYTSQUT cohorts are taught. For example, the
UTS cohort was taught Java while the QUT cohort taaght Python. Our primary interest is in
finding patterns in our results that are commohdth institutions, as those patterns are moreylitcl
generalise to other institutions.

Figures 1 and 2 show the distribution of studentess on the test, at UTS and QUT respectively.
While the respective distributions have a differgimipe, a common feature of both distributionkés t
wide variation in test scores, spanning the eméingie of possible marks.

As is always the case when grading studentspihésthing to assign a score to a student, but it is

another thing entirely to know what that score nseanfor example, are the students who scored 4
on this test qualitatively different, as a geneus, from students who scored 6? Tables 1 (for UTS
and 2 (for QUT) address exactly that sort of questihese tables show the percentage of students
who answered correctly each part of the test, bralaevn by total test score. In the remainder o thi

PPIG, University of Sussex, 2014 WWWw.ppig.org

section, we describe the results in those two salffections 4.1 and 4.2 below go to some pains to
introduce and explain the information displayedhiose tables.)

30

25

20
Number

of 15
students

(UTS)
10
5 :I I
1 2 3 4 5 6 7 8
Week 3 Test Score

Figure 1 — Distribution of student total scorestbe test at UTEN = 107)

50
40

Number 3(
of
students 20
(QuT) .

1 2 3 4 5 6 7 8

Week 2 Test Score

=Y
(w)

o

Figure 2 — Distribution of student total scorestbe test at QUTN=254)

4.1 Semantics of Assignment Statements — Questions 1(a) and 1(b)

At UTS (see Table 1), among the 15 students whedcd out of the possible 8 on the test, 93%
answered Q1 (a) correctly (i.e. only one studestwamned incorrectly). All 15 students answered Q1
(b) correctly. However, for these 15 students,réopmance difference of 93% and 100% on Q1 (a)
and (b) is not statistically significant.

Of the 11 UTS students who scored 4 on the tdsinalvered Q1 (a) correctly and all but one student
answered Q1 (b) correctly (i.e. 91%). In generaésipective of their total score on the test, UTS
students did very well on questions 1(a) and 1(b).

PPIG, University of Sussex, 2014 WWW.ppig.org

UTS
Week Concrete
3 Sensorimotor Preoperational o ional
Test perationa
Score N assignment sequence & tracking values induction uctémh
Ql(a) | Q1i(b) Qi(c) | Qi(d)| Ql(e)] QI(f) Q2 Q3
2 15 93% | 1009 7% 0% 0% 0% 0% 0%
Xz * *kk *k%k *k% *k*k
4 11 100% | 91% 45% 55% 279 27% 36p0 18%
XZ *% *% *%
6 13 92% | 92% 92% 100% 85(1 54% 31po 54%
XZ *kk *kk *kk
8 26 100% | 100% 100% 1009 100% 100% 100% 100%
1to8 107 95% | 89% 64% 649 56% 50% 44% 53%

Table 1 — The percentage of UTS students who aedwerrectly each part of the test, broken down
by total score. Cells containing asterisks indicatstatistically significant difference in the two
percentages above and below the asterisk{geét, * p< 0.05, ** p<0.01 and ** p<0.001). A
thick vertical bar indicates a statistically sigie#int difference in the two percentages to thedatt
right of the bar £? test, but only at the §0.1 level). All*tests were performed on the raw numbers
from which the percentages were calculated.

QUT
Week Concrete
2 Sensorimotor Preoperational .
Test Operational
es
Score N assignment sequence & tracking values induction uciémh
Ql(a) | Q1i(b)] Ql(c) | Qi(d)| Ql(e)] QI(f) Q2 Q3
2 27 59% 70%' 26% 26% 15% 4% 0% 0%
XZ * *kk *% *% *
4 30 87% | 83% 80% 63% 539 13% 13% 7%
Xz * * *kk *k%k *k% * *
6 41 88% | 98% 98% 98% 889 66%' 34% 32%
XZ * * *kk *kk *kk
8 30 100%| 1009 100% 100% 100% 100% 100% 100%
1to8 254 78% | 83% 76% 729 65% 42% 33% 31%%

Table 2 — The percentage of QUT students who aeshgerrectly each part of the test, broken
down by total score. The cells containing asterisksl also the thick vertical bars between some
cells, indicate the same types of statisticallyiigant differences as in Table 1.

The QUT students represented by Table 2 also dig feell on questions 1(a) and 1(b). The only
exception is the performance on 1(a) of students sdored 2 on the test. Only 59% of those 27
students answered that question correctly. Of th@Q3T students who scored 4 on the test, 87%

PPIG, University of Sussex, 2014 WwWw.ppig.org

answered Q1 (a) correctly. In Table 2, betweendha® percentages for Q1(a) (i.e. 59% and 87%),
there is a grey cell containing an asterisk, winclicates that the difference in these two pergega
is statistically significant, p< 0.05). In the two columns for questions 1(a) afig),there are two
other grey cells containing asterisks; thus, wthileQUT students represented by Table 2 did fairly
well on questions 1(a) and 1(b), those QUT studeitts higher overall scores on the entire test did
statistically better on those questions.

In summary, on inspection of both Table 1 and T&bl@mong the students at both institutions who
scored 2 or higher on the test, most had a go@pgrhthe semantics of assignment statements.

4.2 Effect of a Sequence of Statements — Question 1(c)

At UTS (see Table 1), among the 15 students whedcd out of the possible 8 on the test, only 7%
(i.e. 1 student) answered Q1 (c) correctly. Amdrgstudents who scored 4 on the test, 45%
answered Q1 (c) correctly. As indicated by the grely between those two percentages, which
contains an asterisk, the difference in these péaiges is statistically significant. Below that 45%
Table 1, another grey cell, containing two asteyighdicates that there is a statistically sigific
difference (p< 0.01) between the students who scored 4 and stidéro scored 6 (i.e. 45% vs.
92%).

While the percentages for Q1 (c) at QUT are diffe(see Table 2), the test for statistical sigaifice
shows the same pattern at both institutions — stisdeho scored 2 did poorly on Q1(c), while
students who scored 4 did significantly better,mitas well as students who scored 6 or 8.

In both Table 1 and 2, in the row for the studevtte scored 2, there is a thick vertical bar between
the cells representing Q1 (b) and (c). This veltiea, and the other vertical bars like it througho
both tables, indicate a statistically significaiifestence between the two horizontally adjoining<e
(4%, but p< 0.1). There is another thick vertical bar in Tableetween cells in the columns for Q1 (b)
and Q1 (c), in the row for students who scoredu there is no corresponding vertical bar in Table

In summary, on inspection of both Table 1 and T@blmost students who scored 2 had a poor grasp
of sequence. Most of the students with higher scorethe test had a better grasp of sequence.

4.3 Tracking Intermediate Variable Values — Questions 1(d) and (e)

As described in section 2, questions 1(d) andéeg designed to test whether a student could track
the changing values of three variables in a sequehthree assignment statements. In summary, on
inspection of both Table 1 and Table 2, only theelshts who scored 6 or higher could reliably track
the values in variables. Thus most students sc@imghigher were preoperational or higher.

4.4 Inductive Reasoning — Question 1(f)

As described in section 2, question 1(f) was desigo identify students who can make reasonable
inductive guesses about the function of a pieamdé based upon the input/output behaviour. Since a
student could not be expected to answer Q1 (fectyr if that student had answered Q1 (e)
incorrectly, it is the difference in percentagesisen Q1 (f) and Q1 (e) that is of interest, esgiBci
statistically significant differences (i.e. thedkivertical bars between those two table columns).

At both institutions, most students who scored 2hentest performed poorly on both Q1 (e) and
Q1(f). At QUT, among students who scored 4, thei statistically significant difference between
performance on Q1 (e) and Q1 (f), but not at UTI®r€ is, however, a statistically difference ahbot
institutions among students who scored 6.

At both institutions, when looking down the tabt#umn for Q1 (f), it is apparent that most students
who scored 2 or 4 did very poorly on this questighile the students who scored 6 exhibited mixed
performance. Only the group of students who sc8red the test did very well on this question.

For this question, the only clear result that aggplicross both institutions is that students wbeesic

6 on the test tended to do well on the Q1 (e) tigaquestion but did significantly worse on the §1 (
inductive reasoning question.

PPIG, University of Sussex, 2014 WwWw.ppig.org

4.5 Deductive Reasoning and Code Writing — Questions 2 and 3

On none of the overall test scores, at eithertirt&in, was there a statistically significant diace
in the performance on Q2 and Q3. In both Tablesdl2a the only group of students who did well on
both Q2 and Q3 were the students who scored agh&fan the test.

We did not survey our students to establish argr fmowledge in programming, since self reporting
is notoriously unreliable, but the results for @2l &3 suggest that most students who scored &®r le
on this test are unlikely to have had any usefgrprxperience of programming.

4.6 A Neo-Piagetian Summary of Tables 1 and 2

On inspection of both Table 1 and Table 2, studeitts a total score of:

« 2tended to have a grasp of the semantics of ihd@iassignment statements but a poor grasp
of sequence, and were thus working at the lateosinstor / early preoperational stages.

* 4 were showing some ability to track values but ynstruggled with inductive reasoning, so
we characterise this group of students as beirlg amid-range preoperational.

« 6 were usually successfully tracking values andapority could perform inductive reasoning,
so we characterise this group of students as baiagreoperational.

« 8 were the only group of students who performedistantly well on Q2 and Q3, so we
characterise this group of students as being ctsoperational.

5. Results: ... and Staying Behind

This section examines the relationship betweeropadnce on the test held early in semester and
performance on the final exam at the end of thevd8k semester.

5.1 UTS Multiple Choice Exam

At UTS, the exam was entirely multiple choice. Fg@ shows the probability that a UTS student
would finish in the top half of the class, as adtion of their performance on the week 3 test. 3ike
of each black disc indicates the number of studehtsreceived that week 3 test score (i.e. thedize
the discs is proportional to the size of the barsigure 1). The linear regression calculation
represented by the dashed line was weighted acgptdithe size of the discs. This was done by

y=0.07x+0.14
R?=0.77
p =0.003

0.8

Probability of
achieving the UTS 0.6
class median
score, or a higher
score, in the final

multiple choice - "
.
-

exam 0.2 ~

0.4

Week 3 Test Score
Figure 3 — UTS student scores on the test verstdigrpgnce on the final exam (N=107).

PPIG, University of Sussex, 2014 WWW.ppig.org

performing the regression with 26 duplicate datatsdor test score = 8, 13 duplicate data poiats f
test score = 6 and so on, for all test scorestejiession lines in subsequent figures were cdbmlila
this same way.

The use of the median in Figure 3 facilitates camspas across institutions, since student ability a
exam difficulty varies across institutions. Of ceeirapproximately half of all students must perform
above the median, and half below. However, thatlitimm would still be satisfied if the regression
line in Figure 3 was horizontal. In fact, from alpgogical point of view, it would be best if thetd

of regression was horizontal, since the end-of-séenéate of a student should not be strongly
attributable to their performance as early aslive tveek of a 13 week semester — but on the
contrary, Figure 3 shows that many students didewiver from their slow start to the semester.

By the end of a 13 week semester, students haouo$e covered many more programming topics

than the assignment statement tested in week 3TA{ approximately half the final exam covered

basic object-oriented concepts, while the othefrdraphasized common 3GL searching algorithms
and quadratic sorting algorithms. The following sfien indicates the general level of difficulty:

This question refers to the Linear Search algorjttondied in lectures, for an array “s”
where the elements are stored in ascending onderthe final position in the array is stored
in a variable “last”. The search should terminas@on as either the value in variable "e" is
found in the array, or it is established that thkig is not in the array. Using a variable “pos”
to scan along the array, the correct loop is:

(@ while ((pos<=last) && (pos < e)) ++pos;
(b) while ((pos<=last) && (s[pos] < e)) ++pos;
(c) while ((s[pos]<=s[last]) && (pos < e)) ++pos;

(d) while ((s[pos]<=s[last]) && (s[pos] < e)) ++pos;

5.2 QUT Multiple Choice Questions

The final exam at QUT comprised two parts: a seholtiple choice questions and a set of questions
that required students to write Python code. Figusbows the probability that a student would finis
in the top half of the class for the multiple cheojrart of the exam, as a function of their perforoea

on the week 2 test. As was also the case for UBy& 4 shows that QUT students who performed
poorly on the test — held in week 2! — were unljki& overcome their poor early start to the
semester and finish in the top half of the class.

1

y=0.07x+0.14
Probability of 0.8 R?=0.84
achieving the p =0.001
QUT class
median score,
or a higher

score,inthe ,

multiplce choice .’ ‘
-

section of the
final exam 0.2

O T T T T
0 2 4 6 8

Week 2 Test Score

Figure 4 — QUT student scores on the test verstdempgance on the multiple choice component
of the final exam (N=254).

PPIG, University of Sussex, 2014 WWW.ppig.org

10

5.3 QUT Short Answer Questions

While Figures 3 and 4 both describe a clear retatigp between the test near the start of the semest
and performance on the end-of-semester multipleetguestions, perhaps that relationship can be
attributed to the relatively simple nature of nplki choice questions? For example, multiple choice
guestions do not require a student to write cdelgure 5 tests that idea. It shows the probakititt

a QUT student would finish in the top half of tHass, as function of their performance on the w&ek
test, for the short answer part of the QUT exanis Tigure is similar to Figures 3 and 4 — the

resemblance between Figure 5 and Figure 4 is ugcann
‘,

1

y=0.10x- 0.01
R2=0.86

Probability of 0.8
achieving the

QUT class p =0.0007
median score, 0.6
or a higher
score, in the 04 -

short answer

section of the ’ ‘ '

final exam 0.2

Week 2 Test Score

Figure 5 — QUT student scores on the test versdfempgance on the short answer section of
the final exam (N=2E).

One of the short answer questions in the exanustibted by the code shown below. The students
were given the code on the left, which “rotate® talues in the listt ens one place to the left, with
the leftmost value moving to the rightmost positidhe students were required to write code to do
the opposite transformation; that is, write codeotate the values in array ens one place to the
right, with the rightmost item moving to the leftmostfimn. The solution is shown below:

“Rotate Left” Code Given to the Students “Rotate Right” Code Required from Students

tenp = itens[0] tenp = itens[len(itens) - 1]

for index in range(len(itens)-1): for index in range(len(itens)-1,0,-1):
itens[index] = itens[index + 1] itens[index] = itens[index - 1]

itens[len(itens) - 1] = tenp itens[0] =tenp

As part of the instructions for this question, soit$ were effectively given tHer loop header
required in their answer, so the question was nobhoke: of 3, with one point for each of the
remaining three lines of code. Figure 6 shows tiebability that a student scored 2 or 3 for this
guestion, as a function of their performance onanhek 2 test. This graph is similar to the three
earlier graphs for performance on final examsur results are robust, across the two institutiang
also across multiple choice and short answer guresti

In neo-Piagetian terms, this “Rotate Right” shaidwer question requires the student to manifest
concrete operational reasoning (Lister, 2011)ektien 4.6, we provided a neo-Piagetian summary
for Tables 1 and 2. Building on that earlier sunynare now provide a neo-Piagetian summary
where we contrast the performance of students leTa (i.e. at week 2 of semester) and their end of

PPIG, University of Sussex, 2014 WWW.ppig.org

11

1
y = 0.09x + 0.005
R?=0.83
0.8 p =0.001
Probability of
scoring2 or 3
on the QUT
final exam
question ,
shown in
Figure 6
0.2
”
0 T T T T
0 2 4 6 8

Week 2 Test Score

Figure 6 — QUT student scores on “Rotate Right'rslamswer question (N=254).

semester performance at QUT on the “Rotate Rigtablem (as shown in Figure &tudents with a
total score in Table 2 of:

e 2 or 4 were characterised as being spread fronosersor to mid-preoperational. By the end
of semester, around 20% of those students mardfesigcrete operational reasoning on the
“Rotate Right” problem.

* 6 were characterised as late preoperational. Bertldeof semester, around 60% of these
students manifested concrete operational reasamirige “Rotate Right” problem.

« 8 were characterised as concrete operational. Bgitkd of semester, around 80% of these
students manifested concrete operational reasamirige “Rotate Right” problem. (N.B. the
remaining 20% did not “go backwards”, as the we¢&s? was on assignment statements only,
whereas the “Rotate Right” problem tested more dhelimg concepts and skills.)

6. Conclusion

In this paper, we have described a test on novisgrammers, in weeks 2 and 3 of semester, with
students from two different institutions, where ¢arg other pedagogical differences) the students are
taught two different programming languages. At bogtitutions we found a wide performance
difference among each student cohort on thatFesthermore, that early test is a good indicatibn o
how students performed about 10 weeks later, iin fimal exam. In terms of neo-Piagetian theory,
students who exhibit lower neo-Piagetian stageledrearly test are unlikely to manifest the higher
concrete operational stage of reasoning in the éxam.

People who believe that programming requires aatetalent may feel justified by our results. While
our results do not disprove the existence of aatmtalent for programming, we do not subscribe to
that view. As we have summarised in this papeeaitier work we have developed a neo-Piagetian
theory of how novices learn to program. Neo-Piagetheory is based upon the constructivist
principle that cognitive skills are primarily learmot innate. Our neo-Piagetian perspective leiads

to view the curriculum for programming as compristovo dimensions. On one dimension are the
nuts and bolts of how programming languages wohlat imension is emphasised in today’s
classroom. The other and more neglected dimensiopiises the skills for reasoning about
programs, sometimes referred to as the notionahimag¢du Boulay, 1989), but which we think of in
neo-Piagetian terms. This dimension is often nptiexly taught, especially in the first few weetb

PPIG, University of Sussex, 2014 WWW.ppig.org

12

learning to program. We believe that, with evergrément along the “nuts and bolts” dimension (i.e.
with every new programming construct taught), izl heo-Piagetian stages of reasoning need to be
explicitly reprised. In the test we used in weeland 3 of semester, questions 1(f), 2, and 3 reptes
the types of learning exercises that students née they are introduced to assignment statements.
As a further example, the Bubblesort algorithm dcag introduced well before loops are explicitly
taught, using implicit “uncompressed” loops (Miln2008).

We close by speculating, from a neo-Piagetian getsge, on Dehnadi and Bornat's claim that
people who apply a consistent model of program @@t are more likely to learn to program, even
when their model is wrong. Perhaps those peopleyenj early affective advantage, not a cognitive
advantage. That is, people who show an early rmefe for consistency may be especially well
motivated to perform the deep learning requiredush through the earlier neo-Piagetian stages and
gain the consistency of reasoning that only begirike concrete operational stage.

7. Acknowledgements
The grant for this work was from the Office of Legig & Teaching, of the Australian Government.

8. References

Ahadi, A. and Lister, R. (2013%eek genes, prior knowledge, stumbling points aaching edge
momentum: parts of the one eleptartiinth International Computing Education Research
Workshop (ICER '13)ACM, USA, pp. 123-128. http://doi.acm.org/10.1145/2493394324%

Bornat, R., Dehnadi, S., and Simon (200®)ntal models, consistency and programming aptitude
Tenth conference on Australasian Computing Educd#«E '08). pp. 53-61.
http://crpit.com/confpapers/CRPITV78Bornat.pdf

Bornat, R., Dehnadi, S., and Barton, D. (20@Bserving Mental Models in Novice Programmers
24th Annual Workshop of the Psychology of Prograngrinterest Group, London.
http://www.ppig.org/papers/24/8.0bserving_mentaldeis-Richard%20Bornat.pdf

Caspersen , M., Larsen , K., Bennedsen, J. (20@ntal models and programming aptitude
Innovation and Technology in computer science etituecdl TICSE '07), Scotland, pp. 206-210.
http://doi.acm.org/10.1145/1269900.1268845

Dehnadi, S., and Bornat, R. (2008)e camel has two humfworking title)
https://www.cs.kent.ac.uk/dept_info/seminars/20@8p@perl.pdf

Dehnadi, S. (2006)esting programming Aptitud&8th Annual Workshop of the Psychology of
Programming Interest Group, Brighton, pp. 22-3ip:Hivww.ppig.org/papers/18th-dehnadi.pdf

Du Boulay, B. (1989)Some difficulties of learning to progratm E. Soloway and J. C. Sphorer
(eds), Studying the novice programmer, New Jersayrence Erlbaum. pp. 283-300.

Lister, R. (2011 Concrete and Other Neo-Piagetian Forms of Reasoimiriige Novice Programmer
Thirteenth Australasian Computing Education Confeee(ACE '11), pp. 9-18.
http://crpit.com/confpapers/CRPITV114Lister.pdf

Lung, J., Aranda, J., Easterbrook, S., and Wil&n(2008)On the difficulty of replicating human
subjects studies in software engineeri@@th international conference on Software enginge
(ICSE '08), pp. 191-200. http://doi.acm.org/10.1/1868088.1368115

Milner, W. (2008)A Loop is a Compressio@0th Annual Workshop of the Psychology of
Programming Interest Group, Lancaster. http://wwpigmrg/papers/20th-milner.pdf

Pea, R. (1986)anguage-Independent Conceptual “Bugs” in Novicegtamming Journal of
Educational Computing Research, Vol. 2(1), pp. 85-3

Teague, D. and Lister, R. (20149ngitudinal Think Aloud Study of a Novice Prograennsixteenth
Australasian Computing Education Conference (ACH, pp. 41-50.
http://www.crpit.com/Vol148.html

PPIG, University of Sussex, 2014 WwWw.ppig.org

