Cognitive and Organizational issues in Programming in the Large:
Preliminary findings from a Case Study

Patrick Waterson and Chris Clegg

MRC/ESRC Social and Applied Psychology Unit
Department of Psychology
University of Sheffield,
Sheffield, S10 2TN, UK

pclpew @sunc.sheffield.ac.uk
C.Clegg@sheffield.ac.uk

Extended abstract
This paper reports early findings from a series of on-going longitudinal studies of the
cognitive and organisational factors involved in building large scale software programs.
In particular we focus upon one software project within a large UK bank. Our approach
has been to concentrate upon the distribution of expertise and knowledge on the project;
the organisation of project work; the use of CASE tools; and the problems faced by
project members and mechanisms for dealing with these. As a means of partially
integrating organisational and cognitive approaches to this area, as well as providing a
framework for our research, we introduce a model of what we term the "division of
cognitive labour”.

1. Background

As a number of authors have pointed out (eg. Soloway, 1986), most of the research
into the psychology of programming has so far concentrated upon individual
programming activities, often within the context of the laboratory. Few studies exist of
groups of programmers working together on a program, and even fewer of such
activity taking place within an industrial or commercial context. Perhaps the most
thorough investigation of programming in the large so far is due to the work of Curtis,

Krasner and Iscoe (1988).

Curtis et al (1988) carried out a field survey of 19 large scale software projects. Their
interviews with software developers led them to conclude that three main factors
contributed to the many problems involved in building complex programs within tight
deadlines: (1) the thin spread of application domain knowledge; (2) fluctuating and
conflicting requirements; and (3) communication and coordination breakdowns within
projects. All three factors were seen as the result of a complex interaction between
organisational, social and cognitive phenomena.

One inherent limitation in Curtis et al's survey is its breadth. More detailed studies of
large scale programming are needed to unpack each of the issues that are pointed to in
their study. With this in mind we have concentrated our attention upon an intensive and
detailed investigation of each of the three factors, amongst others, as they affect
individual projects. In addition we plan to follow projects through until they are
implemented and in operation by end-users.

2. Context and methods of Study

The project we describe here is located within the information technology department of
a large UK bank based in the North-West of England. The Charging project as we shall
call it, is made up of a number of software developers with a range of skills and
expertise together building a program to manage the administration and updating of
information relating to corporate accounts. Part of the work involves conversion of an
existing charging system as well as liaising with an external contractor responsible for



most of the program coding. The program itself is very large and complex primarily
because many of the banks customers have idiosyncratic and unique requirements in
terms of how their accounts are charged. The project has currently been running for a
total of two years and is due to be completed by Easter 1994.

So far we have carried out interviews with all of the key personnel assigned to the
Charging project (eg. project managers and team leaders) as well as individuals
involved in the day to day activities of the project (eg. systems analysts, program
testers, programmers). At the present moment (Sept. 1993) we have carried out over
thirty interviews within the bank as well as administering a questionnaire which is
being completed by all system developers within the information technology
department.

3. Early findings

3.1 Distribution of expertise and knowledge on the project

At this stage in our research we can distinguish between five distinct sources of
expertise/knowledge which are distributed across the Charging project: computational
knowledge (ie. relating to data structures, architectures, algorithms in the program);
application knowledge (relating to typical inputs into the program and basic knowledge
of what the program should do); domain knowledge (relating to day to day working
practices within the finance area by end users); software engineering knowledge
(relating to techniques for design, analysis, testing and the use of CASE); and project
management knowledge (relating to the coordination and allocation of project
resources). The interesting aspect of knowledge distribution here is the degree to which
these categories overlap. Similar to the Curtis et al study, there tends to emerge a class
of developers who could be said to be project "gurus" or "overseers". These
individuals seem to adopt a cross-referencing strategy in their work on the program (cf.
Pennington, 1987). Likewise we can discern individuals who have "local" knowledge
of the program (ie. little overlap but possessing detailed knowledge of one aspect of the
program), and individuals who have "partial" knowledge which overlaps between one
or more of the categories of knowledge. The organisation and communication between
these sources of expertise/knowledge can be seen as one reason why so far the project
seems to be working effectively. In addition partial overlap between sources of
application and domain knowledge has consequences for the degree of user
involvement which is present on the project as well as the end product.

3.2 The organisation of project work

Project work seems to be olganised largely around the specific tasks allocated to
individuals (eg. system conversion, acceptance testing, program queries) as
well as relating to the categories of developer knowledge/expertise. One
interesting feature is the distribution of "overseers"; these appear to be have
been carefully distributed around the project in order to ensure that problems
relating to lack of knowledge in one area are catered for. Such allocation does
not always correspond to seniority within the project (ie. "overseers" are not
always team leaders). Likewise overall communication is viewed as poor by
developers and not formalised; rather communication appears to be
facilitated by informal, tacit boundary spanning activities by key project
members. We plan to follow these issues up by a series of observational
studies as well as further interviewing.

3.3 The use of CASE tools

Work on the program has been complicated by the addition of a set of CASE tools
where little training has been provided for. Developers have had to learn these relatively
opportunistically and in some cases this has caused problems. The design and analysis
of the program for example has proved problematic mainly due to the mismatches
between the worWng practices of programmers, the way CASE tools impose a
structure on design and analysis, and existing guidelines for these activities set n place



by the bank. Reconciling these different approaches to design and analysis means that
project members have to hold a set of competing representations of the Charging
program.

3.4 The problems faced by projecf members

Project members work within very tight deadlines, a fact which often makes
the Charging project a very stressful environment. Issues of time and money
are compounded by the fact that the external contractors working on the main
coding of the program are geographically remote; hence most communication
takes place over e-mail. Although the changing requirements of the program
are a constant source of concern amongst developers, most point to internal
problems within the information technology department as the main
"bottleneck” in terms of communication and coordination of program
requirements. One upshot of this is that some aspects of the program are 00
powerful (ie. functionality built into the program early on is unlikely to be
exploited by end users).

3.5 The "Division of Cognitive labour"

One way of viewing the Charging project is as a cognitive system involving a
division of cognitive labour within and between individuals and artefacts.
This includes the distribution of cognitive activities between roles (Hutchins,
1990). We are using some aspects of this conceptual framework to understand
the way in which programming tasks are allocated within and between
individuals, project sub-teams and the artefacts being used (ie. CASE tools).
Our approach has been to examine examples of where mismatches in terms
of the work of project members, and the tools they use, occur, in order to
understand how the system works both in terms of its organisation as well as
the cognitive demands inherent in such a highly skilled domain as large scale
software development. We hope to present some examples of our model at
the workshop in January.

4. Future work

We plan to carry out further interviews with members of the Charging
project until the program becomes operational when we shall also interview
end-users. We are also carrying out in parallel, investigations of a number of
other software projects within the bank, as well as projects in other
organisations. The findings from these studies will enable us to make
comparisons between and within organisations.

References

Curtis, B., Krasner, H. and Iscoe, N. (1988), A field study of the software design
process for large systems. Communications of the ACM, 31 (11), 1268-1287. 13

Hutchins, E. (1990), The technology of team navigation. In J. Galegher, R. Kraut and
C. Egido (eds), Intellectual teamwork: Social and technological foundations of
cooperative work. Hillsdale, NJ: LEA.

Pennington, N. (1987) Comprehension strategies in programming. In G.M. Olson,
S.Sheppard and E.Soloway (eds.), Empirical Studies of Programmers: Second
Workshop. Norwood, NJ: Ablex

Soloway, E. (1986), What to do next: Meeting the challenge of progamming in the
large. In E.Soloway and S. Iyengar (eds.), Empirical Studies of Programmers: first
workshop. Norwood, NF: Ablex, pp. 263-268.



