
Pair Programming: When and Why it Works

Jan Chong1, Robert Plummer2, Larry Leifer3, Scott R. Klemmer2, Ozgur Eris3, and George Toye3

1 Stanford University, Department of Management Science and Engineering, Terman Engineering Center,

3rd Floor, Stanford CA 94305
jchong@cs.stanford.edu

2 Stanford University, Department of Computer Science, 353 Serra Mall, Stanford CA 94305
{plummer, srk}@cs.stanford.edu

3 Stanford University, Department of Mechanical Engineering, Building 530, 440 Escondido Mall,
Stanford CA 94305

ozgur@stanford.edu; {toye, leifer}@cdr.stanford.edu

Pair programming is a software development technique where two programmers work together at a
single PC. Over the past few years, pair programming has emerged as a promising method for
creating higher-quality software in a time-efficient manner. It is a central aspect of many agile
software development methods. While prior research has demonstrated the effectiveness of pair
programming, there is still limited understanding as to when and why it is effective. Our research
into the underlying reasons for success – and limitations of – pair programming employs a two-
phase method. In the first phase, we are conducting ethnographic studies of software development
teams in industry that currently employ pair programming. We will use the results of this phase of
the research to drive the second phase of the research: a laboratory study of pair programming with
professional developers as participants.

1 Introduction

This study is an investigation into the socio-cognitive factors of pair programming, a method of where
two people work together shoulder-to-shoulder at a single computer. Studies of pair programming in
university programming classes have shown that pair programming yields better design, more compact
code, and fewer defects for roughly equivalent person-hours [1-5]. Studies have also noted that pair
programmers exhibit greater confidence in their code and more enjoyment of the programming process
[5-8]. Positive results with pair programming have lead to speculation that a collateral benefits of the
practice may include improved morale and project knowledge shared efficiently across the
development team in a manner that can be expected to improve productivity in subsequent
development cycles [9].

While these results are compelling, the adoption of pair programming has faced resistance and
skepticism from both managers and programmers. While this may simply be a result of either the
novelty of the practice or skepticism of the larger methodological context (Extreme
Programming/Agile methods) in which pair programming is often introduced, there is some evidence
that pair programming may not necessarily be appropriate for everyone [10]. While prior research has
demonstrated the effectiveness of pair programming, there is still limited understanding as to when and
why it is effective. Additionally, the bulk of prior work has studied university students, and it is not
clear to what extent these results transfer to professional programmers. Our study focuses on pair
programming practices among software development professionals, both in a natural work setting and
in the laboratory. Such an understanding would greatly aid managers and programmers in determining
when and how to use pair programming to improve the software development process. Our research on
pair programming fits into the broader picture of studying collaboration in software development.

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 43 - 48

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

2 Conceptual Framework

Pair programming, for the purposes of this study, describes a programming technique where all
programming work is done by two programmers, working together at a single PC. Within the pair,
work is split into two roles, known as the driver and the navigator. The driver is the person at the
keyboard, responsible for the actual typing of the code being generated. The navigator is an active
observer and monitor of the code being written. The driver and navigator collaborate on all aspects of
the software development: design, coding, debugging, etc. They are in constant communication, asking
and answering questions of each other. The two programmers may switch roles frequently in the course
of a programming session.

The simplest view of why pair programming works is that two people make better design decisions
than one. This view characterizes programming as a series of design decisions that are translated into
code. The presence of a second individual distributes the cognitive task [11] of programming, aiding
design discussion and error finding. More specifically, working in pairs has the following influences on
decision-making:

• Two individuals will have overlapping, but not identical, sets of information. When working

together as a pair, sharing this increased pool of information can lead to better decision-
making [12-14].

• Design collaboration affords a mutual apprenticeship, where through the collaboration each
participant learns some of the technical skills and methods of their collaborator. This is one of
the reasons why Beck [9] encourages pairs to rotate on a frequent basis.

• Collaborative design requires the negotiation of a shared understanding and mutual
orientation. This negotiation process makes explicit the cognitive processes that are normally
tacit when working individually [15].

• This negotiation process requires that programmers produce an account [16, 17] of goals,
plans, decisions and actions. This appears to lead to a more thorough exploration of design
options. This account production, verification, and affirmation leads to increased confidence
by the programmers and vets flawed design ideas earlier.

Working in pairs also has influences when design decisions are translated into code. By monitoring

the coding, the navigator can look for missed cases and typographical errors. The navigator can also
think ahead of the code being typed at a given moment. One way of stating this is that the navigator
can consider issues that have a longer time constant than those being addressed by the driver.

This social understanding of pair programming fits into the broader frame of studying small teams
engaged in engineering design, and our research draws upon this background and literature. Tang has
identified the importance of gesture and negotiation [18], and Brereton has demonstrated that in small
design teams, rapid alternation between concrete and abstract issues yield the best products [19]. We
postulate that this type of cognitive activity is characteristic of pair programming, where the driver
operates in relatively more concrete thinking space by focusing on implementation, as opposed to the
navigator, who deals with more abstract issues by focusing on higher level conceptual relationships and
goals.

Observing engineering design teams has led us to believe strongly in the validity and utility of
treating them as social entities whose learning activities are correlated with their design performance
[20, 21]. Moreover, our observations resulted in a new insight, which was to recognize the importance
of the role of coaching, including “self-coaching” within the team.

This research has also centered on the notion of information pathways. We would characterize solo

programming as follows:

Chong, Plummer, Leifer, Klemmer, Eris, and Toye

PPIG 2005 Sussex University www.ppig.org

The solo programmer, in addition to interpreting and revising the specifications, must attend to the

code at many levels, ranging from high-level design and design revisions to low-level entering of
program statements and understanding of debugging results.

For pair programmers, the situation is different:

In the pair programming software development paradigm, the driver and navigator act on the

specifications in tandem and develop code. The two actors alternate roles frequently during the task. In
this alternating dynamic, we postulate that the navigator’s focus on higher level conceptual
relationships and goals allow him/her to take on a coaching role where he/she observes the driver’s
interaction with the code, identifies needs and opportunities, and intervenes to supply needed
information and/or strategy to arrive at the desired goal, while the driver attends to the immediate
coding task at hand. Inclusion of the navigator (coach) introduces multiple feedback paths for
knowledge creation and error correction. This view is consistent with our earlier statement that the
navigator is performing tasks with a longer time constant than those of the driver.

In our research, we are exploring the extent to which findings in other areas of engineering design

can be applied to software development. Through additional field studies, and then through laboratory
experiments, we hope to arrive at more thorough understanding of why and when pair programming is
effective.

Product
Requirements

& Software
Specifications

Driver

Development

Environment &
Software Code

Navigator

DIALOG

INTERPRET

FEEDBACK

DESIGN

REFLECT

WRITE CODE

REVISE

Product
Requirements

& Software
Specifications

Solo
Programmer

Development

Environment &
Software Code

DESIGN

REFLECT

INTERPRET

WRITE

FEEDBACK

REVISE

Chong, Plummer, Leifer, Klemmer, Eris, and Toye

PPIG 2005 Sussex University www.ppig.org

3 Methodology

Our study has two phases: an ethnographic field study and a controlled laboratory experiment. We will
use the results of the field study to inform and refine our experimental design.

3.1 Ethnographic Field Study

The first phase of our study is an ethnographic field study. We will conduct weekly observations of
software development teams using pair programming at two companies in the Silicon Valley area for
eight to twelve weeks. To capture a range of organizational environments, we have selected one small
company, Company A, and one large company, Company B. Company A is a four year old technology
company with roughly 70 employees. Company A has one team of five to seven people in size which
practices pair programming. Company B is a six year old technology company; it currently has
approximately 3000 employees. Company B employs at least four development teams that pair
program. Each team has three to four people.

Observations at both sites will be conducted during the same period by the same observer. Each
observation session will run between three to four hours. The observer will make a full audio record of
each session, while will then be transcribed and annotated with notes taken in the field. Using analysis
techniques from qualitative research [22, 23], we use these observations to verify our conceptual model
of pair programming and refine the set of measures for the experimental portion of the study.

3.2 Laboratory Experiment

We intend to conduct pair programming sessions with professional contract programmers, recording
every aspect of their interaction with the development environment, product requirement
documentation, language specifications and each other. All subjects will be required to have at least
two years of industry experience; ideally they will be experienced pair programmers. The programmers
will be given a complex programming task (as opposed to a set of academic problems or a
programming exercise) involving the development of an actual application. We will observe 6
programming pairs doing tasks that require 4-5 hours of joint work. As a control, we will observe 6
solo programmers doing the same tasks.

We will use the design-activity observatory at the Stanford University Center for Design Research
(CDR) [http://cdr.stanford.edu]. The corpus of data collected in this environment spans the full range
of performance variables from individual keystrokes through to frame-by-frame video interaction
analysis and automated indexing. This facility allows us to capture four simultaneous channels of
digital audio-video and all computer and whiteboard interactions. The workstation configuration will
consist of a modern PC, two large, flat-panel monitors, and the Eclipse development environment
[http://www.eclipse.org].

In our experimental sessions, there are three primary aspects of pair programming that we plan to
measure: speed of development, quality of software design, and defect rate. We will measure
development speed by recording the overall completion time, and use a coding of how individuals and
pairs spend their time. To assess quality of code design, we will use software metrics such as code size
and have the code rated by a set of independent raters. We will also use a coded transcript of the
sessions to measure design decision-making. To measure software defect rate, we will create a full
suite of unit tests for each piece of software produced. Our coded transcript will be used to measure
information about the interaction between programmers. We will review the recoded video and audio
to track noun phrases, questioning behavior, interpersonal and human/computer interaction rates and
gestures. For the control group, we plan to have our subjects give self-reports of their thoughts and
actions during the programming session. While this is not an ideal record of the solo programming
process, the self report data will provide some basis for comparison with the pair programmers. Finally,
we will ask all of our participants to rate the realism of experimental task and environment, to

Chong, Plummer, Leifer, Klemmer, Eris, and Toye

PPIG 2005 Sussex University www.ppig.org

determine whether we succeed in producing a setting representative of that in which a professional
programmer normally works.

4 Current Progress

We have conducted eight weeks of preliminary fieldwork at Company A, as part of an exploratory
study [15] on Extreme Programming (XP). Company A had a formed a new project team in January of
2004 to develop a Java-based network administration tool. By June of 2004, when observations began,
the team had 12 members. Team members worked in a shared bullpen-like space, programming in
pairs on dual monitor, dual keyboard work stations. With the exception of the team coach, the team
members nearly always worked in pairs. Each observation session focused on a single pair of
programmers, usually which ever pair seemed most interesting. The observer sat behind the pair during
the session, taking notes on the dialogue exchanged between the pair, what actions transpired and their
interactions with the rest of the team. Periodically, the observer would prompt the programmers to give
brief explanations of their actions. When possible, the observer made an audio recording of the pair
programming session, which was subsequently transcribed. The audio transcript and the notes were
then rewritten to produce a detailed record of the session’s events.

We then reviewed these transcripts using qualitative analysis techniques, beginning with multiple
readings of the session records and open coding. As we refined the set of behaviors that we found
interesting, we went back and recoded the data to rigorously identify any patterns of behavior that
might be present. In current form, the data are coded for patterns of interaction between the
programmers, shift in attentional focus (including interruptions), technical interdependence of the pair
and the rest of the team, and asking questions of other team members. Our conceptual framework is
largely based on this analysis.

We are currently in discussion with Company B for site access. We plan to return to Company A to
conduct further observations of their team, focused primarily on pair programming. We will then
analyze this field data to further refine and verify the components of our conceptual framework.
Following Eris’s approach [24], we will use the results of the fieldwork to identify salient aspects of
pair programming for study in further detail in the laboratory.

We are also developing software tools that will aid in the analysis of the experimental sessions. This
software will operate as a plug-in to the Eclipse IDE, and will log semantic operations such as class
creation, method creation, and refactoring. It will then time-correlate each of these semantic operations
with the video stream, and produce a visualization of activity over time. This logging can be used to
generate automatically a set of measures for comparing development styles, and serves as an analysis
baseline that can be extended by hand-coding.

References

1. Nicolescu, R. and R. Plummer, A Pair Programming Experiment in a Large Computer
Course. Romanian Journal of Information Science and Technology, 2003. 6(1-2): p. 199-216.

2. Williams, L., et al., Strengthening the Case for Pair-Programming. IEEE Software, 2000. 17:
p. 19-25.

3. Cockburn, A. and L. Williams. The Costs and Benefits of Pair Programming. in First
International Conference on Extreme Programming and Flexible Processes in Software
Engineering (XP2000). 2001.

4. Williams, L. and R. Kessler, Pair Programming Illuminated. 2003, Boston, MA: Addison
Wesley.

5. Hanks, B., Empirical Studies of Pair Programming, in 2nd International Workshop on
Empirical Evaluation of Agile Processes (EEAP 2003). 2003.

6. Nosek, J.T., The Case for Collaborative Programming. Communications of the ACM, 1998.
41(3): p. 105-108.

7. Hanks, B., et al. Program Quality with Pair Programming in CS1. in 9th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education. 2004.

Chong, Plummer, Leifer, Klemmer, Eris, and Toye

PPIG 2005 Sussex University www.ppig.org

8. McDowell, C., et al. The Impact of Pair Programming on Student Performance, Perception
and Persistance. in 25th International Conference on Software Engineering. 2003.

9. Beck, K., Extreme Programming Explained: Embrace Change. 2000: Addison-Wesley.
10. Dick, A.J. and B. Zarnett, Paired Programming & Personality Traits, in XP2002. 2002.
11. Hutchins, E., Cognition in the Wild. 1995, Cambridge, MA: The MIT Press. 381.
12. Moreland, R.L., L. Argote, and R. Krishnan, Socially shared cognition at work: Transactive

memory and group performance, in What's social about social cognition? J.L. Nye and A.M.
Brower, Editors. 1996, Sage: Thousand Oaks, CA. p. 57-85.

13. Laughlin, P.R., et al., Generality of a theory of collective induction: face-to-face and
computer-mediated interaction, among of potential information, and group versus member
choice of evidence. Organizational Behavior and Human Decision Processes, 1995. 63: p. 98-
111.

14. Wegner, D.M., Transactive memory: A contemporary analysis of the group mind, in Theories
of group behavior, B. Mullen and G.R. Goethals, Editors. 1986, Springer-Verlag: New York.
p. 185-205.

15. Chong, J., Social Behaviors on XP Teams: A Comparative Study, in Agile 2005. 2005:
Denver, CO.

16. Dourish, P., Where The Action Is: The Foundations of Embodied Interaction. 2001,
Cambridge, MA: The MIT Press.

17. Garfinkle, H., Studies in Ethnomethodology. 1967, Englewood Cliffs, NJ: Prentice Hall.
18. Tang, J.C., Toward an understanding of the use of shared workspaces by design teams admin.

1989, Stanford University.
19. Brereton, M.F., The role of hardware in learning engineering fundamentals: An empirical

study of engineering design and product analysis activity. 1998, Stanford University.
20. Mabogunje, A.O., Measuring conceptual design process performance in mechanical

engineering: A question based approach. 1995, Stanford University.
21. Eris, O., Perceiving, comprehending and measuring design activity through the questions

asked while designing. 2002, Stanford University.
22. Strauss, A. and J. Corbin, Basics of Qualitative Research: Grounded Theory Procedures and

Techniques. 1990, Newbury Park, CA: Sage Publications.
23. Glaser, B. and A.L. Strauss, The Discovery of Grounded Theory: Strategies for Qualitative

Research. 1967, London: Wiedenfeld and Nicholson.
24. Eris, O., Effective Inquiry for Innovative Engineering Design. 2004, Boston, MA: Kluwer

Academic Publishers.

Chong, Plummer, Leifer, Klemmer, Eris, and Toye

PPIG 2005 Sussex University www.ppig.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

