
r

r

r

r

r

r

Fl
!

r

r

r

r

r
I

r

[

USING SYSTEMATIC ERRORS TO INVESTIGATE THE DEVELOPING
KNOWLEDGE OF PROGRAMMING LANGUAGE LEARNERS

Judith Segal1 , Khurshid Ahmad1 and Margaret Rogers2

University of Surrey,
Guildford, SURREY GU2 5XH

1 Centre for Information Technology Research, Department of Mathematics

2 Dept. of Linguistic and International Studies.

Abstract

Inspired by recent research into second natural language acquisition, we
investigated the systematic errors made by a large group of programming language
students over a period of time. The major objective was to study the development
of the students' knowledge. In this paper, we discuss one aspect of that
development. The students had major difficulties with using the semicolon, the
sequencing operator of the programming language ALGOL 68. We suggest that this
is due to the fact that students did not immediately understand a specific simply
stated rule of syntax, introduced in a decontextualised way, but rather that their
understanding of the rule developed with their increasing experience of using it in
different contexts.

1. Introduction

This paper describes the use of a learner-centred longitudinal study to illuminate
how knowledge of one aspect of a programming language develops. We claim that a
learner, when presented with a seemingly simple syntax rule, does not always
immediately and completely assimilate the rule. On the contrary, we argue that, in
general, the learner's understanding of the rule, depending on an understanding of
the terms involved in the expression of that rule, develops as the rule is met in an
expanding range of contexts. This is in contrast to the assumption of many
teachers that when a simple syntax rule is taught, it is learned, and any errors
made in applying it thereafter are the result of careless lapses. Evidence for our
claim is based on a study of systematic errors made by the same group of learners
over a period of time.

Recent work in the field of natural language acquisition (NLA) inspired both the

longitudinal study from which our results are derived, and the use of a learner's

systematic errors to illuminate her cognitive processes. In section 2, we discuss

why NLA studies are of interest to researchers investigating the learning of

programming languages, and the role of errors in such studies. Section 3· considers

research into programming language learning (PLL). In recent years, PLL

researchers have used errors as evidence of language-using and language-learning

strategies, but, in the absence of any completed large-scale longitudinal studies,

have not considered developmental issues. In section 4, we describe the large

scale longitudinal study carried out at the University of Surrey. The evidence it

provides of learners gradually widening their understanding of the scope of a rule of

syntax is presented in section 5. Conclusions are presented in section 6.

2. Natural Language Acquisition Studies

The relevance of NLA studies to PLL researchersl

There are obvious analogies between natural and programming languages. Both are

instruments of communication and both involve the use of vocabulary and rules of

syntax and semantics. In addition, the programming community has come to realise

that not only does the efficiency of a program depend on making best use of machine

resources, which was perhaps the main focus of attention in the 1960's and

1970's, but also on being comprehensible to people who may want to use, extend or

adapt it. Soloway & Ehrlich (1984), Soloway (1986) and Joni & Soloway (1986)

have pointed out that expert programmers use implicit rules of programming

discourse, such as giving variables names which reflect their function, and that the

violation of such rules makes programs very difficult to understand. This situation

is analogous to that of natural language communication which also functions most

efficiently when certain conventions are observed by the participants. These

similarities suggest that researchers into PLL might profit from an examination of

studies of natural language learning. Studies of second natural language learners

are of particular relevance: learners of both second natural languages and

programming languages have experience of learning and using at least one other

language, the mother tongue.

Natural Language Acgujsjtjon Studjes and the role of errors

1 *The distinction between the two terms 'acquisition' and 'learning' is somewhat

blurred: in NLA studies 'learning' has been taken to mean as occurring within a more

formal framework than 'acquisition'. In this paper, we shall use the two terms

synonymously.

2

,

1

l

1

i

� I

r

r

r

!
i

r

r
!

r

r

r

r

r

r
L

r

r

r
!

F
!

The current view of the development of a child's first language is that it is a
continual process in which the child tries to make sense of the language by actively
developing a rule-base for deploying the language's vocabulary. The same process
is considered to occur when a second natural language is acquired: the learner
actively constructs a rule-base which develops towards the rule-base of the target
language (see, e.g. Ellis (1986) for an overview).

In order to consider developmental issues, it is necessary to conduct longitudinal
studies, in which the same group of learners is investigated over a period of time.
The importance of longitudinal studies has not always been fully acknowledged. In
the 1970's, researchers into second NLA, investigating the order of acquisition of
certain language constructs, attempted to use cross-sectional studies, arguing that
the more accurately a certain construct was used, the earlier it had been acquired.
Rosansky (1976) presented evidence to refute this argument. She argued that "it
would be far more profitable albeit more costly and time consuming to undertake
more detailed longitudinal investigations of second language acquisition"
(1976:424).

One way of gaining insight into the developing rule-base of the learner is through a
study of her systematic errors. Before the seminal paper of Corder (1967), there
was a tendency on the part of teachers to lump all instances of incorrect language
usage together. Systematic errors, in which the incorrect usage matches the
user's intentions, were not distinguished from unsystematic slips, in which usage
does not match the user's intentions. Corder (ibid) argues that systematic errors
may offer insights into the current state of the learner's developing rule-base, as
well as into the strategies being deployed by the learner to use the language, and to
organise and learn the rules of the language. For example, were a learner of English
to say "they runned away" one might deduce that she has internalised a rule that
past tenses by default end in -ed. The learner has presumably used
(over)generalisation from examples to construct her rule. One could not make the
same deduction from a correct usage, for example, "they walked away", as the
learner may not be applying any internalised rule but may simply have remembered
the whole phrase en bloc.

Besides generalisation, another learning strategy which may give rise to errors in
second NLA (or PLL) is that of knowledge transfer, where an existing schema is
adapted to a new situation. Here the learner already has knowledge of a language:
such knowledge may be helpful, or may cause negative transfer errors, also called
interference errors, when, for example, a syntax rule which is correct for the
better known language is incorrectly applied to the new language.

3

3. Programming Language Learning Studies.

Term;noJogy

We begin by explaining our terminology. As in the NLA studies, we shall aim to call
instances of incorrect language usage 'errors' when they match the learner's
intentions and 'slips' when such intentions are not matched. A learner should thus
be able to recognise and correct a slip more easily than an error and slips will in
general be made less consistently than errors. However, since the distinction
between the two depends on knowing or inferring the learner's intentions, and since
learner behaviour is rarely totally systematic, it is not always a straightforward
matter to establish whether an incorrect usage is an error or a slip.

There is the added complication of bugs: the term 'bug' seems to be applied by
computer scientists both to instances of incorrect programs or parts of programs
and to misconceptions which will result in systematic instances of incorrect
programs. Unfortunately, this ambiguous term, which we shall try to avoid, is
very widely used in computer science literature.

PLL studjes and the changing role of errors

Du Boulay and O'Shea (1981) review the literature on novices learning
programming languages published in the 1970's. They report on several studies of
learner behaviour, for example, studies of which language constructs are most used
and which most prone to error. Errors are classified as syntactic, semantic,
logical, clerical and stylistic. Of especial interest among the studies reported is
that of Ripley and Druseikis (1978) into the 'errors' (which term the writers take
to mean any instance of incorrect language usage) made by students learning Pascal.
The writers were primarily interested in comparing the efficiency of different
compilers and investigated the errors made by student programmers in order to
build up a database of typically erroneous programs. Their study did not distinguish
between errors and slips, probe the causes of errors or make any allowance for the
fact that the nature of the errors made may depend on the level of experience of the
programmer. Errors were classified by their surface characteristics into single
token (missing, incorrect or extra) and multiple token errors. This study is of
interest both because it is one of the few such empirical studies published at the
time and because Pascal belongs to the same family of programming languages as
ALGOL 68, the language of our study.

In the 1980's, studies of errors made by programming language learners have
become less behaviouristic and more learner- as opposed to language-centred, as
researchers, like those involved in NLA, have sought to investigate the possible

4

1

l

l

'i
l

1

1

�
I

,,
!

rn;
I

1

l

,
\

l

'i
J

.r

r

r

r

r
1,

r

r

r

r

r

r

l
L

r

r

r

r

r

causes of errors in terms of the learner's own using and learning strategies.
Among such studies are those of Jones (1982), Bonar & Soloway (1985), Du
Boulay (1986), Pea (1986), Sleeman et al. (1986) and Spohrer & Soloway (1986).
These studies are mainly concerned with the learning of procedural languages such
as Pascal, but many types of errors might be independent of the programming
language being learnt.

Learners often appear to attempt to repair gaps in their knowledge of programming
language usage by referring to natural language usage, in particular to the
assumptions made in natural language communication regarding the world knowledge
and intentions of the other actors in the communication (see, for example, Bonar &
Soloway, Pea, Du Boulay, and Sleeman et al.}. Errors which may be accounted for

Cl

by misapplied learning strategies are common: overgeneralisation (also called
misgeneralisation) is recognised as a common source of errors, as is negative
transfer. Confusion between natural language semantics and programming language
semantics is commonly noted, for example, using THEN (part of the Pascal IF-THEN
structure) to introduce a continuation step (Bonar & Soloway}, or expecting the
Pascal WHILE <condition> to continuously test for the condition rather than just once
on each entry to a loop (Du Boulay). There are also errors which may be accounted
for by negative transfers from mathematics, the system command language and, of
course, other programming languages. Another source of errors is inadequate or
inappropriate mental models of the computer or of the semantics of the
programming language constructs (see, for example, Jones, and Du Boulay}.

Opinion is divided as to whether language syntax does or does not cause big
problems for novices. Presumably, this depends on such factors as the design of
the language and the novice's previous experience with formal languages. Spohrer
and Soloway (1986), investigating only syntactically correct programs written by
university undergraduates, found that misconceptions regarding language
constructs did not pose major problems. What did cause great difficulty was fitting
the pieces of the program together i.e. composing the plans, 'plan' being the term
given to a stereotypical block of code achieving a standard goal. The results of our
study, as reported in section 5, demonstrate an analogous situation when
considering syntax errors: students have great problems in fitting language
constructs together.

Developmental Issues

We do not know of any instance (except that which will be described later in this
paper} of a study of systematic errors being used to investigate the developing
knowledge of the PL learner. As is pointed out by Leventhal & lnstone (1988},
although there have been studies investigating the separate characteristics of
novices and experts, and the differences between them, "little research has

5

focused on the process of becoming an expert" (1988:1). Leventhal & lnstone
describe a pilot study and proposal for one large-scale longitudinal study of
programming language learners to be conducted at Bowling Green State University
investigating approximately 60 computer science students learning Pascal over the
course of four years. It is proposed that in the course of the study, tasks very
similar or identical to those which in the past have successfully demonstrated the
differences between novices and experts, will be presented to the students at
intervals under carefully controlled conditions.

4. The Surrey Longitudinal Study

The learner-centred longitudinal study, begun in 1987 at the University of Surrey,
from which the data to be presented in section 5 were collected, was much more
flexible in both its aims and operation than that proposed by Leventhal & lnstone.
Task-centred studies, in which data are collected under carefully controlled
conditions, provide valuable information. However, in order to design such tasks,
one must first have a hypothesis for the task to test. The tasks in the Leventhal &
lnstone study appear to be concerned with charting the diminishing difference
between developing learners and a prototypical expert. We chose to focus on the
learner rather than on any abstract expert, and had no preconceptions as to how the
learner's knowledge might develop.

Our learner-centred longitudinal study (described fully in Ahmad et al. 1988)
investigated 100 undergraduate engineering students (aged eighteen plus) learning
the procedural programming language ALGOL 68. Our overall aim was to build as
complete a pictute as possible of the programming language learner. The aim of
that section of the study with which this paper is concerned was, following the
precedent set by the second NL researchers, to examine the errors made by the
learners over the period of the study with a view to gaining some insight as to how
their PL knowledge was developing.

The course consisted of one lecture a week over a period of two years beginning in
1987. Students could gain "hands-on" experience whenever they wished
theoretically: in practice, "hands-on" practice was limited by a system of
rationing the number of submissions made to the compiler and by practical
difficulties caused by the number of potential users of the system. The students
had all gained high scores in mathematics and science subjects in High School, and
90% of them had some previous experience of programming. This latter experience
invariably involved BASIC: for 60% of all students, BASIC was the only high-level
programming language they had encountered; the next most common procedural
language was Pascal, of which 20% of all students had some experience. Over 40%

6

l

,,,
!

l

l

.,
I

I
I

�
I

l

l

l

I
I

l

r

r

rra
(

r
F
I

r

r

r

r

r

r1
I

r

F'
l

r

F
1.

of all students had previously studied a programming language formally in a course
leading up to a public examination.

Pata conect;on

We collected data by a variety of means: a copy of each program submitted by
every student to the compiler was kept; questionnaires which included questions on
comprehension and debugging as well as on the students' perceptions of the course
were handed out and returned at each lecture; the investigator observed every
lecture, 23 in the first year and 21 in the second, and the lecturer was interviewed
as to his aims and objectives.

The learner-centredness of the study made the multiplicity of methods of data
capture essential, both in order to generate and then to test hypotheses as to how
the learners' knowledge was developing, and to provide confirmatory evidence in
the absence of controlled experiments. Data from neither productions (those
programs submitted by the students to the compiler) nor questionnaires were
'clean', in the sense of being carefully controlled. The data from the productions
were very 'noisy' (a typically erroneous program would have errors and slips of
many different types); the programs were produced in response to the lecturer
setting assignments, five throughout the year, which tended to concentrate on
specific language constructs rather than on fitting the constructs together; and it
became apparent as the course progressed and the assignments became more
complex, that individual productions were not always the work of individual
students. As to the data collected from the questionnaires, which generally
concerned comprehension and debugging, the questionnaires were answered within
the relatively informal conditions of a lecture hall and on a voluntary basis, though
between 70% and 100% of those students present did return the questionnaire at
the end of each lecture. However, using data from both productions and
questionnaires in conjunction provided valuable information. Unlike the Leventhal
& lnstone study, we had no tasks prepared prior to the beginning of the study but
began by collecting all the first few programs submitted by each student to the
compiler and examining the type, frequency and persistence of errors. From this
evidence and data collected on the questionnaires, we formed hypotheses as to how
the students' knowledge was developing, and tested these hypotheses by presenting
the students with prepared debugging and comprehension questions on the
questionnaires. Answers to such questions were analysed immediately, and
frequently gave rise to new or amended hypotheses which were again tested.
Details will be given in section 5.

The study was organised in such a way that individual case histories can be extracted
without difficulty. However, in what follows, we shall present results in the form of
aggregate group rather than individual data. In the teaching situation of the study,

7

where one lecturer taught 100 students, it was the aggregate group that the lecturer
addressed, and aggregate trends that he was interested in.

5 . Evidence of development

In this section, we describe how the study of errors made over a period of time can
offer insight into how a simple rule of syntax may not be completely assimilated
when first presented. We offer evidence to show that understanding of the rule was
enhanced as the rule was encountered within a widening range of contexts, and
suggest that the learner's developing understanding of the nature of the terms used
in defining the rule plays a crucial role.

We had no preconceived notions as to where students' difficulties would lie, but it
quickly became clear that they encountered problems with the use of the semicolon
as a sequencing operator. This finding would come as no surprise to Ripley and
Druseikis, who in their 1978 study of student errors in Pascal, commented that "if
there is one thing that seems to appear time and time again in the error sample, it's
the semicolonl" (1978:235). They did not, however, attempt to account for this.
The lecturer of the course which is the subject of our investigation also expected
the students to have problems using semicolons. He attributed such errors to
careless lapses, postulating that the students' experience of natural language usage
had not prepared them for an obligatory form of punctuation. We shall demonstrate
that the pattern of errors in omitting semicolons showed a systematic nature which
cannot be explained by reference to mere carelessness.

The rule toe using the semicolon as a separator

Probably the first control structure that a student meets when learning a
procedural language is sequencing, i.e. how to arrange for the computer to execute
statement one and then statement two and so on. In ALGOL 68, the sequencing
operator is the semicolon. A rule for using the semicolon was introduced in the
fourth lecture of the course viz:

·Given a;b where a and b are processes, ';' means 'wait until process a has finished and

then start process b' •.

In the previous lecture, they were told that:

•a process is anything which processes data"

8

�;
I

mn
I
i

�
!

r

r

r

r

I L

r

r

r

r

r
p;;ll
I

r

r

r

r

j1
[

In other words, the semicolon in ALGOL 68 is used as a statement (process)
separator, as in Pascal, with the difference that most Pascal compilers will accept
empty statements, so, for example, putting a semicolon immediately preceding a
construct terminator is acceptable in most versions of Pascal, but unacceptable in
ALGOL 68.

We shall present evidence that the students did not immediately understand the rule
and hence were not able to apply it in new contexts. We claim that what caused the
students difficulty was understanding the range of the term 'process'.

The Empirical Evidence

The lecturer's intention was to concentrate initially on the flow of control through a
program. He introduced the sequencing operator, the semicolon, in lecture 5,
procedures in lecture 5, DO loops in lecture 7 and IF structures in lecture 10.
Subsequent lectures dealt with data structures and other issues.

The lecturer set the first two assignment� in lecture 5 and lecture 7. 2 The first
assignment was to write a program which would print an empty box as output:

.
• •
• •
•
.

The assignment was designed to test the students' use of the sequencing operator, and
of procedures, which they were required to use, and which were taught in lecture 5.
A model answer is shown in figure one. As the lecturer's intention was to
concentrate initially on control structures, he provided the students with a library of
self-explanatory primitives viz print a star, print a space and next line (these primitives are
predefined procedures). In the model answer (figure one), lines 3 - 7 are concerned
with declaring procedures and lines 8 - 12 with calling (executing) them.

2 It is perhaps worth recalling at this point that each year of the course consisted of one

lecture a week for approximately 25 weeks. Thus, lecture 5 was in week 5, and so on.

9

N .B. line numbers are for reference only
1 . PROORAM assignmentl
2 . (
3 . PROC spaces = VOID: (print a space; print a space; print a space);
4 . PROC star = VOID: print a star;
5 . PROC stars = VOID: (star; star; star);
6 . PROC outer line = VOID: (star; stars; star; next line);
7 . PROC inner line = VOID: (star; spaces; star; next line);
8 . outer line;
9 . inner line;
1 0 . inner line;
1 1 . inner line;
1 2 . outer line
1 3 .)
1 4 . FINISH

figure one; Model answer tor the first ass;gnment,3.

In. order to investigate how this assignment was executed, 20 students were chosen

at random, and all the submissions made to the compiler by each student were

examined. Of those 20 students, 8, in at least one of their submissions, omitted the
semicolon after the procedure declarations but not elsewhere. This was despite the

fact that the students had all seen a program involving a procedure declaration

followed by a semicolon, one of only two program examples presented up to this point

of the course.

For assignment two, students were required to write a program which would print as
output three stacked boxes of stars of size 7 x 7, 5 x 5 and 3 x 3 respectively:

.
• • • • • • •
• • • • • * *
• • • • • • •
• • • • • • •
• • • • • • •
* * * * * * *

* * * * *

* * * • •

• • * • *
• * * • •
• • • • •
* • *
• • •
• • •

There are many possible ways of tackling this problem using, for example, nested

loops, taught in lecture 7, or procedures with parameters, taught in lecture 8. One

possible model answer using nested loops is shown in figure two. Other answers,

written by 1 1 of the 20 students investigated, involved the use of procedures.

Omitting the semicolon after declaring a procedure was still a very dominant error,

3 'VOID' on lines 3 - 7 indicates that a call to any of the procedures declared in these

lines returns no value to the program.

1 0

,

i
)

l

1

l

,

l

i

i
l

I
l

1

r

r

r

r

r

r
l

r

r

r

r

r

r

r

r

r

r

F1
I

r

evidenced by the fact that it was made by six of the 1 1 procedure-using students. Of
these six, five had made (and corrected) the same error on assignment one, where
the sixth student had used the semicolon correctly. The most frequently made error
was omitting the semicolon after OD when the loop occurred as part of a sequence
(line 1 O in figure two). 1 1 /20 of the students made this error. (Note that a
semicolon must not be placed after the OD on line 1 2 as it comes before a terminator
of the outer loop, nor on line 1 3 which immediately precedes the program
terminator).

figure two;

1
2
3
4 .
s .
6.

N.B. line numbers are for reference only
PROGRAM ass2

FOR n FROM 7 BY -2 TO 3
DO

7.

8 .

9 .

10.
1 1 .
1 2.
13 . OD
14.)
15. FINISH

TO n
IX)

TO n
IX)

print a star
OD.
next line

a possible answer to assignment two,

In order to investigate further, students were asked to correct the following program
as included in the questionnaire of . lecture 12:

The following program is syntactically incorrect (as usual, the line numbers arc included for reference purposes only):
1 . PROGRAM pa1tcm
2. (
3 . PROC stars = VO.ID: (print a star;print a star. print a star)
4.' PROC spaces = VO.ID: (print a space; print a space; print a space)
S . PROC line one = VOID: (spaces; stars)
6. PROC line two = VO.ID: {stars; spaces; stars)
7 . TOS
8 . DO

9. line one;
10. next line;
1 1 . line two;
1 2. next line;
13 . OD
14. stars;
15. stars;
16. stars;
17.
1 8. FINrSH

figure three; a debugging task set on lecture 12

(+) (The + and -
(+) signs in
(+) parentheses
(+) indicate

where, in a
correct solution,
semicolons

should be
inserted and

(-) omitted. Of
(+) course, this

information
was not

(·) given to the
students.)

Here the results were that 78% of a population of 78 correct ly inserted the
semicolons after the procedure declarations on lines 4 - 6 but only 28% correctly

inserted the semicolon needed after the OD4 on line 1 3. (It should be noted that the
semicolons occurring on lines 12 and 1 6 before the loop and program terminator also

4Recall that DO loops were taught in lecture 7.

1 1

constitute errors. However these errors are not relevant to this particular
investigation.)

The hypothesis was formed that what was causing the students such difficulty in
applying the semicolon rule was the word "process". They were happy that simple
statements, e.g. print a star, were processes, but found it difficult to accept
immediately that complex structures such as procedure declarations or loops were
also processes. The results of the error analysis of the programs produced for the
assignments spanning lectures 5 - 9 suggest that the students found it very difficult
at this stage of the course to accept that a procedure declaration is an example of a
process. Perhaps a procedure declaration which just adds an identifier to an
environment is not conceived of as actively processing dat�. By lecture 1 2, the
analysis of answers to the debugging task in figure three suggests that the students'
understanding of the term 'process' had widened to include procedure declarations,
but did not yet encompass a loop structure constructed from simpler processes.

In order to test the hypothesis that students did not yet understand . that the term
'process' encompasses complex block structures , the students were presented with
the following question on questionnaire 1 7, at lecture 1 7:

1 2

l

�
!

�
I

1

l

i

�

r

r

r

r

r

r

r

r

r

r

r

r

r

i

rm
I

N.b. the line numbers are for reference only
The following program is syntactically correct EXCEPT that I have left out all the semi-colons:

1 . PROGRAM pattern
2 . (
3 . PROC pattern = (INf r) VOID:
4 .

5 .
6 .

7 .

8 .

9 .

1 0 .

1 1 .
1 2 .
1 3 .
14 .
1 5 .
1 6 .
1 7 .
1 8 .

1 9 .
20.
2 1
22.
23 .
24.
25 .

26.
27 .

28 .
2 9 . pattern (3)
30.)
3 1 . FINISH

(FOR n TO r
00

1'0 3
00

print ("a")

print ('b")
print ("a")

OD

print (newline)
IFn = 2 THENTO n

ELSE TO n

FI
T0 3
00

print ("aba")

OD

print (newline)
CD

(i) Please insert all the semi-colons missing above

00
print("a")
print (newline)

CD

00
print('b")
print(newline)

CD

(ii) Please draw below the output you would expect from the corrected program.

figure tour; Debugg;ng guestjon asked at week 1 Z ot Year One,

(+)

(+)

(+)
(+)

(+)

(+)

(+)

(+)

(+)

(N.B. As in figure three, the lines at the end of which semicolons should be inserted
are marked by (+)).

Semicolons were required at lines 7, 8, 10, 11, 14, 19, 22, 26 and 28 (after the
closing parenthesis). If the hypothesis were correct i.e. that students found it
difficult to accept that complex structures such as loops or selection constructs were
in fact single processes, then, looking at the number of people who omitted semicolons
on a line-by-line basis, one would expect peaks in these numbers at lines 10, 22, 26
and 28. The frequency of semicolon omissions on a line-by-line basis is given in
figure five.

freguency of semjcoroo omission

Line number z

freguency 4 4 17 8 4 5 2 4 2 7 3 1

1 3

5 5

5 0

4 5
4 0
3 5
3 0
2 5
2 0
1 5
1 0

5
o --��-....

line line line line line line line line line
7 8 1 0 1 1 14 19 22 26 28

Figure five; frequency of semicolon omission on a Boe-by-line basis Tota/

number of students = 58

The peaks of the frequency of semicolon omission are as predicted, at l ines 1 o, 22,
26 and 28 i.e. semicolons are most likely to be omitted at the termination of some
complex structure in sequence with other processes. This would appear to support
the hypothesis that the students at this point of the course did not appreciate that
complex structures such as loops are in fact single processes.

Corroborative evidence was obtained from a similar question asked of the students
who entered the course in the following year, 1988, half-way through their f irst
year. These students were of similar background to the ones investigated above and
were taught by the same lecturer according to the same syllabus.

The question was:

1 4

,

l

l

l

I
I

1

1

l

,
!

�
i

,

l

i
i

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r
r1
I

. PLEASE ANSWER THIS QUESTION UNAIDED.
The following program is syntactically correct except that I have omitted all the semicolons:
1 PROGRAM test894
2 (
3 T0 4
4 DO
5 print a star
6 OD
7
8
9
1 0

next line
FOR aT0 4
DO

1 1
1 2

1 3
1 4

1 5
1 6
1 7

1 8
1 9
20
2 1

22
23 OD
24)
25 FINISH

print a star
IF ODD a THEN

El.SE

FI
print a star
next line

TO a
DO

print a star
OD

next line

print a star
next line

Please clearly insert all the missing semicolons.

{ +)
(+)

(+)

{ +)

(+)

(+)
(+)

(As usual, (+)
indicates those
lines at which
a semicolon should
be inserted.)

figure sjx: a debuggjng guestjon set ia the middle of their first year for the 1988
entry students.

The lines at the ends of which semicolons are omitted are 6, 7, 10, 15, 18, 20 and
21. If the results of the entry of the previous year were to be replicated, we would
expect that the greatest frequencies of semicolon omission would be on lines 6, 15,
and 20. The results are shown in figure seven.

freguen� of semicglon omission
Hne number � z 10. 1.5 1.8. 2..Q 2.1

tceguency 12 5 9 16 3 2 5 2

1 5

5 0

4 0

3 0

2 0

1 0

0

line 6 line7 line
1 0

line line line line
1 5 1 8 20 2 1

Figure seven : semicolon omission on a line-by-line basis <1 988 entry).

Total number of students = 54

The results as shown above show a similar trend to the findings of the investigations
with the first group of students: the students tend to omit semicolons where a
complex process is in sequence with other processes. There is further evidence of
these dominant errors being the result of misconceptions rather than simple
coincidence from the consistency of the errors. For example, all the students who
omitted the semicolon after the OD on line 6 also omitted it after the OD on line 1 5.

In the second year of their course, the original (1 987 entry) group of students were
presented with the same debugging question on two of their weekly questionnaires:
once in week 8 and again in week 20. The question is as shown in figure eight.

1 6

r.i;
\

l

,,
I

l

1

l

=,

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

·,

r

r
i

This program is syntactically correct except that I have omitted all the semicolons.

Please indicate clearly where the semicolons should be inserted. (N.B. the line numbers are for my reference
only)

1 .
2 .
3 .
4 .

5 .

6 .
8 .

9 .

1 0 .
1 1 .
1 2 .
1 3 .
1 4 .
1 5 .
1 6 .
1 7 .
1 8 .
1 9 .
20.
2 1 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .

PROGRAM test year 2
(
PROC pattern = (INT r)VOID:

(
PROC stars = (INT s)VOID:

TO s
DO

print a star
OD

PROC spaces = (INT t)VOID:

FOR n TO r
[X)

TO t
00
print a space

OD

IF ODD n THEN stars (n)

next line
CD
TOr
DO

print a space
stars(n)

ELSE spaces (n)
print a star

stars(2*r + 1)
next line

OD
3 1 .)
3 2 . pattem(3)
33 .)
34 . FINISH

figure eight; Debugging guestion set in weeks a & 20 of year two of the

1 987 entry.

The question was designed to be similar but not identical to the question asked in week
1 7 of year one. A correct solution should have semicolons inserted at lines 1 0, 1 5,
1 8, 1 9, 21 , 23, 25, 28 and 31 . If the misconception that complex structures cannot
be single processes were to remain, one would expect dominant error frequencies at
lines 23, 25 and 31 .

The results are shown in figure nine, (week 8) and figure ten, (week 20). For the
sake of comparison, we repeat figure five. Of the 77 students who answered at least
one of the three questionnaires being compared (1 7 of year one, 8 and 20 of year
two) , 23 answered all three, and 25 answered two of the three.

1 7

5 5

5 0

4 5
4 0
3 5
3 0
2 5
2 0

1 5
1 0

o-��--

l ine line line line line line line line line
7 8 1 0 1 1 1 4 1 9 22 26 2 8

figure five revisited; freguency of sem;coJoo omjssjon in response to guest;on on

guestionnaire 1 Z of year one; total number of students - 58 (Predicted maximal

error frequencies at lines 1 0, 22, 26 and 28) .

4 0

3 0

20

1 0

0 +--...�-...
l ine line line line line line line line line
1 0 1 5 1 8 1 9 2 1 23 25 28 3 1

figure njne; tregyency ot semjcoJon omission in week a of year two 1D1al

number of students = 49

4 0

3 0

2 0

1 0
0 ...--....-..

l ine line line line line line line line line
1 0 1 5 1 8 1 9 2 1 23 25 28 3 1

figure ten; treguency of semicolon omjssjon in week 20 of year two total

number of students = 41

In figures nine and ten, if the misconception remains that complex structures, such as

1 8

1

ii
1

l

l

1

l

l

,

1

,

I
i

I
i.

r

r

r

r

r

r

r

r

r

F"1
I

rm
i

r

loops or IF st ructures , cannot be single processes , the predicted maxima l error
frequencies would be at lines 23, 25 and 31 . Figure nine shows some of the predicted

pattern , though not as pronounced as that of figure five. 5 What is particu larly
striking in comparing figures five , nine and ten , is how , as time progresses, and the
students gain more experience , the charts of semicolon omission become f latter. The
predicted pattern of dominant errors shown in figure five , half-way through the first
year of the course, gives way to the almost flat distribution of figure ten , at the end
of the course. There is no longer the marked dominance of certain errors in figure
ten , indicating that the students' understanding of the term 'process' has widened to
inc lude complex looping and se lection structures , and that their semicolon omission
errors occur at random (and might thus be referred to as 'slips').

Having compared the overal l pattern of the frequency of semico lon omission errors ,
we now turn our attention to specific constructs. The fol lowing tab le makes a direct
comparison between similar instances of constructs in the debugging questions
relevant to figure five and figures nine and ten (the questions are given in figures four
and eight):

5 As well as that predicted of lines 25 & 31 . lines 1 8 & 21 in figure nine have a greater

error frequency than the average . Quest ion ing the students led to the hypothesis that this

was due to problems of spacing: the students expected lines containing key (reserved)

words (those in uppercase letters in this example) to contain o n ly key words. Future

research might investigate to what extent students are influenced by spacing in free

format languages such as ALGOL 68

1 9

week lZ

year l

week s

year 2

week 20

year 2

popu lation 5 8 4 9 4 1
[23 students answered all three questionnaires; a further 20 answered that of year 1 and one

of those of year 2)

Omission of semicolon

C I > after complex proc.
decla ration
(line 28 of fig.4,

31 of fig.6)

(i i > After po loop
(lines 1 O & 26 of

fig.4, 25 of fig.6)

31 (53%)6

1 7 (29%)

27 (47%)

(i i i)Atter IF construct 24 (41%)

(line 22 of fig.4,

23 of fig.6)

21 (43%) 7 (1 7%)

1 4 (29%) 9 (22%)

7 (1 4%) 1 0 (24%)

Table one; 1able of comparjson of sem;colon omission io similar instances ia week

1 z of year one, and weeks a & 20 of year two,

The table shows that considering semicolon omission after each construct in the left

hand column separately, the trend in the proportion of students who make such an

error over the period is undeniably downward.

6 . Summary and discussion

In this section, we consider the specific conclusion of the study, some directions for

future research , and a discussion of wider issues.

We have presented evidence that students do not necessari ly understand a simply

stated syntax rule completely from the outset, as evidenced by their failure to use it

correctly in new situations. Rather their understanding of the rule, depending on their

understanding of the terms used in defining that rule, develops as they meet the rule

in an expanding range of contexts. We suggest that what caused the difficulty in the

srhe percentages g iven are the percentage of the population making that error.

20

1

r::;
l
i

i

f1
[

F1
I

r

Rn
!

rim
I

F'

r

f1m1
I

r

r

r

r

instance considered in this paper was the use of the term 'process', defined in very
general terms at the outset of the course (see section 5). The results reported in this
paper demonstrate that only after much experience of usage, including at least two
assignments, did the students' understanding of the term 'process' develop to include
procedure declarations. The analysis of the replies to questionnaire 17 (figures four
and five) indicate that at lecture 17, two thirds of the way through the first year, the
students' understanding did not include complex language structures, defined in terms
of other structures, within the compass of the term. By week 20 of year two,
however, we can deduce from the uniform distribution of semicolon omission errors
shown in figure eight that such errors occurred at random, which suggests that they
were now the result of careless lapses rather than systematic misconceptions.

One immediate result of the study was to enlighten the lecturer about the nature of
the students' difficulties with semicolons. In a real-life situation, it is not always
clear to a lecturer how the students are progressing. In this case, because of the high
(and unfortunately not uncommon) student-staff ratio (100:1), the students'
interactions with the lecturer were limited to individual queries at the end of lectures
and at other odd moments, and to the submission of 5 assignments throughout the
year. As the assignments of necessity could not exhaustively cover the course
content, and as there is considerable evidence that individual assignments were not
always the work of individual students, they did not provide the lecturer with a very
clear picture of the students' development.

Possible major directions for future research include developing an inte ractive
system designed to automate the diagnostic capabilities of the questionnaires, and
investigating whether the developmental nature of rule-understanding is replicated
with other rules in other formal languages. The question as to whether students have
the same difficulty in identifying single processes in related block-st ructured
languages such as Pascal, might be difficult to resolve in the absence of a precise rule
of syntax. In this study, it was evidence of errors made in the surface structure of
the language, i .e . the omission of semicolons, which· alerted us to possible
misconceptions regarding higher-level language concepts, i.e. the block structure of
the language . Where syntax rules are not so rigorous, for example, in those versions
of Pascal which will accept empty statements and hence semicolons before construct
terminators, such evidence may not be forthcoming. In such cases, the default in
situations in which the learner is unsure as to whether or not a semicolon should be
inserted, seems to be to put one in, as evidenced by the common error of inserting a
semicolon in an IF-THEN-ELSE construction before the ELSE (see, for example, Du
Boulay (1986)). In ALGOL 68, on the other hand, the default seems to be to omit the
semicolon., and it was these omissions which provided us with the data for this study.

This paper has addressed wider issues than the study of a specific category of
learners using a specific syntax rule of a specific language. We have argued that,

21

following the lead of researchers into natural language acquisition, researchers into
programming language learning might find that learner-centred longitudinal studies
offer much valuable information as to how the learner's knowledge develops. We
have also argued that PLL researchers and teachers of programming languages
should follow the lead of NLA researchers and teachers of natural languages in their
attitude to errors. Systematic student errors should be regarded not as mere slips
which must be remediated but rather as possible evidence of the student playing an
active part in her own learning by deploying learning and using strategies, as
described in the papers summarised in section 3, and as evidence of how the
student's knowledge of the language is developing, as described in this paper.

Acknowledgements.

The authors would like to express their deep gratitude to Dr. B. M. Cook and Mr. R.
M. A. Peel, of the Department of Electrical Engineering of the University of Surrey,
and, of course, to the students who were tbe subjects of this study, for their very
willing cooperation. We would also like to thank Mr. T. F. Goodwin, erstwhile
Director of the Computing Unit at the University of Surrey, for making available to
us the facilities of the Unit.

During the period of this study, Judith Segal was supported by a Research
Fellowship provided by British Gas, under the auspices of the Women Returners
Scheme, coordinated by Professor D. Jackson of the University of Surrey, and the
Womens' Engineering Society.

References

Ahmad K., Segal J ., Hogger E., Rogers M. (1988), "Learning about the Programming
Language Learner: a prelude to ICAL", Technical Report, CITRUS/TR88.9, Centre
for Information Technology Research. Department of Mathematics, University of
Surrey, Guildford, Surrey, England.

Bonar J . & Soloway E. (1985), "Preprogramming knowledge: a major source of
misconceptions in novice programmers", Human-Computer jnteractjon, Vol. 1, pp
133- 16 1 .

e

Corder S.P. (1967), "The significance of Learners' Errors", International Review of

Applied Linguistics, Vol s, pp 161 - 1 70.

22

�
I

,

i
i

F1wl
I

r

� i
I

r

r

F"
I

r

r

r

r

r

r

pm
I

Du Boulay B. & T. O'Shea (1 981), "Teaching novices programming" in Computing
Skills and the User Interface, Coombs M.J. & Alty J .L. (eds.), Academic Press.

Du Boulay B. (1 986) "Some difficulties of learning to program", Journal of

Educational computing Research, Vol.2, No. 1 , pp 57 - 73.

Ellis R. (1 986) "Understanding Second Language Acguisition", Oxford University
Press.

Jones A. (1 982), "Mental Models of a first programming language", CAL Research
Group Technical Report no.29, The Open University, Milton Keynes, England.

Joni S-N & Soloway E. (1 986), "But my program runsl Discourse rules for novice
programmers", Journal of Educational Computing Research, Vol.2, No. 1 , pp 95 -
1 25

Leventhal L. & lnstone K. (1 988), "Becoming an Expert?: The process of acquiring
expertise among highly novice computer scientists", Pilot & Proposal, 02-SEP-88,
Dept. of Computer Science, Bowling Green State University, Bowling Green, Ohio,
U.S.A.

Pea R. (1 986), "Language independent conceptual "bugs" in novice programming",

Journal of Educational Computing Research, vo1 .2, No. 1 , pp 25 - 36.

Ripley G.D. & Druseikis F.C. (1 978), "A Statistical Analysis of Syntax Errors",
Computer Languages, Vol.3, pp 221 - 240.

Rosansky E. (1 976), "Methods and Morphemes in Second Language Acquisition
Research", Language Learning, Vol. 26, no. 2, pp 409 - 425.

Sleeman D., Putman R., Baxter J., Kusper L. (1 986), "Pascal and High School
Students: a study of errors", Journal of Educatjona1 Computing Research, Vol.2,
No. 1 , pp 5 - 23.

Soloway E. & Ehrlich K. (1 984), "Empirical studies of programming knowledge",

IEEE Transactions on Software Engineering, SE-1 0:5, pp 595-609.

Soloway E. (1 986), "Learning to program = learning to construct mechanisms and
explanations", Comm ACM, Vol.29 no.9, pp 850 - 858.

Spohrer J. & Soloway E. (1 986), "Novice mistakes: are the folk wisdoms
correct", Comm. A, C. M., vol.29, no.7, pp 624 - 632.

23

