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We describe a method for assessing the writability of a programming language 
by examining the steps required in creating sample programs and weighing 
the knowledge required to choose among alternative steps. We present 
experience in applying the method in four language design projects, and 
argHe that the method is a useful supplement to existing approaches. 

1. Introduction 

One objective of language design is to make programs easy to write; that is, a 
language should have good writability. Part of a language designer's task, 
therefore, is to understand how the character of a language influences the 
time, effort, and knowledge required to write programs. 
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The cost of writing programs is of course only one of the costs involved in the 
larger programming enterprise. In some environments the costs of 
maintaining programs far outweighs the costs of initial development, so that 
the effects of language design on readability and related attributes may 
dominate some designers' thinking (see, for example Ichbiah et al, 1979; Ada, 
1984). Nevertheless, writability has been and continues to be an important 
design concern. 

We present a structured method for exploring the writability of programming 
languages during the design process. First, we summarize existing approaches 
to .. writability. Then we describe our method, the programming walkthrough. 

We then discuss our experiences in applying the programming walkthrough 
in four language design projects. Finally we weigh the costs and benefits of 
the method as a supplement to current approaches. 

1.1. Current Approaches to Designing for Writability 

Attention to writability in design has more often been implicit than explicit. 
Nevertheless, a number of general approaches to the problem can be 
distinguished in reports of design projects. 

Adoption of proven representations. One way to make programs easier to 
. .  

wrjte is to incorporate in a language existing representations of proven 
effectiveness. Thus the FORTRAN designers adapted traditional algebraic 
formulae as a key part of their design (Backus, 1981), a choice that has been 
follo .. wed in most succeeding designs. For problems for which appropriate 
mathematical formulations are available, a significant part of the task of 
writing a FORTRAN program is greatly simplified. Recently Citrin (1991a, 
1991 b) has called explicitly for the use of this approach to guide the design of 
visual programming languages: such languages, he argues, should exploit 
existing graphical representations in specific problem domains. 

Intuition guided by experience with an evolving sequence of languages. At 
least since Von Neumann it has been recognized that programming requires 
facilities beyond those provided by classical mathematics. More generally it is 
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true that writing programs for any application domain requires concepts not 
in that domain, and so designers must provide features that cannot simply be 
borrowed from mathematics or elsewhere. Faced with choices about 
constructs for iteration, for example, where can a designer find guidance? One 
so1:1rce .is experience with previous language designs. The work of a designer 

. ·who-has produced many designs, like Niklaus Wirth, shows this approach in 
very refined form. Each successive Wirth design shows the impact of deep 
reflection on its predecessors, with features being added, removed, or adjusted 
in reaction to emergent difficulties or opportunities to achieve more with less 
(Wirth, 1971, 1984, 1985, 1989). 

Intuition about the role of abstract characteristics of designs in making it easy 
to write programs. Experience with the progression of designs that have 
appeared over the years may be codified in the form of abstract claims about 
what is good and bad in design. Designers and commentators commonly 
believe that simple designs are to be preferred to complex ones (Feuer & 
�ehani, 1984; Hoare, 1981; Pratt, 1984). Orthogonality in a design, in which 
the behavior of combinations of features can be readily predicted from 
knowledge of the features and general principles of combination, is also seen 
as beneficial ( van Wi jngaarden, 1969). 

Because writability often remains an implicit goal, it is not always clear how 
these or other abstract characteristics are meant to relate to writability, as 
opposed to other aspects of a design. But some writers are explicit about this: 

� 
:.Sebesta (1989) includes simplicity and orthogonality in a list of characteristics 

supporting writability, and Maclennan (1987) sketches a psychological 
argument that simple, orthogonal designs are easier for programmers to 
remember than others. 

Attention to the process of writing programs. Increasing writability by tuning 
a language design to support the process of writing programs is a natural idea. 
T�e designers of BASIC took this approach: they analyzed the ideas needed to 
write_ and run programs in existing languages and looked for opportunities to 

· eliminate ideas by simplifying the process (Kurtz, 1981). Examples of such 
design initiatives were the elimination of the distinction between integer and 
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non-integer variables and the elimination of the concepts of compilation and 
object code. As these examples show, these designers took a comprehensive 
view of the programming process and worked to simplify all of it. 

A rather different approach, still under the heading of attention to process, 
can be seen in the work of Dijkstra and other proponents of programming by 

_suc·cessive refinement (Dijkstra, 1976; Gries, 1981; Wirth, 1971). Here mental 
·processes in programming are discussed quite explicitly: programming 
consists of the construction of a succession of problem representations linking 
an .original problem statement with a program. While much of the analysis of 
this process has not been directed at the design of languages to support it, 
some has been. For example, Dijkstra's alternative command has no else 

clause, a deliberate omission that is intended to compel a complete analysis of 
alternatives during the development of a program (Gries, 1981). 

1.2. Refining the Focus on Process 

The programming walkthrough method that we describe in this paper also 
belongs in the class of approaches that focus on the programming process. It 
can be seen as a structured version of what the BASIC designers did, 
providing an organized way to develop an inventory of the ideas required in 
writing programs with alternative language designs. It differs from the 
successive refinement approach in two ways. First, it is more permissive. The 
method requires no commitment to any particular programming process, and 
could be applied to successive refinement or any other process a designer 
might favor. Second, the approach pushes further (but still not very far) into 
psychology. Not only the major stages in the development of a program, but 
also the knowledge required to make choices in development, are examined 
explicitly. We argue that analysis at this lower level exposes differences 
between language design alternatives that can provide useful guidance in 
design. 

This explicit analysis of mental processes also distinguishes the programming 
walkthrough from the approaches to writability placed in other categories 
above. In all of these approaches, mental operations figure only implicitly, but 
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(we argue) an explicit description of mental processes provides a useful 
perspective on intuitions that otherwise remain rather vague. For example, it 
encourages one to think about just how simplicity might support writability, 
and hence provides a basis for determining what kinds of simplicity are 

valuable and which are not. 

2. The Programming Walkthrough Method 

2.1. The process of writing a program. 

Any design approach that focuses on the programming process needs an 
organizing view of that process. We presume that writing a program consists 
of a series of steps, mostly mental but some involving physical actions like 
typing or reading. We presume that the steps that are taken are drawn from a 
collection of possibilities, in general, so that steps must usually be chosen o n  
some basis. We presume that choices are guided by knowledge of many 

different kinds, including knowledge of the problem domain, knowledge of 

problem-solving techniques, and knowledge of specific language features. 

This ·picture is a simplified summary of the findings of a number of 
·psychological studies of programming: the work of Mayer and colleagues on 
BASIC (Mayer, 1981; Bayman & Mayer, 1983), Soloway and colleagues on 

PASCAL (Soloway, 1986; Soloway & Ehrlich, 1984; Spohrer, Soloway, & Pope, 

1985; Rist, 1986), and Anderson and colleagues on LISP (Anderson, Farrell, & 

Sauers, 1984; Anderson & Jeffries, 1985; Anderson & Skwarecki, 1986). All of 

these studies bring out the role of knowledge of various kinds in guiding the 

programming process, and especially knowledge that goes beyond a 

specification of the syntax and semantics of a language. For example, Soloway 

and colleagues document the existence of many specific programming pf ans,­

ways of deploying the features of Pascal for particular purposes, such as the 

· use s>f an accumulator variable in summing an array. A student who knows 
P:ascal, but does not know these plans, has a difficult time writing programs. 

Similarly Anderson and colleagues specify what one needs to know to write 

recursive programs in Lisp: knowing the syntax and semantics of Lisp is only 

· a part of the knowledge required. Ideas about the stereotypical structure of 
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recursive programs, and how to identify and specify base cases and recursive 
cases are also needed. 

Within this broad analysis, how can writability be assessed for a language 
design? The key steps in our approach, the programming walkthrough 
method, are (1) to describe the steps required in writing a program for one or 
more problems, and (2) to describe the knowledge needed to select these steps, 
and then (3) to examine these descriptions of the programming process with 
the following questions in mind: 

• How long is the process? Are there opportunities to eliminate steps by 
changing the design? 

• Are there steps for which it was not possible to describe knowledge that 
would guide their selection? These steps will require extensive problem­
solving by programmers. 

• Are there steps that require knowledge that programmers are unlikely to 
have, where this knowledge is extensive or involves difficult concepts? 

. Such steps will be hard unless extensive training or indoctrination is 
possible. 

2.2. Example of a Walkthrough 

2.2.1 The CMPL Language 

To make the preceding explanation more concrete, we describe how the 
wal�through was applied in evaluating the macro language CMPL. CMPL, 
the Core Macro Processing Language (Maurich & Zorn, in progress), is 
intended to provide all the functionality found in cpp or M4, plus two 
additional features. As originally designed the language provided a typed 
macro facility, which would allow the programmer to define syntax 
extensions to the language at compile time. The parameters and context of 
macro calls would be checked for syntactic correctness by the macro processor. 
The language also allows internal macro variables and computation while 
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processing macros. 

After some initial design work CMPL was evaluated in several programming 
walkthrough sessions. As a result of that evaluation, substantial changes 

were made in the language design. We present part of one of those sessions 
to illustrate how the programming walkthrough is done. 

First, we provide enough of the description of CMPL to make our example 
tmderstandable. Macro definitions in CMPL have the following basic 
structure: 

· define ResultDeclaration InputTemplate 

� begin 
Com pu ta tionSection 

result 

ResultSection 
end 

In this definition, ResultDeclaration represents the type declaration of the 
result of the macro and is either of the form " [ ] 11 (if the macro is typeless) or 
the form "[TypeName] 11 (if the macro is typed). In CMPL, most types are 
syntax classes of the base language, such as "<Expression>" or "<Statement>". 
These types must be delimited with angle brackets. There are, in addition, 
several types provided by CMPL itself, such as "int"; these do not have angle 

� brackets around them. 

The InputTemplate part of the definition describes the format of a macro call, 
consisting of literals (which much be matched exactly in the macro call) and 
argument declarations. Argument declarations are delimited by square 
brackets and are composed of CMPL keywords, which provide special 
functionality, type names, and argument names. Keywords and type names 
must be followed by colons. A simple argument declaration might be 
"[<exp>: start]". A typeless version of the same argument would be 
" [st a rt J 11• An example of a keyword would be "rest 11, the CMPL keyword 
for a list. An example of the use of this keyword is: 
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[rest: delimit "$[ ], $[ ]": int: input] 

.. 

This declares the argument "input" to be a list of type "int" delimited by 
commas. The "$[ ]" indicates optional whitespace permitted in the list. 

The ComputationSection of the definition contains internal CMPL variable 
declarations and computations. We will not describe this part further since 
we do not use it in the following example. 

Finally, the ResultSection is the template for the text string returned by the 
macro execution. Since it is a string, it must be enclosed in quotes. It consists 
of literals and CMPL arguments and variables. Arguments and variables are � 
prepended by a "$" and delimited by square brackets. A simple example is 
""$[inputA] + $[inputB]"". The type of a variable or argument can be changed 
(similar to a cast in C) by prepending the token for the variable or argument 
with "([Type])", where "type" is either a TypeName, a CMPL keyword that 
affects the type (such as "rest:"), or a legal combination of these. 

2.2.2. A Walkthrough for CMPL 

The programming walkthrough sessions for CMPL were done by four of us 
with no experience in CMPL and by the designers of the language. The 
designers provided a written description of CMPL and a suite of 23 sample � 
problems. While the designers watched, the four of us then worked through 
the first few problems a step at a time, being careful to identify the reason for 
each step we took. 

W e  worked through three problems in two sessions, each about two hours 
long. During the walkthroughs, the designers provided help or explanations 
wpen asked, but didn't volunteer assistance. After the second session the 
designers called a halt to the evaluation and went back to modify CMPL based 
on what they had learned. 

Programming Walkthrough 8 



Here is an abbreviated description of the session in which we analyzed the 
first problem. For space reasons we give only an outline of what took place. 
W e  have omitted all the false starts, all the mistakes, and almost all the 
lengthy discussions we engaged in. 

The problem to be solved with CMPL was this: write a macro that takes 
arbitrarily many integer arguments and produces a sum expression. For this 
walkthrough the designers did not provide a preferred solution, though they 
had one in mind. 

After considerable discussion on how to start, we agreed on a basic 
explanation for what a macro is, and we set out a three-part definition of a 

� 
macro definition. These became the first two items in our list of knowledge 
needed to write CMPL macros: 

I. A macro is an input to output translation in which the input 
must satisfy certain pre-defined conditions. 

II. A macro definition has three parts: 
A. A description of the decomposition of the input into parts 

(some of which can be named), 
B. Any computation necessary to describe the output, and 
C. A description of the output. 

This knowledge provides a skeleton for a macro to be filled in, and we 
identified establishing this skeleton as the first step in the programming 
process. The next step seemed to be filling in the first part of the skeleton, but 

� here we confronted a choice between using a typeless or typed macro, leading 
to a. lengthy discussion of the difference between these. We elected to use a 
typeless macro because it seemed simpler to us, but we could not formulate a 
principle that would help us make the right choice. We therefore noted this 
as a step for which it would be difficult to specify adequate guiding 
knowledge. 

At that point, someone suggested that a reasonable next step was to examine 
sample input and output, and we added this knowledge to our list: 

m. To begin, first write out a sample input and its corresponding output. 
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Applying this advice we wrote: 

Input: add(l, 2, 3, 4) 
Output: 1 + 2 + 3 + 4 

Since we were concentrating on input and output and the relationship 
between them, we tried to categorize the possible relationships. This resulted 
in another item of knowledge for our list: 

IV. Then, look at the relationship between your sample input and 
sample output. Try to fit it into one of the following: 
A. No relationship. 
B. Simple rearrangement (plus fewer or additional literals). 
C. (B) plus simple substitution. 
D. More complicated than the earlier three. 

W e  then wrote out a principle for mapping the input to the first part of a 
macro definition: 

· · V. Describe the input so that the pieces determined in (IV.) have 
names (or are otherwise accessible) and the pre-defined 
conditions on the input can be checked. 
A. W ithin this limit, keep the input description as simple as 

possible. 

It became apparent to us that the only CMPL construct capable of matching an 
arbitrary sequence of integers was a list. Our input began to take shape in the � 

� next step I guided by this principle: 

add ( [rest: delimit "$ ( ] , $ [ ] ": input]) 

This· describes the macro call as the keyword 11add" followed by a list (for 
which CMPL uses the term "rest:"), delimited by commas and allowing 
optional white space around the commas, to be called "input". Some of us 
objected that "rest" seemed a poor name here, and we added the following 
to our knowledge inventory to flag this use as one programmers would need 
to know about: 
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VI. The CMPL keyword "rest" matches a list. 
A. The CMPL keyword "delimit" allows you to specify the 

delimiter that separates the elements of that list. 

There was then a lengthy discussion over what type of input type checking we 
wanted to do. This gave rise to· four more items of guiding knowledge: 

VII. Here are the various types of pre-defined conditions that can be 
checked on the input: 
A. Types of arguments. 
B. One level of list form checking. 

VIII. More complicated checks than those specified in (VI.) can be 
::,}'c:Li.:it.:li in l t le Ll.HHp uta tion section. 

IX. For each argument in the input, you can specify a type that it 
must match. 
A. You do not have to specify a type. 

X. As a rule of thumb, the tighter the type checking you can specify 
on the input, the better. 

On this basis, we decided we would not only check the input for the proper 
delimiters (already done above) but we would also test to see that the 
elements of the list were integers. At the next step our input became: 

add ( [rest: delimit " $  [ ] , $ [ ] " :  int: input]) 

This form differs from the previous in including the type "int: ", which 

� qmstrains the elements of the list. At this point one of us noted that the only 
difference between the argument list "input" and the required result form 
was the delimiter: replacing the commas by plus signs would do the job.Since 
the delimiters are not part of the list value in CMPL, this could be done 
simply by coercing the type of the list to change the delimiter from a ", "  to a " 
+ ". We added another item of knowledge to point out the possibility of this 
approach. 

XI. You can change the type of a list to another list type with a 
coercion. 
A.  Using this technique, you can change what the delimiter is. 
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.... 

Our complete macro definition then became: 

define [ ] add ( [ rest : de l imit " $ [ ] ,  $ [  ] " :  int : input ] )  
beg in 
re s u lt 

" [ ( [ rest : de l imit " + " : ] )  input ] "  
end 

Iiere the result form coerces input to be a list delimited by plus signs. This 
solution was quite different from what the designers had in mind. They 
expected that the result form would be constructed by code in the 
ComputationSection of the macro definition. This code would build a result 
string by a recursive process that pieced together the arguments in the macro 
call separated by plus signs. The solution developed in the walkthrough 
required no such computation, and has an empty Computation Section. 

2.2.3 Analyzing the Results from the CMPL Walkthrough 

What was learned from this part of the CMPL evaluation? First, the 
walk through produced an overall picture of what a macro is and how one 
should go about writing one, embodied in a number of specific items of 
information that could guide users. This material might be used in 
documenting the language for users, but more immediately it enabled the 
designers to see the context in which the various features of the language 
would be employed. � 

Another result from the walkthrough was that choosing between typed and 
typeless macros was highlighted as problematic, in that the analysts could not 
immediately formulate knowledge adequate to guide this choice. Further, the 
designers were not able to motivate the choice without substantially 
complicating the overall picture of what a macro is and how it should be 
written that emerged from the walkthrough. Because this overall picture 
looked good to the designers, they opted to make important changes to the 
design that eliminated the typed-typeless distinction while capturing its 
in tended function in another way. 
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A third issue highlighted by the walkthrough, the difference between the 
designers' expected solution for the problem and the solution developed in 

. .  the -�alkthrough was not seen as a problem. Rather, the new solution was 
seen as a logical outcome of examining the relationship between the form of a 
macro call and the form of the result, as called for in item IV on the 
knowledge list, and noting that only the delimiter in the argument list 
needed to be changed to produce the desired result. So the designers decided 
not to try to change the design or add new items of knowledge to push users 
toward the original expected solution. 

Finally, the minor issue of the use of "rest" where "list" would be more 
transparent was noted. 

2.3. Cookbook Procedure for the Programming Walkthrough 

H�e is a more complete description of the walkthrough, with some details of 
the method added. 

1 .  Define the language. The language need not be implemented, but a 
reasonably complete definition is required, at least of those features to be 
examined in the walkthrough. 

2. Define a suite of sample problems. A walkthrough examines the 
programming process involved in solving one or more specific problems. 
These problems should capture what the designer hopes to achieve in the 
design. Problems that might be used to demonstrate the value of novel 
language features are good candidates. Problems that are representative of real 
problems in the application domain intended by the designer should also be 
examined. If a realistic problem is large it will not be possible to analyze the 
complete programming process in detail, but crucial parts of it can be picked 
out for attention. Statements of the problems should be examined to make 
sure they do not include unrealistic clues to programming methods, for 
example, references to concepts that are defined in the language but not in the 
intended application domain. Thus a problem about manipulating lists 
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would not be appropriate for evaluating a language intended for users who 
wouldn't be expected to know what lists are. 

3. Outline solutions to the problems. The designer should decide what kind of 
program should result when a programmer tackles each of the sample 
problems. The value of these target solutions rests on a subtle but important 
argument. To be useful in design, writability analysis should relate to the 
designer's  in ten tions in the design: simply knowing whether or not the 
design has good writability is not as useful as knowing whether the features 
the designer intended to produce writability are working or not, and why they 
are not working if they are not. Thus the walkthrough analysis should focus 
on determining whether the design is likely to work as intended, meaning 
that the path to an intended solution should get special scrutiny. � 

The designer can decide whether and when to reveal the intended solutions 
to any other members of the walkthrough team. The designer might choose 
to withhold solutions until it becomes clear whether the team, working 
without knowledge of the solution, heads in the expected direction. 

4. Convene the walkthrough analysts. A designer working alone can perform 
a walkthrough, but our experience suggests the value of getting other people 
to help. Outsiders can help the designer to do a more complete analysis, not 
skipping over steps that seem (from an inside perspective) uninteresting or 
obvious. 

5.  Work through the steps in the programming process. For each sample 
problem the analysts now try to identify the steps that take the programmer 
from the problem statement to the target program. Keep in mind that key 
steps, especially early in the process, may be mental reformulations not tied to 

�riting any code and perhaps not influenced much by any aspect of the 
language design. The analysts should ask, ''What do I have do first?", "What 
do I do next?", and, crucially, "How do I know that's the right thing to do 
her�?" The answers to these questions are the raw outputs from the 
·:walkthrough: analysts may want to make a list of the steps and the knowledge 
that guides each one. Arguments like "Shouldn't I do it this way instead?", or 
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"Haven't we skipped over a decision here?", or "So how did I know I wasn't 
supposed to use this feature .. .  from the definition it looks applicable," are to 
be encouraged, and the list of steps and motivating knowledge revised and 
elaborated until the analysts feel they have captured the process. 

··Note that the analysts are not trying to document their own mental processes 
in solving the problems. Rather, they are trying to outline the mental 
processes of a hypothetical user, who might have quite different knowledge. 
Thus the fact that all the analysts find a step easy does not mean that nothing 
needs to be said about it. Even easy steps must be examined at least enough to 
see what knowledge is needed to make them easy. 

It may happen that as the analysts work through aproblem it appears that the 
designer's target program is unlikely to be reached. The analysts can proceed 
in either or both of two ways. They can push on toward the target, noting the 
-obstacles in the way, in the form of steps that are unlikely to be chosen. This 
provides the designer with specific information about the difficulties that 
must be dealt with to realize the original intent of the design. Or, with the 
designer's consent, they can explore paths leading to other solutions. If one of 
these proves sufficiently easy, and the resulting program is appropriate, the 
designer might revise his or her thinking about how the language should be 
applied, and hence what features should be provided. 

6. Analyze the process. Writability problems can now be identified, either 
incrementally while working through the process or in later discussions after 
the process has been fully described. As indicated earlier, writability problems 
can take the form of large numbers of steps required for problems, or 
necessary steps for which adequate guidance is hard to identify, or steps for 
which adequate guiding knowledge is extensive or esoteric. 

Beyond these problems the analysts should look for at three other aspects of 
the results. First, are there conflicts among points of guiding knowledge, or or 
between guiding knowledge and other knowledge users may bring to the 
situation? Second, are there steps whose correctness is actually unclear? If so 
the language design must be incomplete or ambiguous. Third, does the 
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guiding know ledge clarify or modify the designer 's view of how the language 
should be used? The designer should determine whether and how the 
process developed in the walkthrough differs from what he or she would 
have expected. 

The CMPL walkthroughs evaluated a single design for the language. But in 
other applications, described below, we have used the method to compare 
alternative designs. Here the analysis focuses on comparing the walkthrough 
results for the two designs, to decide if one version has fewer or less 
problematic steps, for example, or if knowledge required in one version is not 
needed in another. 

7. Apply the results. Designers can act on walkthrough results in a number � 

of different ways. They can redesign the language to avoid lengthy sequences 
or-steps or steps that are difficult to guide. They can provide documentation 

·• for th� language that will include guiding knowledge users would otherwise 
lack .. They can clarify or modify the language definition to avoid ambiguities. 

If the walkthrough reveals a new approach to using the language, not 
anticipated by the designer two responses are possible. First, the designer can 
acceP.t the new approach and look for opportunities to make the design better 
support the new approach. Second, the designer can try to push users in the 
intended direction, and away from the new approach, by changing the design 
or documentation of the language. 

3. Experience with the Method 

We have applied the programming walkthrough method to four different 
languages, including CMPL. We outline the results here to show what can be 
learned using the method, and also to illustrate how the method can be 
adapted for use in different design contexts. 

3.1. More on CMPL 

· The CMPL walkthroughs, including the example just discussed produced 
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results that can be assigned to three categories. First, as described earlier, the  
walkthrough clarified basic concepts of how the language would be viewed 
a '}P. used . The preliminary design of CMPL before the walk through 
combined conventional m acro processing techniques with extensible 

language ideas, without considering how these facilities would be used 
together. The greatest effect of the walkthrough process on the language 

design was the perspective it  plaJ:ed on the interaction of these two modes of . � 
macro expansion. In particular, while the designers saw typeless and typed 
macros as involving -very different concepts and implementation technology, 
the overall approach to defining macros that emerged from the walkthroughs 

did not support this distinction. 

r- This mismatch led the designers to adopt a new view of types in the language 
design. In a typical programming language, types are specified by a set of 

values and a set of operations on those values. In CMPL, because it is a text 
transformation language, types have an additional aspect which is their 

syntactic representation. For example, consider the CMPL type (in the 

revised design) .....  <expression>:string." In all respects, variables of this type 
can be manipulated as strings (i.e., they can be concatenated, substrings can be 

tak�n, etc). However, the constraint is imposed that the string must have the 

syntactic structure of an expression (i.e., it must be parsable to expression). If a 
variable of this type is read in or printed out and the structure is not an 

expression, an error is generated. 

· � To the best of the designers' knowledge, assigning these semantics to types in 
CMPL is a unique approach to defining a macro-processing language and 

represents a large step toward making the use of macro expansion more 

structured and less error-prone. In the resulting semantics, types with 

associated syntax classes can be used anywhere types can, and syntax checking 
goes on at macro expansion time without the need for language extension 

though added base-language grammar rules. 

It is clear that this design change resulted from the different perspectives of 

the analysts performing the walk through and the designers of the language. 

By looking at language features purely as tools to solve problems, the analysts 
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provided a perspective that had escaped the language designers themselves. 

A second category of result from the walkthroughs was the identification of 
minor flaws in existing features, such as the use of ''rest" rather than "list" .  
The designers felt that these flaws would have been difficult for them to 
discover without the walkthrough, because they were (obviously) fully aware 
o( what was intended in all such cases. 

Finally, the C:MPL walkthrough showed evidence of features that needed to 

be added to the language, such as a string manipulation operation to perform 
substitution. While these were useful results, the designers believed that the 
same features would have been added in the normal course of the language's 
development. 

The designers noted that the results from the walkthrough were especially 
valuable because they were available very early in the design process. Had the 
evaluation been done later it  would have been painful to contemplate major 
revisions to the design such as some of the results called for. As it was, the 
results could be incorporated in what was still the early conceptual phase of 
developing the design. 

3.2. A Visual Language for Communication Protocols: MFD 

MFD (named for Message Flow Diagrams) is a visual language for specifying 
communication protocols . As the name suggests, it lets users base a 
specification on message flow diagrams of a style common and familiar in the � 

networking literature. The user describes a protocol by creating message flow 
diagrams for a set of scenarios that capture the behavior of the protocol. 
Events specified in the diagrams are identified, and rules capturing their 
conditions of occurrence are automatically created. These rules form an 
executable specification of the protocol. 

Figure 1 shows an MFD specification for a simple stop-and-wait protocol. The 
heart of the specification is the message flow diagram near the bottom of the 
figure. The diagrams above serve to describe the nodes that appear in the 
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message flow diagram and how they are connected. 

Circles in the message flow diagram show events in a scenario, ranged in 
columns beneath the nodes that perform them. Time runs down the page, 

. with message exchange shown by labelled horizontal arrows. The word init 
denotes a piece of state information for the node in whose column it appears; 
ifs presence means that the init condition must hold for the event below it to 
occur. The crossed-out init below this event indicates that the init condition 
no longer holds after the event occurs. The upward pointing arrow 
connecting event 4 to the message entering event 3 denotes a history 

. condition: event 4 cannot occur unless that message has been received. 

The protocol behavior can now be read off the diagram. If node PEl is in the 
init state, and it receives a message from its user, it sends the message to PE2 
and leaves the init state. If node PE2 receives a message from PEl it passes it 
on to its user and sends an ack message to PEl . PEl does nothing when i t  
receives an ack, but the event shown as 4 cannot occur unless an ack has just 
been received. That is, if PEl receives a message from its user and it has just 
received an ack it passes the message to PE2. This behavior is described in the 
rules shown at the bottom of the figure, which MFD would generate. 

The original design of MFD was closely based on the message-flow diagrams 
displayed by the Cara programming environment (Cockburn, Citrin, Hauser, 
& von Kaenel, 1990), which in turn was based on a study of documentation 
and interviews with experienced protocol designers. The Cara diagrams are 
not a programming language, and their meaning is ambiguous. MFD 
resolves these ambiguities with graphical features where possible, otherwise 
with textual annotations. 

MFD was subjected to a walkthrough after the language manual had been 
completed, but before the language was implemented. The problems used 
were to specify two simple protocols, the alternating bit protocol and a sliding 

• window protocol (Tanenbaum, 1981), from textual descriptions. Four of us, 
none of whom are experienced protocol designers, read the MFD 
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documentation and jointly attempted to specify the protocols. The designer 
did not provide MFD solutions. The language designer (Citrin) was present, 
but did not intervene unless requested by the others. 

There were several major points of difficulty revealed by the walkthrough. As 
happened with CMPL, the walkthrough clarified basic concepts of how the 

language would be viewed and used.  In particular, it emerged that users have 
a choice between using the history mechanism to indicate conditions for 
events or creating and using state information like that represented by init i n  
the example. While the designer intended that history should be used, there 
was no clear motivation to do so, and the analysts opted not to. The designer 
must now develop effective motivation for the use of history or must accept 

� 
that the language may not be used as in tended. 

The walkthroughs also revealed some ambiguities in the design . When a 
hist.cry arrow was drawn it was not clear how much of the context pointed to 
would be included in the condition specified by the arrow. In the example, is 
the·condition expressed by the history arrow from node 4 simply that an ack 
be received, or must it be received by an event satisfying any conditions on 
event 3, since event 3 is the receiving event shown? The designer's intent 
was. that only the identity of the message, and not any attributes of the event, 
be included in the condition, and this has now been clarified in the language 
defini tion. Other ambiguities arose with the meanings of a kind of 
annotation not shown in the example. The design was changed to eliminate 

� . one of the ambiguous annotations and clarify another so as to fit the 
interpretation that emerged as most natural from the walkthrough. 

Finally, the walkthrough revealed the opportunity to simplify the way 
complex messages were defined and referenced. While the mechanisms in 
the original design were workable, the walkthrough showed that they were 
complex and required the creation of unnecessary notation by the user. 
Im.proved solutions have been incorporated in a revised design. 

3.3. A Language for Graphical Simulations: ChemTrains 
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The walkthrough evaluations of CMPL and MFD occurred early in design as 
"one shot" looks at the state of the designs. In contrast, walkthroughs have 
been incorporated as an integral part of the ongoing development of the 
ChemTrains language . The ChemTrains walkthroughs also differ from those 
already discussed in that they were done by the designers (three of us, Bell, 
Lewis, and Rieman) with no outside participation. 

The ChemTrains language provides nonprogrammers with a simple but 
powerful interactive visual programming environment for modelling 
qualitatively defined systems, such as a Turing machine or document flow in 
an organization (Lewis, Rieman, & Bell, 1991). T o support users with little or 
no t_raining, the system is intentionally simple. Every simulation is 
represented using only three classes of graphical entities: objects, containers, 
and paths. Behavior of these entities is controlled by "if-then" production 
ru�es, also described graphically by the user. The language similar to BitPict 
(Furness, 1991), another rule-based visual language, except that patterns in 
Chem Trains contain objects and relationships among them rather than pixel 
configurations as in BitPict. 

Figure 2 shows part of a ChemTrains program for simulating grasshopper 
population dynamics. The upper portion of the figure shows a snapshot of 
the simulation, while the lower portion shows two rules. The first rule fires 
when it is summer and a juvenile grasshopper encounters a poisoned food 
plant; when the rule fires the grasshopper and the plant are deleted. The 
second rule makes adult females lay eggs and die in the fall. 

After a period of unstructured development and implementation of a simple 
prototype, the designers made a concerted effort to define a set of language 
features that would be both powerful and easy to learn and use. These 
deliberations, which were focussed on six specific "target problems" that the 
language should support, yielded three alternative designs for the language, 
representing three different design philosophies. The "ZeroTrains" design 
opted for simplicity, avoiding special features when combinations of 
primitive features could provide the same result; "OPSTrains" chose features 
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that provided power, influenced by experience with the OPS family of rule­

. · based systems (Forgy, 1984); and "ShowTrains" aimed for concreteness, 
allowing the user to specify rules by demonstration. 

3.3� 1 The Initial Chem Trains Walkthroughs 

Pf ogr�mming walkthroughs were performed on each of the six target 
P.!O�lems for each of the three competing designs. Each of the three designers 
working on the project acted as analyst for a single design, developing the list 
of required knowledge and writing up the walkthroughs. 

•, 

Examining the required knowledge and the problem-solving recorded in the 
walkthroughs for the six target problems revealed a consistent pattern of � 
differences among the three designs, clearly attributable to particular design 
decisions. The comparison was critically influential in resolving the 
designer's differences of intuition as to which was the best design. Overall, 
the power-oriented OPSTrains design was found to be easiest to write 
pro.grams in. ShowTrains placed second, while ZeroTrains placed last, with 
each solution requir�ng work directly attributable to getting around 
ZeroTrains' "simplifying" assumptions. 

The."walkthroughs demonstrated several things that intuitive arguments had 
left unresolved. Most strikingly, the walkthroughs con tradicted the 

designers' intu itive belief that a simple language would be easy to program.  

On the contrary, the simplicity of ZeroTrains made i t  harder to  program. � 
Conversely, the greater complexity of OPSTrains was shown to make it more 
useable. The additional features in OPSTrains directly matched the problem-
solving needs of the programmer, while the simple building blocks of 
ZeroTrains required both excessive knowledge of techniques and creative 
problem solving to reach a solution. 

A.nother unexpected result was the effect of variables, a power-oriented 
feature unique to OPSTrains. The designers were not surprised that variables 
permitted more economical solutions. But they had been expected to exact a 
pr�ce, recognizable as extensive additional knowledge required to use them. 
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In fact, this was not the case. Adequate knowledge to guide OPSTrains 
programmers simply suggests first writing a rule with no variables, then 
marking some constants as variables to make the rule more general. This is 
the same idea behind the successful Query-by Example design (Zloof, 1975). 
The walkthroughs indicated that a little bit of knowledge could make an 

apparently difficult language feature easy to use. 

3.3.2. Validating the Walkthroughs 

Although the walkthroughs and the design process had focussed on six target 
problems, the designers had attempted to create a language that was generally 
applicable. To test whether this had been achieved, the designers did another 
s�t �f walkthroughs for each design, using four new problems that fell within 
the language's general design goals. 

The second set of walkthroughs confirmed the central result of the first 
analysis: the OPSTrains design was the easiest to use. But several of the new 
problems were more complex than the first set, requiring features that had 
not been considered in the design or the initial walkthroughs, and all three 
designs had difficulties that the initial walkthroughs had not predicted. None 
of the designs, for example, gave precise control over timing and 
synchronicity of rule firings. Similarly, none allowed objects to be rotated. As 
wjth CMPL and MFD, these walkthroughs again showed evidence of features 
that_.needed to be added to the language. 

As a final validation of the walkthrough process, a prototype of the most 
l 

successful design, OPSTrains, was implemented and subjected to user testing. 
The techniques of the language were described to the users, and they were 
a·sked to create an animated simulation showing the phase changes of 
material in a beaker over an adjustable Bunsen burner. 

Like the second set of walkthroughs, the user testing generally confirmed the 
walkthrough analysis, but also pointed up some shortcomings. First, the 
inventory of required knowledge was incomplete in a few places, especially 
with regard to very basic language issues that the designers had long been 
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familiar with. Second, our cursory description of the required knowledge was 
sometimes inadequate to overcome users' expectations about how they 
s!'ould proceed. Third, simply describing to the user a technique for 
a�complishing some result was not always convincing; some users balked at 
following techniques without some deeper understanding of their effects. 
(The walkthroughs are described in more detail in Rieman, Bell, and Lewis, 
1991; the user testing is covered in Bell, Rieman, and Lewis, 1991.) 

3.3.3. Iterative Design with Feedback from Walkthroughs 

One of us (Bell) has continued with another round of design work on 
Chem Trains to address limitations in the previous version. In particular, Bell 
set out to �dd support for numerical computation and modularization of 
large programs. In this round of design the programming walk through was 
integrated into the design process, rather than being used to compare or 
evaluate relatively finished designs. The process can be likened to iterative 
design with feedback from rapid prototyping (Buxton and Shneiderman, 1980) 
with prototyping replaced by walkthrough evaluation. 

This process allowed the designer to search the ChemTrains design space by 
examining either simple or drastic design changes at each iteration. Since the 
cos� of generating and evaluating new designs was small, backtracking was 
inexpensive. 

Walkthrough analysis at each stage not only provided feedback on the 
alternatives that were evaluated but also suggested many new alternatives. 
An inquiry that began with 35 identified design choices expanded over three 
mo�ths of work to include 95, with most of the additional alternatives 
emerging directlty from the walkthrough analysis. A representation of the 
design space as a list of yes/no questions enabled the designer to scan design 

:_ alternatives quickly, to define new designs precisely, and compare designs 
easily. 

At the outset it was clear that doing repeated walkthroughs with a suite of 
some twenty problems would be tedious. The designer lightened the work by 
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analysing only the problems most clearly affected by a design change, and 
focussing individual walkthroughs on just parts of solutions that were 
affected. This narrow focus had the side benefit of permitting the designer to 
detect very subtle differences in writability between alternatives being 
examined on the same small part of a larger problem. 

3.4 . A Language for Parallel Numerical Computing: DINO 

DINO is a language for programming distributed memory parallel computers, 
designed primarily for doing regular numerical problems in a data parallel 
fashion. The language was developed by a team including one of the present 
authors; see Rosing, Schnabel and Weaver (1991). DINO's design reflects the 
philosophy that the programmer must say how a problem is to be 
parallelized. To this end, it attempts to provide the programmer with high­
level constructs for distributing data to processors and specifying inter­
processor communication. 

· Like many new languages, DINO evolved through the efforts of a small 
group of developers who were also its primary users. It was incrementally 
developed over about three years, first as a C++ application and later as a 
language with its own compiler to provide better performance. Usability 
decisions primarily reflected the developers' subjective experiences. The 
language design was well established at the time the walkthroughs were 
performed. 

The DINO walkthroughs were aimed at specifically exploring two alternative 
language constructs. In the current DINO, interprocessor communication is 
designated by appending a 1 1# 11 to a reference to a variable that has been 
dist!ibuted across processors. If the reference occurs in a write context, the 
communication will be a send; if the reference occurs in a read context, the 
communication will be a receive. In either case, the affected variable will be 
automatically updated. The walkthroughs were intended to explore an 
alternative syntax ("Send (X)" and "Recv(X)") that explicitly separated 
communication of a variable from reads and writes to local memory. 
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The walkthroughs were performed by two of the authors (Weaver & Lewis, 
1990)-. We began the process by informally developing a first approximation of 
the items of knowledge needed for general use of the language. We then 
selected a suite of problems designed to highlight the difference between the 
two · alternative ways of specifying inter-processor communication. 
W alkthroughs were conducted for each problem with each set of constructs. 
The entire process was relatively informal and took two afternoons. 

The walkthrough analysis yielded several results. First, it indicated that more 
guiaing knowledge was needed for the "#" alternative than for the 
Serfd/Recv alternative. This suggests that this alternative would be harder to 
lea�n and use. The designers could respond to this finding by adopting the 
Send/Recv approach, or by seeking ways to make the "#" alternative work 
better. Much of the complexity of the "#" approach comes from the need to 
force sends and receives at points where there are no corresponding writes or 
reads, a situation that requires several specific techniques. The designers 
could identify what type of problem leads to these situations, then propose 
other language features that deal with them without the need for these 
techniques. Thus the walkthrough analysis can help in developing design 

al ternat ives as well as choosing among them. 

The walkthrough results raised another interesting point. While the "#" 
needs more techniques, it also sometimes needs less code. A final choice of 
design would have to weigh this fact as well as the walkthrough result. 
Implementation issues would have to be considered as well .  The "'· 
walkthrough analysis did not deliver an ultimate verdict on design 
alternatives, but it permitted a more fully informed decision to be mad�. 

The walkthrough also turned up information that was not sought. DINO 
programs normally manipulate arrays in such a way that processing of 
elements in the interior of an array differs from processing near the edge. We 
found we needed guiding knowedge to direct the programmer to think first 
about the processing of interior elements and then deal with the details of 
edge conditions. It became clear from the examples that the language 

provided good high-level support for dealing with interior elements, but it 
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provided little help in coping with the edges. Though this issue was not 
related to the specific comparison we were pursuing it did point up an area of 
th.e: ·overall design that might repay attention. 

For DINO, in which most of the major design decisions had been finalized 
before the walkthroughs were performed, the most influential effect of the 
walkthrough analysis was to produce an inventory of what users really need 

to know to use the language. The documentation prepared for the language 
: included not only the usual definitions of language constructs but also the 

guiding knowledge we identified in the walkthrough, in explicit form. It also 
included walkthroughs of two sample problems, to help users understand 
how the guiding knowledge can be used to solve problems. 

4. Discussion 

4.1. Potential Yields of the Method 

These case studies show that the programming walkthrough can be 
performed as soon as the definition of a language is available, and it can yield 
useful information at that time as well as at points much later in the design 
process. The information produced can include: 

• Places in the programming process where many steps are required, 
• Choices for which adequate guidance is not available, 

� • Choices that require extensive or esoteric knowledge, 
• Language features whose definitions are ambiguous, and 
• A clarified or modified view of how the language might be used. 

Designers can apply this information by 

• Redesigning the language to provide simpler solutions, 
• R�designing the language to avoid problematic choices, 
• Documenting the knowledge needed to use the language, 
• Clarifying the definitions of language features, 
• ��designing the language to support a different approach to using it, or 
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• Choosing between design alternatives by comparing walkthrough results. 

A key point supported by the case studies is that programming walkthroughs 
go _beyond the designer's intuition in evaluating language writability. The 
CMPL, MFD, and ChemTrains walkthroughs all gave results contradicting the 
designers' intuitive predictions about their languages. This analytical power 
is a primary advantage of the programming walkthrough over existing 
approaches to the design of writable languages. It derives from the fact that 
reasoning about general principles of language use is weaker than reasoning 
about how features of a language might be used in solving specific, concrete 
problems, as required by the walkthrough method. 

It is possible that the analytical power of the method could be developed 
further by pressing the walkthrough to break down the programming process 
into smaller steps than those we have settled on. The work of Green, Bellamy 
and Parker (1987) in studying the fine details of coding, including the order in 
which statements are written, and the way in which partial descriptions of 
code are refined, suggests that insights into language features are available at 
this level of analysis as well as at the coarser level of analysis we have used. 

Given the role of concrete problems in the walkthrough method, it is 
interesting to contrast the walkthrough with other evaluation techniques that 
also·use concrete problems. Suppose a designer simply works through a series 
of sample problems, verifying that they can be solved and examining the 
solutions? This differs from the walkthrough if the designer does not keep an 
accounting of the knowledge needed to arrive at a solution. Much of the 
benefit of the programming walkthrough comes from examining that 
knowledge. 

Suppose a designer arranges for test users to solve sample problems, 
collecting thinking-aloud protocols (as in Bell et al, 1991) as a way of 

identifying mental steps? The limitation here is that users will only comment 
on difficulties they themselves have, so only some of the steps in the 
programming process, and some of the knowledge needed to guide it, will be 
revealed. Further, users will not try to formulate clear statements of guiding 
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knowledge. Of course if users were directed to discuss all steps, and to 
en.umerate all guiding knowledge, this method becomes a walkthrough. 

The use of concrete problems in the walkthrough method produces 
· · limitations as well as strengths. The results will only be as good as the 

problems that are analyzed, and no finite collection of problems can capture 
all the important considerations in the use of a language. As we noted ealier, 
for example, the very simple problems used in the initial ChemTrains 
evaluation caused us to miss key issues that would arise in real use. So the 
walkthrough must be seen as a supplement to other methods, including 
those based directly on designers' intuitions, that can assess the importance of 
language characteristics not exercised in any particular sample problem. 

Of course the walkthrough is not a substitute for intuition anyway, since 
intution is constantly in play in the method, in identifying steps in the 
programming process and knowledge adequate to guide them. The claimed 
advantage of the method is not that it replaces intution but that it guides the 
application of intuition in a productive way. 

4.2. Costs versus Benefits 

We believe that all the walkthroughs we have described paid back the time 
and effort invested in them. However, balancing that time and effort against 
the results achieved suggests that walkthroughs are most effective when 

� 
. performed fairly early in the design cycle, with relatively small (though not 
necessarily simple) problems. 

The .DINO analysis came too late in the design cycle to have a major effect on 
the design, although it did provide important suggestions for the 
documentation. The ChemTrains walkthroughs that assessed the three 
different design strategies had a major influence on the language's evolution. 
But the effort of performing and recording the 30 ChemTrains walkthroughs 
was considerable, perhaps beyond what many language designers would find 
acceptable. The walkthroughs for MFD and CMPL showed the best balance 
between effort and results. Neither of these required more than a day or two 
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of the analysts' work, including one or two walkthrough sessions, writing up 
the techniques, and follow-up discussions. Yet in each case the walkthrough 
yielded clear evidence of problems that had escaped the designer 's intuition, 
b_ut t;J:lat. could be fairly easily corrected. Importantly, some of the results led to 
stlbstantive, not superficial, design revisions in each case. 

4.3. Conclusion 

!he programming walkthrough is a structured method that can refine a 
designer's intuitions about language writability into a more concrete and 
focussed understanding. Instead of asking whether a language construct is 
"natural," the designer can ask what decisions are involved in using the 
construct and how likely it is that the programmer will possess the � 
knowledge necessary to make the right choices. 
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