B

Textual Tree (Prolog) Tracer: An Experimental Evaluation
DRAFT: not to be quoted*

Mukesh J. Patel, Chris Taylor & Benedict du Boulay
School of Cognitive and Computing Sciences,
The University of Sussex,

Falmer, Brighton BN1 9QH, UK.

Email: bend@cogssussex.ac.uk

Abstract

We report the findings of the effect of Prolog trace outputs’ format and information
content on simple Prolog problem solving performance of novice Prolog programmers. In
this study trace outputs based on Transparent Prolog Machine (TMP*), Spy (based on Byrd
Box) and Textual Tree Tracer (TTT) are evaluated for effectiveness in providing information
about Prolog program executions; the last one is a new (prototype) tracer developed at The
University of Sussex which was designed to partly overcome some of the shortcoming of other
tracers including those evaluated in a previous similar study (Patel, du Boulay and Taylor,
1991a). Subjects (n=13) solved simple Prolog programming problems with the aid of a trace
output from onc of the tracers. The results show that there was little overall difference
between TTT and TPM* based trace outputs. Analysis of responses reveal relative strengths
of TTT and confirm weaknesses of TMP* trace outputs observed in a similar previous study
(Patel et al 1991c). Implications of similarities and differences of findings from both studies
are discussed, as are issues related to the effect of format (or notation) on access to information
and subjects’ comprehension of Prolog.

1 Introduction

‘The overall aim of this experimental study, together with a much larger similar study (Patel, du
Boulay & Taylor, 1991a,1991b & 1991c¢), wasto evaluate the usefulness of different Prolog program
trace outputs for solving simple problems associated with novice debugging activity. Prolog is a
complex and powerful programming language. Certain key aspects of Prolog remain implicit (or
“hidden”) during program execution. Prolog tracers are designed to provide information about
hidden features such as flow of control, and therefore can be particularly useful to Prolog learners.
The hidden mechanisms of Prolog can be described or explained (or traced) in more than one
way with different perspectives emphasising diflerent aspects, such as variable binding, flow of
control, recursion, search space, etc. (Pain & Bundy, 1987). Often it is not possible to present
information about all aspects both simultaneously and equally clearly. This is partly because
of the nature of the language; emphasis on one aspect, such as flow of control, often precludes
the possibility of emphasis on other aspects without loss of clarity. Format or notation (Gilmore
1991a), for example, textual or graphic, acts as further constraint on information representation

*This work was supported by a grant from the UK Joint Rescarch Council Initiative in Cognitive Science/HCI.
The experimental work was conducted using the POPLOG programming environment.

S

(which is discussed at length in Patel et al., 1991c). For example, a perspective focusing on the
flow of control in program execution can be presented as an AND/OR tree either as a top down
(graphic) tree (Eisenstadt & Brayshaw 1988) or a left to right sideways (textual) tree as in TT1".

Perspective and format interact with the information content in a trace output. On strictly
formal basis, information on program execution cannot vary across tracer; the logical properties of
Prolog ensure that tracers generally provide te minimum information necessary for reconstructing
the whole ‘story’ of a program’s execution, assuming one has an adequate grasp of the underlying
logic and access to the source code. Ilowever, the level of detail and explicitness of information can
vary between different tracers. Together, perspective, format and level of detail and explicitness
determine case of access to information which in turn determines their usefulness.!.

Major factors that determine tracer outputs’ usefulness are described and discussed in greaicer
detail in a report of findings of a previous evaluative study (Patel el al, 1991c) in which three
different types of static (sec below) trace outputs were evaluated. The first was Spy (or Byrd
Box), which provides basic traces with very limited explicit information in a textual format not
always easy to comprehend (Byrd, 1980). The second, Transparent Prolog Machine (TPM*), is an
idealised version (hence the ‘*') of a commercial product. (‘TPM-CDL) based on the original 1'I’Al
wracer designed by Eisenstadt and Brayshaw (1988) which graphically displays (low of control and
backtracking as an AND/OR tree. The third, Enhanced Prolog Tracers for Beginners (EPI')3),
a lextual tracer developed by Dichev and du Boulay (1989) designed to overcome sonmic of the
obvious shortcomings of the Spy tracer. The findings of this study show that not all these factois
are equally important and that different combinations of perspective, format and level of devail
determine trace outputs’ relative usefulness in Prolog problem solving. Detailed analysis of the
data further conflirmed the correlation hetween ease of access and problem solving performanc:.
For example, the adverse effect of the limitation of a graphic format AND/OR tree representation
of flow of control on amount of textual detail was evident in novices’ problem solving performance:.
"T'he results served to emphasis the crucial tutorial role that Prolog tracers can play during the
early learning stages. It also provided insights into how different aspects of perspective, form:t
and level of detail can be blended in order to minimise the tension between them (and therefore.
reduce the possibility of undermining the novices® uncertain grasp of Prolog).

Taylor, du Boulay and Patel (1991) describe a number of strengths and weaknesses of EPI'I3.
CDL-TPM and Spy (Byrd box) tracers. Consideration of these together with some of the findings
of the previous evaluative study has led to the conception of the Textual Tree tracer (1717). h
incorporates a number of the better features of existing tracers, whilst avoiding some of thei
shortcomings, together with some novel features. The present study was designed to evaluate the
usefulness of a TTT (as compared with Spy and TPM?*) trace outputs. TTT is currently under
development, and exists only as a partially constructed prototype and its design features are still
evolving. All three tracers are described in more detail in the next section. The overall aim was
to investigate the elfect of perspective, format and level of detail of Prolog trace outputs on access
to information necessary for solving problems associated with simple debugging tasks.

Note that these trace outputs were evaluated as static representations in a non-interactive
mode. In each case an appropriate screen dump of the relevant trace output was shown in its
entirety, so users could not ‘grow’ the trace nor add or delete information from it. Thus, variation
between method of control between tracers was eliminated. Our intention was not to examine
the tracers ‘in the round”® but to focus on the influence of format and level of detail in static trace
outputs based on Spy, TPM* and TTT tracers on the clarity and accessibility of information.

More specifically, this report focuses on TTT's performance vis-a-vis our set of stimuli problems
which are similar to the ones used in the previous study. Given this similarity in the problem

! The task and the level of user expertise as well as user interface also play a role in determining overall usefulness
of help tools such ax Prolog tracers. However, the effects of these were not evaluated in this study, and have been
discussed elsewhere (Patel et al. 1991c)

solving task we also expected to confirm pervions findings of the relative usefulness of TPM* snd
Spy trace outputs. So the results presented here are also of general methodological interest; it
provides data which allows us to compare the results of this and the previous evaluative studies.
T'he combined findings of both experiments help to clarify the nature and scope of programming
help tool evaluations. Further, it is possible to interpret these findings with a great deal of
confidence because it is possible to identify the reasons for differences in the findings of both
studies.

1.1 Prolog Tracers

In this section Spy and TPM* Tracers are briefly described, followed by be more detailed account
of TTT which is the main focus of this report.

1.2 Spy Type Trace Output

Spyisa very basic textual (linear) tool and is included in this study because subjects were familiar
with it. The version used in this study did not show system goals. This tracer provides most
of the basic information necessary for programming or debugging in Prolog, but much of it is
implicit. In particular, the relationship between the source code and the trace output is not as
clearly displayed as it is in TPM* and TTT, which are both designed to overcome some of the
obvious shortcomings of Spy. In the previous evaluation study Spy trace outputs were not nearly
as helpful as TPM* or EPTB in the problem solving task. In the present. study it was not expected
1o perform any better than TTT.

1.3 TPM?* Type Trace Output

‘The TPM* (Transparent Prolog Machine) is a tracing tool which makes use of a modified and
extended AND/OR tree representation, known as the ‘AORTA' represcntation. The TPM-CDI.
version is an interesting illustration of the use of graphical representation in tracers. However, the
tracer suffers from a number of drawbacks which considerably limit its usefulness in practice (see
‘Taylor et al., 1991 for more a detailed discussion). Trace outputs used in this study are based on
an idealised version of TPM-CDL, which are free of these drawbacks evident during interactive
use. There arc now other versions of TPM available, particulary one for the MAC, which offer
significant improvementsbover CDL-TPM. Further, the outputs were significantly modified to
include all the relevant details otherwise optionally selected by the user. The spatial layout of
‘T'PM* provides a great deal of information at a glance, particularly on the flow of control and
search space. A TPM* trace output also looks a lot less cluttered compared to TTT. Overall it
sains in clarity by exploiting some of the advantages of graphic format outlined above. However,
the display of argument instantiations makes it difficult to see the bindings that variables have
obtained, particularly in the case of large data structures such as lists. This constraint is a direct
consequence of the format of the tracer. The use of a graphical representation of AND/OR trees
restricts the screen space available for augmenting with information about predicates with a large
numbers of arguments, or variables with long names. This problem can be overcome by including
a scrolling facility but the display of essentially textual information is st.ill poor compared to more
conventional textual tracers such as EPTB, TTT and Spy. The diagrams in an Open University
Prolog course text. (Eisenstadt & Dixon, 1988) demonstrate the strengths of TPM-style truce
output.

c

1.4 TTT Type Trace Outputs

TTT is a textual, non-linear tracer. It uses a sideways tree notation relying on text rather than
graphics with the ‘root node’ at the top left, branches growing towards the right, and new subtrees
of a node being added below any previous subtrees of that node. Immediate subcalls of a call
are shown indented by one character width from the left-hand edge of the trace with respect
to that call. Like the EPTB, it also shows clause matching and retrying events, distinguishes
several failure modes, and provides detailed more explicit information about variable bindings
The last are presented with variable names used in the program code, on a couple of lines below
the relevant (numbered) call line. The results of the previous study confirms the benefit of a high
degree of explicitness (at least for the present experimental task).

Also, unlike Spy, and like TPM*, the information about a particular call is localised in and
around the line showing that call in TTT notation. In Spy notation the outcome of a call is
indicated by other lines (e.g. ‘exit’, ‘redo’ or ‘fail' lines) which are typically some way lurther
down the trace, usually separated by information about intervening sub-calls and calls. Without
line indentation it is difficult to match pairs of ‘call’ lines with a corresponding ‘exit’ or “luil®
lines (as confirmed by results of previous evaluative study, Patel et al. 1991c). [n the Tt
notation, each line showing a call includes a “status field”, which given abbreviated information
about the clause number (if any) matching a call, together with an indication of the successes or
failures of the clause. The status fields include all relevant information of previous executions ol
clauses; its a record of the history of the execution of a program conciscly presented onone line in
tandem with clause call matching (or not) information. The status ficld notation used in the study
distinguished several different kinds of failure — for example, Fb for failure on backtracking, and
F's for initial failure of a system goal. The notation also distinguished success of a rule, that is.
a clause with some subgoals (S1+), from success of a fact, that is a clause with no subgoals (St1),
and success (Ss) respectively.

In comparison with TTT notation, TPM*'s graphic AND/OR tree representation of the overall
structure of the computation is more clear. However, in practice for non-trivial sizes prograuns
the graphics take up too much display space severely limiting presentation of other relevim
(textual) information. Normally, extra information is displayed in separate subwindows which is
not convenient for information about calls to recursive list-processing procedures with long lists.
TTT’s sideways tree representation is intended to make it easier to correlate the trace outpu.
with the program clauses, and also allowsmore space in which to display the arguments of calls,
whilst retaining the structural clarity that a tree representation providcs.

At the timeof the experiment the tracer had not been fully implemented. So trace outputs were
constructed by hand, but given the static nature of the task this difference is of no significance
to findings reported here. As regards TTT trace outputs evaluated in this experiment, their
chiel weaknesses are their cluttered look. Also traces are typically lengthy as a result of more
detailed information described above. The elongated nature of its notation makes it difficult 1o
clearly perceive the overall structure of a computation and the flow of control, particularly when
backtrackingis involved. In the final implementation of the TTT, considerable use will be made of
default restrictions to curb the amount of trace output produced, with further information being
shown only on request, so that traces will typically be kept very short, and bugs should be quickly
located by a breadth-first top-down search of the trace tree. Indeed, the compactness of the T'T"I"s
trace output will be one of its most useful features. Overall, TTT traces will be shorter than Spy
traces — particularly when backtracking is involved — and yet be far more informative. However,
this advantage is unapparent in the present non-interactive study, in which only complete static
traces were evaluated, and in which the degree of detail shown was much greater than would he
usual in normal default mode operation.

3

2 Information, Format and Experimental Task

Apart from the effect. of perspective, how do trace outputs vary in terms of overall information
content? In this context, term information is used in a specific way; it refers to information
about when, how and which clauses are matched, how variables are bound to (and unbound
from) values at particular points, and the overall flow of control, including backtracking, together
with the success or failure of goals. Information about the operations of a Prolog program, that
is, the states it passcs through, the variable bindings at each importantstep and the amount of
hacktracking involved, is useful in understanding and debugging Prolog programs. Trace outputs
are designed to provide this information though because of Prolog's complexity they can vary
in terms of the exact nature of information provided. The variation can be due to the level of
destail. For example, Spy trace does not indicate which clause of a predicate is being used al.
any point, whereas ‘1l and TPM* do. Spy refers to program variables by their internal names
such as *.405’, while CDL-TPM systematically labels variables with letters, and unlike both, ‘I1*T*
uses the names chosen by the programmer appended with a numerical subscript to distinguish
hetween copies. Though all three methods serve the same function, they are not equally efficient
in providing relevant information for t.he sorts of problems that were used in this evaluativest.ucly.

All three tracers have a different. emphasis on perspective, though this is not assumed to have
any significant effect. on usefulness on our experimental task. The basic perspective mediated by
format of trace outputs affects their relative informativeness. Though it is never very easy Lo
assess the precise elfect of differences due to perspective. So it was assumed that the different.
perspective of each tracer provided the minimum level of information necessary to solve simple
problems typically encountered in a Prolog programming task. For the purpose of this study it
was assumed that the three tracers provide the minimal — and in the case of Spy this could be
very minimal indeed — information, and that any main differences in their usefulness is due Lo
format and access to information. More realistically, it is obvious that in most cases there would be
some interaction between format and information content, and so any explanation of helpfulness
of tracers would have to give an account of such an interaction. But our strong assumption of
information equivalence is justified because the stimuli problems were designed and tested to
ensure a fair evaluation of similar features of each tracer’s judged useful for well-defined specilic
tasks. Further, the same rigour in designing the task material enabled us to clearly pinpoint the
source of such interaction. Overall, we assume that apart from the perspective, the two main
determiners of differences between tracers are format and the level of detail and explicitness of
information about executed programs.

Further, trace outputs have different degree of explicit information. For example, information
about number of sub goalsof aclause can be highly implicit, as in a Spy trace, orfairly explicit, as
in TPM* (as long the clause succeeds), and in TTT (independent of whether the clause succeeds
or not). While, it is not difficult to provide exemplars to define our notion of level of detail and
explicitness of information, in reality these two aspects are often closedly inter-related. However,
this is not a serious drawback as long as it is clear that whatever level of detail and the degree of
information explicitness, its the effect on access that determines a trace output's usefulness. Thus,
it follows thal. simply having more detailed or explicit information does not increase usefulness,
because too much detail can be hindrance in some cases. This tension between being explicit and
overwhelming the user with “unnecessary” details (or redundant information) is an important
determiner of case of access to information and therefore tracer uscfulness. Hence, one of the
questions that. this study addresses is the amount and sort of information that is useful to novice
programmers.

Torecap, assuming that the information content of tracers was similar for all relevant aspects
o Prolog, but that they varied in terms of access to information, how would this affect users’
ability to solve Prolog problems? Leaving aside the effect of perspective on information access,

M

it is probable that the more explicit. the information, the quicker a subject would be able locate
it. In this study, the task required subjects to study trace outputs in order to solve problems
‘I'ypically, they would have to work out whether a particular clause was matched on nol or
whether it affected the execution of another part of the program. These problems required the
subjects to make inferences based on trace output. It was assumed that. the more explicit the
relevant information, the fewer inferences necessary, and therefore less time spent on solving the:
problem. However, according to this line of argument there would be no reason for ease of access
to information to affect accuracy of response; all things being equal, a subject would be able 1o
solve the same problem with different trace outputs though it might take her varying amounts of
time. Therefore, any significant differences in response accuracy would have to be accomted lor
in terms of the effiect of format and perspective. Such an account would strongly suggest that the
choice of format. und perspective had important. implications for human cognitive processes.

3 Method
3.1 Design

The trace output. evaluation task was presented on a VDU as part of an automated process includ-
ing a learning and a trial phase. The stimuli consisted of five problems, divided into two groups
which were roughly determined by aspects of Prolog on which their solutions depended. Group
| included three very simple problems which could be solved wit.h information on backtracking,.
clauses tried and undefined predicates. By contrast, solution to the remaining two problems in
the second group depended (to a certain extent) on information about recursion, system goals,
goals with variables, and list manipulation. An example of problems from each group is given
in the Appendix. Each problem was presented three times; once with each trace output. Care
was taken to disguise similarity between question across diflerent trace output types as is evident
from the appended examples. This was donec by altering words and phrases of problems, as well
as program code names of definitions and variables. The disguised problems were tested in a pilat
study before being selected for the problem stimuli set.

All subjects were given detailed instructions on TTT and TPM* type trace outputs after
which they had to solve at least 9 out of 11 problems designed to check their comprehension
of these trace outputs. Subjects who were not able to reach the criterion of correct responses
were excluded from the main evaluation study. The experiment was a single subject design: All
subjects attempted to solveall the stimuli problems. Probl were presented in a psuedo random
order; no problem was allowed to be followed by another of the same type but with a different.
trace. Subjects responded by picking a response from a multiple choice responses. Data on time
taken to solve a problem as well as the chosen response were collected.

3.2 Subjects

13 undergraduate novice Prolog programmers at Sussex University completed the problem solving
task, and were paid five pounds for taking part in both parts of the experiment.

3.3 Procedure

The instructions and problem solving task were presented on Sun workstations in three stages.
The entire process was scll-administered by the subject, who reponded by pressing a few keys
on the keyboard. Following the preliminary instructions explaining the aim of the study and the
nature of the problem solving task, subjects were given a tutorial on non-interactive, modified
trace outputs based on TPM* and TTT tracers. Descriptions of various features of both type

c

Prohlem Group 1 Group 2

‘I'race 1 2 3 4 5 | Mean
TPM* 827 69.7 67.9] 74.5 155.0| 84.0
Spy 664 1150 55.8 | 109.4 152.4 | 100.0
TTT 52.1 855 1155) 64.0 170.5| 97.5
Mean 57.1 904 79.7| 826 159.3 -

Table 1: Times (secs.) of all Problem by Trace (n=13)

of trace outpuls assumed a basic understanding of Spy traces outputs. Subjects who felt that.
they had an inadequate understanding of Spy tracers therefore did not take any further part in
the study. In the next stage subjects were required to pass a criterion test designed to ensure
that they had the necessary understanding of TPM* and TTT to be able to attempt solving the
problems. The criterion test had 1] questions on various features of both tracers, and subjects
had to get at least 9 correct in order to proceed to main part of the experimental task. Subjects
were allowed three attempts to reach this criterion. Following an incorrect response, subjects were
given feedback explanations of the correct response. Those who [ailed to meet to criterion did nol.
take part in the rest of the study. This procedure ensured that only subjects with an adequate
understanding of Prolog as well as TPM* and TTT were included in the results reported here.
The third stage was the main problem solving task. Each problem was presented as a multiple
choice question (with the order of choices randomised) which the subjects were requested to read
through before pressiug a key Lo see the accompanying text. This enabled us to collect data
on time spent reading the question separately from time spent trying to solve the problem with
the aid of a trace out.put. Subjects picked a response which they had to confirm by pressing an
appropriate key which ensured the possibility of altering unintended responses. Response data
were recorded, but subjects were given no feedback on them. The order of presentation was as
random as possible and avoided presenting the same question (but with different trace outouts)
consecutively. Subjects were asked to complete the task as fast and as accurately as possible.

3.4 Results

Solution times (ST) ANOVA was carried out with subjects as the random factor and Trace Output
(:3 levels) and Problem (5 levels) as fixed factors. All solution timedataisincluded in the analysis.
‘I'here was no significant main eflect of trace output, indicating that differences in overall mean
solutions times are not. significantly allected by tracer type (see Table 1). There is a significant
main effect of problems, F(4,48) = 20.96, p < 0.001. Given the variance in level of difficulty
of problems this cffect was expected; subjects took varying length of time attempting Lo solve
diftevent problems. Broadly speaking, Group 1 problems (1, 2 and 3) took less time to solve than
Group 2 problems (4 and 5).

The interaction between problem and trace type was marginally significant, F(8,96) = 1.85,
» < 0.1. Overall, the combined effect of trace output and problem displays no particular trend.
The effect of difference in format. of trace outputs is not consistent across different questions.
‘I'able 2 shows solution times of correctly solved problems. As would be expected the means are
generally higher but no different in trend from those based on all solution times (given in Table
1). Correct solution to problems presented with Spy traces take the longest in all expect one
problem; however, unlike the rest, problem 2 is solved fasted with the Spy trace). Compared Lo
‘TPM *, solutions to problems presented with TTT trace outputs take longer in problems 1, 2, 3
and 5. We will return to a more detailed analysis of these effects alter presenting the response
data analysis of variance.

An ANOVA similar to that of solution time data was carried out on the responses themsclves.

Problem Group | Group 2

Trace 1 2 3 4 5 | Mean
TPM* 543 69 725 83.0 1614 85.9
Spy 66.4 153.7 59.6 | 171.2 193.7 97.3
TTT 57.5 106.2 119.8| 729 162.2 | 101.1
Mean 505 1058 81.5| 8li_166.8 s

Table 2: Times (secs.) of correctly solved Problem by Trace (n=13)

Problem Group 1 Group 2

Trace | 2 3] 4 5 | Mean
TPM® 85 7 8546 62 T
Spy 100 46 62| 8 23 48
TTT 7T 54 928 62 74
Mean 87 59 78|46 49 -

Table 3: Percentage Correct Response by Problem imd Trace (n=13)

There is a significant main effect of problems, F(4,48) = 8.43, ;» < 0.001, which corresponds 10
dilferences in solution times reflecting the varying level of difficulty of problems. On average
subjects found Group 1 problems easier to solve. There is also a significant main efliect of tracers.
F(2,12) = 14.00, p < 0.001. Overall subjects performed best with ‘I'TT (closely followed by
TPM*) and worst with Spy, as show in Table 3.

There is a significant interaction between tracer and problem, F(8,96) = 3.08, p < 0.01. Apart
from problem 1, correct responses varied significantly according to the accompanying trace output..
The pattern of differences between problemssolved with Spy traces is similar to that observed in
the earlier study (Patel et al., 1991a and 1991h) where it was evaluated in comparision with TPM *
and another textual (non-tree) Prolog tracer, EPTB (Extended Prolog Tracer for Beginners); the
same is true for TPM* except that these percentages are consistently lower than those observed
in a previous study. These similarities suggest that the effect of differences in trace format are
independent of the specific experimental task and consistent across different combinations of
Prolog trace outputs.

Apart from problem 1, Spy trace outputs are the least helpful in solving these problems; the
above average mean solutions times do not seem to aid correct solutions. Even when trying hard,
subjects encounter difficulties in solving problems (particularly, problem 4) with Spy. Problems |
and 2 are solved by more subjects with TPM* traces than with TTT; the reverse is the case for
the remaining problems. This is quite interesting because they both emphasise the same Prolog
perspective but in different formats. Though subjects take longer to solve problems 3 and 5 with
TTT traces (compared to TPM*), the rcsponses are more likely t.o be correct (unlike Spy). Next
we consider differences in solution times and correct responses in more detail.

3.5 Details of Trace Output and Problem Interaction

Here we attempt to account for these differences by relating each problem with information avail-
ability or access in each trace. Essentially, the following will highlight. the nature of compatibility
of problems with trace outputs. Without doubt the problems (and the experimental design) could
not possibly have tested all aspects of each tracer adequately. Apart from the complexity of such «
task, our experimental design precluded any interactive assessment. The following is a diagnostic
analysis aimed at a more descriptive account of the nature of the interaction between problems
and traces outputs; in particular it aims to provide a more detailed explanation of TTT trace

3

ontputs effect. on problem solving performance. Similarly detailed accounts of the effects of ‘I'’PM*
and Spy were reported in a previous study (Patel el al 1991c) and therefore will not repeated here
except where appropriate in illuminating our focus on the effect TTT format and perspective on
problem solving performance.

PProblem 1: To solve this simple problem, subjects had to work out how often a particulir
procedure is called. To ensure that subjects used the trace output, it was presented without the
program. Correct. response were relatively high for all trace outputs. Spy traces scored better
than either the TPAM* or TTT probably hecause of explicit reference to “call” whenever the
relevant clauses are called during execution. This information was no less clear in TPM* or 1T°I°1°
except that there are no explicit references to “calls” in either. Further, in the TTT formal
calls to procedures may have been confused with clauses displayed for the same procedure; ext.ra
information not. availahle in Spy traces. More detailed notations in TPM* and TTT traces may
he a hindrauce for solving this type of simple problem.

Piroblem 2@ This problem, also presented without the program used to generate the traces,
required subjects to find out how many times a subgoal of a particular clause had been called.
Again not a very difficult problem but one that serves to highlight one ma jor shortcoming of Spy
traces; the lack of explicit information about the number of calls to subgoals (see Patel et al.
1991¢). Though the mean solution times of TPM* and TTT traces were similar, TTT trace was
less helpful in solving this problem. It seems that the layout of information about clauses, clause
numbers and calls 10 subgoals is potentially confusing in the TTT format. This may have led to
miscounting subgoals which accounts for most of the errors.

Problem 3: To solve this problem subjects had to pick a false statement from a choice of four.
‘The problem was presented without the program and with traces of the same program as for
Problems 1 and 2. The correct answer was that it was false that a particular procedure succeeds.
Other options (all true) included whether the first clause of a particular procedure had more than
1wo subgoals, whether the second clause of the same procedure had exactly three subgoals, and
whether a particular clause was tried. TTT and TPM* format traces were better than Spy at.
cnabling subjects to solve this problem. However, TTT required nearly twice as long as TPM*
trace outputs. The main reason being that to a generally cluttered format together with the
unclear layout of TTT seems to more time to verify the true options and confirm the false one.
Spy’s poor performance is accounted for by its less explicit representation of information about
clauses, and its non-localised display of the outcome (that is, success or failure) of calls?.

Problem 4: This problem was presented with the program clauses corresponding to traces. To
solve it subjects had to work out the number of time a clause of a particular procedure had been
invoked. Trace outputs based on TTT format performed better than TPM* format in helping the
solve this problem. TT"1"s significantly better performance reflects the clarity of its representation
of this information; the status (goal) line against the relevant clause number provides a summary
of every invocation of the clause (number), which is all that is necessary to solve this problem.
Unlike solutions to problems 1 and 2, the confusing representation of information about calls to
subgoals does not. have an adverse effect on problem solving performance. The main reason for
TPM* traces' high error score is the less explicit nature of some clause matching; in our static
traces only the most. recent clause number which matched a call is shown explicitly, and, Spy

2In the Spy fonnat, the outcome of a call is shown by menns of an “Exit” or “Fail” line, which may be some
way further down the irace than the corresponding “Call" line, separated by several lines pertaining to subgoals,
subgoals of subgoals, and so on.

~

performed as badly as expected because of its highly implicit representation of clause matching
information. (For a detailed discussion of both these issnes see, Patel et al., 1991c).

Pioblem 5: Tosolve this problem subjects had to work out from the trace how often a clause
of a particular procedure was invoked. The problem was presented with the relevant program
code. Solution with a TTT trace output, though more accurate, took slightly longer than that
with TPM* traces. The overall lower means reflect the respective shortcomings of both typ.s
of trace outputs. As in the case of problem 4, TPM* traces obscure information about previous
invocations. And the general clutter and its consequent. potential for confusion in the TTT forin:
partly accounts for the overall below average performance. Correct solutions with a Spy trace
output took the longest and is the least. accurate; once again the main reason heing the implicin
representation of information about clause mat.ching.

4 Discussion

Broadly speaking the limitations of perspective and format (notation) of Spy tracer together with
the noted spareness of explicit information about certain key aspects of Prolog is once again
evident from findings reported here. The overall pattern of differences in solution times and
response errors for Spy trace outputs were similar to those observed in the previous study (Paiel
ol al., 1991¢). Similarly, bearing in mind that this study involved a much smaller group of subject s,
I'PM* trace results more or less replicate the trends observed in the previous studies. llowevit
there are some notable dissimilarities which we presume are due to individual differences and
therefore not indicative about any general properties of the trace output. The rest of discussion
will be confined to TTT trace outputs’ performance in this evaluative task.

Compared to EPTB's above average performance in the previous evaluative study, TTT trace
outputs did not perform nearly as well. From the detailed analysis the reason for this outcome
is not very clear. For example, it is not possible to explain the errors in the same way as TPM*
ones can be, that is the resulting confusion due to the graphic format representation obscuring
*historical’ information about program exccution (equivalent to the status field in TTT traces).
More generally, it seem that the particular order in which information about clause numbering,
clause calls and variable binding was not very clear. \Vhile solutions to all problems relied on this
sort. of informat.ion, it was not possible to pinpoint the exact effect of this cluttered representation
(with its potential for confusion) on the basis of response results to a particular question. B3
comparing the differences in performance of EPTB and TTT traces seems to suggest that some
of the information in TTT format trace output. was not very clear. As in EPTB, TTT traces
explicitly showed the syntactic form of each called clause and the corresponding instantiation
of the clause head matching against a goal and the resultant variable bindings. However, the
T'I'T notation was perhaps less clear than the EPTB notation, one reason being that the number
identilying a clause was given on a line preceding the one with the information about the relevant
clause. Further, we suspect that the inclusion of a lot of dletails — again not a serious problem in
EPTB trace output notations though it resulted in longer solution t.imes — was superfluous for
the problem solving task and may have ended up being a hindrance. So the advantage of localised
information on particular clauses was dissipated by the lack of clarity in the TTT trace outputs.
3 llowever, there is no direct evidence of this in response data reported here.

With this in mind the latest version a prototype TTT tracer has undergone a number of
changes since it was experimentally evaluated. The trace notation in the latest version is a lot

3 At the time of the experiment, the prototype version had not been implemented. So trace outputs w
artificially constructed which accounted for part of the cluttered look and ‘feel’ of the notation, and inevitnbly
some errors crept in though their effect on performance was negligible since solutions to none of the stimuli problems
dcpended on such errors in the trace.

10

€

simpler, clearer and concise (compact). Many of this improvements have been based on the
experimental findings of both evaluative study. In the final version, the program code clauses will
Le displayed in a separate database window, which will include explicit clause numbers. It will
also provide details on calls to subgoals (if any) of each clause suitably indented to coincide with
indentation of lines in the main trace. Thus the clutter due to details about clause matches etc.,
will be shifted into a separate window.

In retrospect it was also felt that the status field may contain too much detail with the
potential to mislead a novice user. The use of S and s or F and f for distinct meanings is
potentially confusing. In particular, the combination Sf can be very easily misinterpreted as
meaning “success followed by a failure on backtracking” instead of its correct meaning, * success
of a fact”. The notation has been made simpler and clearer by reducing the number of failure
modes, and dropping the distinctions between success modes. Thus replacing Ss or Sr with an
S. as the information conveyed by the smaller letters can be easily inferred from the presence (or
absence) of a subtree corresponding to a clause.

5 References

Byrd, L. (1980). Understanding the control flow of Prolog programs in ‘Tarnlund S. ed. Procexd.
ings of the Logic Programming Workshop, 127-138.

Dichev, C., imd du Boulay, J.B.11. (1989). An Enhanced Trace Tool for Prolog. In Praceed-
ings of the Third International Conference, Children in the Information Age. 149-163. Sofia,
Bulgaria.

«u Boulay, J.B.1I, Patel, M.J. and Taylor, C. (forthcoming). Programming Environments for
Novices. To appear in Proceedings of NATO Advanced Research Workshop on Cognitive Models
and Intelligent Environments for Learning Programming, Santa Margherita, Genoa, Italy, March
1492,

Eisenstadt, M. and Brayshaw, M. (1988). The transparent Prolog machine (TPM): An exc-
cution model and graphical debugger for logic programming. Journal of Logic Programminyg
5(4):277-342.

Lisenstadt, M. and Dixon, M. (1988). Intensive Prolog: workbook, The Open University Press,
Milton Keynes.

Gilmore, D.J. (1991a). Does The Notation Matter? mss, Dept. of Psychology, University of
Nottingham, UK.

Gilmore, IM.J. (1991b). Models of Debugging. mss, Dept. of Psychology, University of Not-
tingham, UK.

Green, T.R.G. (1991). Describing information artifacts with cognitive dimensions and structure
maps. In Proceedings of “IICI'9]: Usability Now” Annual Conference of BCS Human-Computer
Interaction Group, eds. D. Diaper and N.V. llammond, CUP, UK.

Hook, K., Taylor, J. and du Boulay J.B.H. (1990). Redo "Try Once And Pass”: the influence of
complexity and graphical notation on novices’ understanding of Prolog. Instructional Scicnce 19
(4-5):337-360.

c

Pain, H. and Bundy, A. (1987). What stories should we tell novice Prolog programmers? In
Hawley, R.ed. Artificial Intelligence Programming Environments. Ellis llorwood.

Patel, M.J., du Boulay, J.B.H. and Taylor, C. (1991a). Prolog Tracers and Information Ac-
cess. In Proceedings of The First Moscow I1CI '91 Workshop, Moscow.

Patel, M.J., du Boulay, J.B.H. and Taylor, C. (1991b). Effect of Format on Information and
Problem Solving. In Proceedings of the Thirteenth Annual Conference of the Cognitive Science
Society, Chicago.

Patel, M.J., du Boulay, J.B.H. and Taylor, C. (1991c). \Working Title: Ewvaluation of Prolog
‘Trace Outputs. mss School of Cognitive and Computing Sciences, University of Sussex, UK. (in
preparation).

Patel, M.J., du Boulay, J.B.H. and Taylor, C. (1991d). Aptitude Paper reference

Taylor, C., du Boulay, J.B.H., and Patel, M.J. (1991). Outline Proposal for a Prolog “'fextual
Tree Tracer™ (‘'TT°T), Cognitive Sciences Research Paper-177, School of Cognitive and Computing
Sciences, The University of Sussex, UK.

Shu, N. C. (1988) Visual Programming. New York: Van Nostrand Reinhold.

6 Appendix
This section includes Spy, TPM* and ‘TTT questions and screen dumps for question 2 and question

4. There three examples of each question, one for each tracer output type. In each case the
question is shown together with the answer choices. The correct answer choice is starred.

TTT Question 2
The picture of the trace shows the output for the goal
?- 27.

for a program which contains several simple rules,
such as for example

n :- k9, w, i8.

Which one of the following statements is TRUE?
Clause 1 of w has tvo subgoalse

Clause 1 of n has five subgoals

Clause 2 of n has five subgoals
27 has only one clause, which is recursive

12

SPY Question 2
The picture of the trace shows the output for the goal

7~ a.

for a program which contains several simple rules of
which the following is a single example

g :- Jj,» k, 1.

Which one of the following statements is TRUE?
The first clause for k has two subgoals*

The first clause for g has five subgoals

The second clause for g has five subgoals
e is defined by a single recursive clause

TPM* Question 2
The picture of the trace shows the output for the goal
?- a.

for a program which contains several simple rules of
vhich the following is a single example

c:-1, g, h.

Which one of the following statements is TRUE?
The first clause for g has two subgoals#

The first clause for ¢ has five subgoals

The second clause for ¢ has five subgoals
a is defined by a single recursive clause

-

TTT Question 4

The procedure durl is defined as follows. What is the number

of times that its 4th clause is invoked (whether

successfully or not) when the following goal is evaluated:

?- durl((1,19), (0,1,11,21], A).

t durd(0, .,).

2 durl(_, 00, 0).

3 durl((EIR1), (EIR2), (EIR3])):-
durl(R1, R2, R3).

4 durl((E1lR1), (E2IR2), R3):-
E1 < E2,
durl(R1, (E2(R2], R3).

5 durl((E1lR1), (E2|R2), R3):-
E1 > E2,
durl((E1lR1), R2, R3).

Once
Thrice*
Four times
Never

SPY Question 4

Suppose the goal

?- trundle([?tll], (s,7,10,12], L).
is evaluated against the program

trundle(0, _, 0J).
trundle(_, (1, ().
trundle([(xIxs), (xlys), (xlzs)):-
trundle(Xs, Ys, Zs).
trundle((xIxs), (YlYs), 2s):-
X < Y, trundle(Xs, [YIYs), Zs).
trundle((x|xs), (YlYs), 2s):-
X > Y, trundle((XIXs), Ys, Zs).

From the trace you are shown, how many
times does the head of the 4th clause
of “trundle" match a call to "trundle"?

Once

Three timese
Four times
Not at all

TPM Question 4

Let "zuysick" be defined by the following

five clauses.

zuysick(0), -, (1)
zuysick(_, (3,).
zuysick([AIP], (AlQ), CAIR]):-
zuysick(P, Q, R).
zuysick((AIP], (BIQ), R):-
A < B, zwysick(P, (BIQ), R).
zuysick((AIP], (BIQ], R):-
A > B, zwysick([AIP), Q, R).

What is the number of invocations
(successful or otherwise) of the
4th clause when the following
goal is computed?

7- zuysick([3,7), [2,3,5,8], I).

One
Threes+
Four
None

15

chyllitod) = /bin/ceh
eeey; 27 13r
11

leeo. 27:-a,n
leees 22:-0,n
e2;: m IS
12

looes me-y
l. By
o3ty 1Sf
1

leeee y

leeer y
*ve4: n IFg/2Sr
1

leees nz=ll,v,k
. ni=11,v,k
1 1SfFy

=< 83> ved quoslttt.picl.src DITING: quesitt
(CONTINUED FROM PREVICUS COLUMN)

;“12: - 1Sr

11....18:-%,u
I1....18:=x,u
(e LHE S 1]

11

11....n
11....x
*ee16: v 13f
1

| E PY)
1l....v

yos

(CONTINUED NEXT COLUMN)

Figure I: TTT Question 2

16

t.picl.sr

"
e
e
e
o
oo
oo
o0
oo

o0

e.

(1) Catt :
(2) Canl :
(3) Can
(3) Exit :
(2) Exit ¢
(4) Can
(S) Can :
(5) Exit :
(6) can
(6) Fai

(S) Fail
(M Cshh ¢
(8) Call :
(8) Exit :

(7) Exit : J°

(9) Call :

(18) Canl :
(1) Call ;
(11) Extt :
(18) Exst :
(12) Call
(13) Call :
(13) Exit :
(12) Exit :

(9) Exit :

(14) Call :
(18) Call ¢
(1S) Bt
(16) Call :
(16) Exit :
(14) Exit :

(4) Exit :
(1) Exit :

h?

: pro:og_orror%UNBEFm{D PREDICATE, [1])?
+ prolog.error(UNOEFINED PREDSCAT ?
(S) Redo : »P‘» oicate, (17

:h;?

b
f1?
1?

Figure 2: SPY Question 2

17

Figure 3: TPM* Question 2

18

cholltodl ~ /bin/cch

---n dur1((1,19), (0,1,11,21), A) d4Fg/55

|.... dur1((E1_1IR1_1]), (E2.11R2_1), RI_1):-
| 1.1 < €2_1, dur)(R1_1, [:z L])
... dur)((1 ms]l, o i01,11,21)), &

<o, duri((19), (0 |[1,u 21)),

15 (1)

lo... uur\(l:l 1iR1_1), (E2_1IR2_1),

| E1_1 > €21, uurl([n um l), R2_1 N
[-T2 [{ §} (19)]. (n 101,11,21)),

| , dori((1 |[|s)], [1 1,21),

m; x< u r-
el 1)
eeeq: aun((lx 19). (1,11,21), &) 3sr
. dur1((€E.2IR1.2), (E.2IR2.2), (E. zlna.zl) -

dur) R2.2 |,
Sl 109, [1t20), @3 1R2.35: 2

duri((19), (11,21),

eee5: durl((19), (11,21), RI_2) 4Fg/SSr

. dur1((E1_3IR1_ :] [sz :uaz 3), R3_3):-
3, a.n(m 3, (E23I1R2.3),
. durd((19 10) l. u: |[R3_2):-

' mrl(() , (1 1(21)),

RI.2 = [)
. durl([!l 3R 3), (e2. Jlnz 3), R3
3> €23, n\([u :mu 3), R2.3,

< duri((19 10)), [u 1(21]), R
19 n, ou-l([ls |(l) (21),

eeef: 19 C 11 F:
2007: 195 11 Ss
eseB: d:r!([lﬂ], (21), RI_2) aSr

R
[W‘([El <4IR1_. 4], [EL4|'Q 4), R3
] i l] (21 LIE] G.rl(Rl 4 [EL4|&4],
ees 1 9 0
Joree (D s awn@ (21 10),
weg: 19 C 21

e010: duri((], (21], R3.2) 1sf
11 R32: []
loeee aue)((), 25 , (D).
looee duri((), [211. .
yos
0

---C 53> ved gquesiGOttt.picl.erc I)lnNG' qulllllnn.l plcl.

R3_2)
R3.2)

R J)

R3.2)

R3_3)
R3_2)

R 4)
RA2)

[

Figure 4: TTT Question 4

. (l) c.n
e0 (2) Cal)
ee (3) Cal)

se (2) Extt

: (7))
yes

E0YYTNG: Quos 168 Ird.truco)
trundie((?, 11), (5, 7, 10, 12), -1)?

: trundle((7, ll]. (7, 10, 12), _1)
: trundle((11), (10, 12), .2)

s (4) Call :
*s(5) Cal) :
eo (5) Exit :
oo (4) Exit :
o0 (3) Exit :
: wrudle((7, 11), (7, 16 12), (7))
oo (1) Exst :

teundle((11), (12), .2)
trundle((), (12), .2)
trundie((), (12), (1)
trundle((11), (12), ()
trundle((11), (10, 12), ())

trundle((?, 1), (5, 7, 19, 12), (7))

Figure 5: SPY Question 4

J v 11:0,8.00.0)

It iesL(0,30. 10,000, 130)
-

ALY
[§ |mmactrnoamn

vsied],[00.0)
apietiL LA

Figure 6: TPM* Question 4

21

-

