
Textua.l Tree (Prolog) Tracer: An Experimental Evaluation
DRAFT: not to be quoted*

Mukesh J. Patel, Chris Taylor & Benedict du Boulay
School of Cognitive and Computing Sciences,

The University of Sussex,
Falmer, B1·ighton BNI 9QH, UK.

Emai I: bend@cogs.sussex.ac. uk

Abst.1·11ct

We re11ort the findings or the effect of Prolog trace outputs' format and information
content on simple Prolog problem solving performance of novice Prolog programmers. In
this study trace outputs based on Transparent Prolog Ma.chine (TMP•), Spy (based on Byrd
Box) and Textual Tree Tracer (TTT) arc evaluated for effectiveness in providing information
about Prolog program executions; the last one is a new (prototype) tracer developed at The
Univcuity or SuS$eX which WM designed to partly overcome some of the shortcoming of other
tracers including those evaluated in a previous similar study (Patel, du Bouln.y and Taylor,
1991n.). Suhjccts (n=l3) solved simple Prolog 1>rogramming problems with the aid of n. trace
output from ouc of the tracers. The r6ults show that there was little overall difference
between TI'T and TPM* based trace outputs. Analysis of responses reveal relative strengths
of TI'T and confirm weaknesses of TMP• trace outputs observed in a similar previous study
(Patel et al J991c). Implications of similarities and differences of findings Crom both studies
are discussed, as are issues related to the effect offormat (or notation) on access to information
and subjects' comprehension of Prolog.

1 Introduction

The overall aim or this experimental study, together with a much larger similar study (Patel, du
Uoulay & Taylor, IO!Jla, l!J9lb & 1991c), was to evnluate the usefult1css or different Prolog program
trace outputs for solving simple problems nssocial.ed with novice debugging activity. Prolog is a
complex and powerful programming language. Certain key aspects or Prolog remain implicit (or
·'hidden") during program execution. Prolog tracers are designed to provide information about.
hidden reatures such as flow of control, and therefore can be particularly useful to Prolog learners.
The hidden mechanisms of Prolog can be described or explained (or t.raced) in more than one
way with different perspectives emphasising different. aspects, such as variable binding, flow or
control, recursion, search space, etc. (Pain & Dundy, 1987). Often it. is not. possible to present.
information about all aspects both simultaneously and equally dearly. This is partly because
or the nature of the language; emphasis on one aspect, such as flow or control, orten precludes
the possibility of emphasis on other aspects without loss of clarity. Format or notation (Gilmore
1901a), for example, textual or graphic, acts a.c; rurthcr constraint on information representation

·This wo1·k WAA su1,po1·Lcd by a granL from lhc UJ< Jc,inL Rescn.rd1 Council lniLiaLi,..e in Cognith·e Scicncc/HCI.
Thr. r.xperimcnllll wc>J"k wns conducted using the POPLOG programming environment.

(which is discussed at length in Patel et al., 1001c). For example, a perspective focusing on tlw
flow of control in program execution can be presented as an AND/OR tree either as a top doll'n
(graphic) tree (Eisenstadt & Drayshaw 1088) or a left to right sideways (IP.Xtual) tree as in TTI'.

Perspective and format interact with t.he informal.ion content in a trace output. On stric1ly
formal basis, information on program execution cannot vary across tracer; the logical propertil!s of
Prolog ensure that tracers generally provide te mirii1111m1 information necessary for reconstructing
Lhe whole 'story' or a program's execution, a.'lSuming one has an adequate grasp or the underlyi11;1,
logic and access 1.0 the source code. However, I.he level or detail and explicitness of information can
rnry between different tracel'l!. Together, perspective, fornu\t and level of detail and explici1.11,•,-,
•lctermine case of access to informaLion which in turn dcl.crmines their userulncs.c;.1.

Major factors that determine tracer 0111.puts' usefolness are described and discussed in grea1o·r
detail in a report. of findings of a previous cvalual.i\'e study (Patel cl al, 1991c) in which Lhrc,:
different types or static (sec below) trace out.put.s were evaluat.ed. The first was Spy (or Jlyrd
Oox), which pro\'ides basic traces with very limit.eel explicit information in a textual format 1101
.ihrnys easy to comprehend (Byrd, 1980). TIii.' second, Transparent Prolog Machine (TPl\l*), is ,111
i,ltalised version (hence the••') or a commerci11l producl. (TPM-CDI,) based on the original Tl'i\l
1.rncer designed by Eisenstadt and Brayshaw (1988) which graphically displays flow of control and
bncktracking a.c; an AND/OR tree. The third, Enhanced Prolog Tracers for Beginners (EPTII}.
a lextual tracer de\'elopcd by Dichc!\' and du Doulay (l!J89) designed to overcome some of iii,·
obvious shortcomings of the Spy tracer. The findings or this study show thaL not all the� foe101,
an: equally important and that different comhinal.ions of perspective, format. and lc,·el of d,•1 ail
tl,•t.ermine trace outputs' rclati\'e usefolness in Prolog problem solving. Detailed analysis of 1111·
,lata further confirmed the correlation between ea.o;e of access and problem solving performanc,:.
For example, the adverse effect of the limitation of a gra1)hic format AND/Oil t1·ec rcpres,:nl..ttio11
offlow of control on amount. of textual detail was evident in novices' problem solving perfom1a11('1:.
The results served l.o emphasis the crucial tutorial role that Prolog tracers can play <luring 1lw
early learning stages. lt also provided insighLc; into how different aspects or perspecth·e, format
and le\·el of det.ail can be blended in order to minimise t.hc tension between them (and lher,,for,.·.
reduce the possibility or undermining the novices' uncertain grasp or Prolog).

Taylor, du Boulay and Patel (1991) describe a number of strengt.hs and weakncs.c;es of EPTB.
CDL-TPM and Spy (Byrd box) tracers. C.onsidcrat.ion of these together with some of the find in;�
or t.he 1>rcvious c\·aluati\•e study has led l o the conception or the Textual Tree tracer (TTT). 11
incorporate<; a numher of the better feat.mes or exist ing tracers, whilst a\'oiding some of I h,�i,
shortcomings, l.ogel.her with some novel features. The present study was designed to evalualr. tlw
usefulness of a TIT (as compared with Spy and TPJ\1•) trace outputs. TTT is currently und,:r
development, and exists only as a partially c:onstrucl.ecl prototype and its design fcat.nres are ,;till
e\'olving. All three I.racers arc described in more detail in the next section. The overall nim \\'as
1.0 in\'estigate the effect of perspective, format and le\'cl of detail of Prolog trace outputs on .icrl's;;
t.o information necessary for solving problems associated with simple debugging ta.c;ks.

Note that these trace out1>ut.s were evaluated M static representations in a non-inl.crac:ti\',:
mode. In each case an appropriate screen dump of the relevant trace output wa.c; shown in i,�
l!ntircty, so users could not 'grow' the trnce nor add or delete inrormation from it. Thus, varial ion
between method of control between tracers was eliminated. Our intention was not to 1!xa111i1w
lhc tracers 'in the round' but to focus 011 lhc innuencc of format and level of detail in sllltic trarc
outpuLc; based on Spy; TPI\I • and 1i'T tracers on I.lie clarity and accessibility or information.

More specifically. this report. focuses on TTT's perrormance vis-a-vis our set of stimuli problcrw;
\\'hich are similar t.o the ones used in the previous study. Given this similarity in the problem

1 The Lllsk llJld the lc,·el or tu•er expertise: as well Muser intr.r(11<:c ali«> play" role in determi11ing ovcrllll u�fulne••
of hr.Ip Lool111uch "� Prolog lr11cera. Howr.,..r.r, thr. effects of chc�e were not c,•alulltcd in this study, llnd ha\'t! 1,.,.,.,
di11cu11�cd elsewhere: (Pill.cl ct al. 1901c)

2

�olving task we also expected to confirm piirvio11s findings of the relative usefulness of TPM • und
Spy trace output.s. So the results presented here are also of general methodological interest; it
provides data which allows us to compare the results of this and the previous evaluative studies.
The combined findings of both experiments help to clarify the nature and scope of programming
help tool evaluations. Further, it is pos .. ;ible to interpret these finding,; with a great deal of
l.'011fidence because it is possible to identify t.he rea.'!Ons for differences in the findings of boi.h
sc.udies.

1 . 1 Prolog Tracers

In this section Spy and TPM* Tracers are hriefly described, followed by be more detailed accou ut
of TTT which i s the main focus of this report.

1 . 2 Spy Type Trace Output

Spy is a very basic textual (linear) tool 1111d is included in this study because subjects were famili,1r
with it. The vea·sion used in this study did not show system goals. ThiR tracer provides most
of the basic information necessary for programming or debugging in Prolog, but much of it is
implicit. In particular, the relationship between the source code and the trace output is not as
clearly displayed as it is in TPM• and TTT, which are both designed to overcome some of the
ohvious shortcomings of Spy. In the previous evaluation study Spy trace outputs were not nearly
as helpful as TPM • or EPTB in the problem solving task. In the present. study it. was not. expect1!d
to perform any better than TTT.

1 . 3 TPM* Type Trace Output

The TPM* (Transparent Prolog Machine) is a tracing Looi which makes use of a modified and
extended AND/OR tree representation, known as the 'AORTA' representation. The TPM-CDJ.
\'ersion is an interesting illustration of the use of graphical representation in tracers. However, the
tracer suffers from a number of drawbacks which considerably limit its usefulness in practice (see
Taylor et al . , 1 00 1 for more a detailed discussion). Trace outputs used in t.his st.udy are based on
.111 i,lcalised version of TPM-CDL, which are free of these drawbackR evitlcnt. during int.eracti\'e
use. There arc now other versions of TPM available, particulary one for the MAC, which offer
significant impro\'ementsbover CDL-TPM. Further, the outputs were significantly modified to
include all the relevant details otherwise optionally selected by the user. The spatial layout of
TPM * provides a great deal of information at a glance, particularly on the flow of control and
search space. A TPM* trace output also looks a lot less cluttered compared to TTT. Overall it
�ains in clarity by exploiting some of the advantages of graphic format outlined above. Howc\'er,
1.he display of argument instantiations makes it difficult to see the bindings that variables have
obtained, particularly in the case of large data structures such as lists. This constraint is a direct.
consequence of the format of the tracer. The use of a graphical representation of AND/OR. trees
n.'Stricts the screen space available for augmenting with information about predicates with a large
numbers of arguments, or variables with long names. This problem can be overcome by including
a scrolling facility but t.he display of c.>ssentially textual information is st.ill poor compared to more
con,•ent.ional text.ual tracers such as EPTl3, TTT and Spy. The diagrams in an Open Univeri;it.y
Prolog course text. (Eisenstadt & Dixon, 1088) demonstrate the strengths of TPM-style trnce
out.put.

3

1 .4 TTT Type Trace Outputs

'M'T is a textual, non-linear tracer. It uses a sideways tree notation relying on text rather 1. l 1a1 1
graphics with the 'root node' at the top left., branches growing townrcls the right., and new subt.r,�e,
of a node being added below any previous subtrees of that node. Immediate subcalls of a ca ll
are shown indented by one character width from the ldt-hand eclge of the trace with resp,!d
to that call. Like the EPTB, it also shows clause matching and retrying events, distinguislws
several failure modes, and provides detailed more explicit informal.ion about variable bindini;s
The last are presented with variable names used in the program code, on a couple of lines below
the relevant (numbered) call line. The results of the previous study confirms the benefit of a hii;h
degree of explicitness (at least for the present experimental task) .

Also, unl ike Spy, and l ike TPM •, the information about a part.kular call is localised in a 1 1d
around the l ine showing that call in TTT notation. In Spy 11ol 11t.ion the outcome of a cal l is
indicated by other lines (e.g. 'exit', 'redo' or 'fai l ' lines) which are t.ypically some way f11rtl1,•r
down the trace, usually separated by information about intervening ,;uh-calls and calls. WiLhou1
line indentation it is difficult to match pairs of 'ral l ' lines with a corresponding 'exit' or · fa i l '
lines (as confirmed by results of previous evaluative study, Patd et 11 1 . 109 1 c) . I n the TTT
notation , eacl1 line showing a call includes a "status field" , which given abbreviated informatio11
nbout the clause number (if any) matching a call, together with an indication of the succes.<,es or
failures of the clause. The status fields include all relevant information of previous executions of
clauses; its a record of the history of the execution of a program concisely presented on one l ine i 1 1
tandem with clause call matching {or not) inrormation. The status field notation used in the study
distinguished several different k inds of failure - ror example, Fb for failure on backtracking, a11d
Fs for initial failure of a system goal. The notation also distinguishetl success of a rule, that is.
a clause with some subgoals (S1·), from success of a fact, that is a clnuse with no subgoals (St),
and success (Ss) respectively.

In comparison with TTT notation, TPM*'s graphic AND/OR. tree representation of the overall
structure of the computation is more clear. However, in practice for non-trivial sizes progn1111s
the graphics take up Loo much display space severely limiting presentation of other rele\'.1 1 1 1 .
(textual) information. Normally, extra information is displayed in separate subwindows which is
not convenient. for information about calls to recursive list-processing procedures with long lil>ts .
T'l'T's sideways tree representation is intended to make it easier l.o correlate the trace out.p111.
with the program clauses, and also allows more space in which to display the argument.s of cal ls ,
whilst rttaining the structural clarity that a tree representation pro1,·idcs.

At the time of the e.'\':periment the tracer had not been fully implemented. So trace outputs were
constructed by hand, but given the static nature of the task this di rrcrence is of no significanl'•'
to findings reported here. As regards TTT trace outputs evaluated in this experiment, thei r
chief weaknesses are their cluttered look. Also traces are typic11lly lengthy as a result of mm�
detailed information described above. The elongated nature of its notation makes it difficult. 1 0
clearly perceive the overall structure of a computation and the flow of control, particularly when
backtracking is involved. In the final implementation of the TTT, considerable use will be made of
default restrictions to curb the amount of trace output produced, with further information bei 1 11,;
shown only on request, so that traces will typically be kept very short, and bugs should be quickly
located by a breadth-first top-down search of the trace tree. Indeed. the compactness of the T'rJ"s
trace output will be one of its most useful reatures. Overall, TTT traces will be shorter than Spy
traces - particularly when backtracking is involved - and yet be fnr more informative. Howc\'t:r.
this advantage is unapparent in the present non-interactive study, in which only complete sLntic
traces were evaluated, and in which the degree of detail shown was much greater than would he
usual in normal derault mode operation.

4

2 Information, Format and Experimental Task

:\part from thr elfcc1. of perspective, how do trace outputs vary in terms or overall information
n1n l en1.? In th i,; co1 1 tcxt, term i11for111ntio11 is used in a specific way; it refers to information
.1hout. when , how and which clauses are matched, how variables are bound to (and unbound
from) values al particu lar points, and the overall flow of control, including backtracking, loget.her
\\'ith the success or fai lure of goals. Informal.ion about the operations or a Prolog program, that
is, the states it passt•!i t hrough, t.he variable bindings at each important step and the amount of
hackt.racking involved, is useful in underst.anding and debugging Prolog programs. Trace outputs
arc designed to ptO\'iclc this information though because of Prolog's complexity they can vary
in 1.c�rms of the exact 1111ture of informntion provided. The variation can be due lo the level of
d,•t . .i i l . For exampl1\ S11y trace does not indicate which clause of a predicate is being used al.
any point, whereas TTT and TPM • do. Spy refers l.o program variables hy their internal IHtmcs
such as ·_405' . while CDrrTPM syst.emat.ic.al ly labels variables with letters, and unlike both , T'rr
uses the names chosen by the programmer nppendetl with a numerical subscript to distinguish
ht•tween copies. Though all three methods serve the same function, they are not equally efficient
in providing rdcv1t 11 L i nformation for 1.he sorL'l of problems that were used in this evaluative st.udy.

All t.hree tl'ncers have a dirferent. empha.'>is on perspective, though this is not assumed t.o have
any significant. crfecl. on usefulness on our experimental task. The basic perspective mediated by
format. of traC'•? outputs affects their relat.ive informativeness. Though it is never very eMy l.o
asses.,; the Jlrecise effoct of differences due to 1>erspective. So i t was assumed that. the different.
1wrspective of e1tch I.racer provided the minimum level or i nformation necessary to solve simple
problems typicnlly encountered i n a Prolog programming task. For the purpose or this study ii
w:is assumed that 1.hc three tracers provide the minimal - and in the case or S1>Y this could be
\'1•r�· minimal i ndet•d - information, and that any main differences in their usefulness is d ue Lo
format and acc<:ss t.o information. More realistically, it is obvious t.hat. in most cases there would be�
some interaction between format and information content, and so any explanation of helpfulness
of tracers would have to give an account of such an interaction. But our strong assumption or
information £'qu iv1tlencc ii; justified because the stimuli problems were designed and tested to
l'11sure a fair e\·aluat.ion of similar features of each tracer's judged useful for well-defined specific
tasks. Further, t.he !lame rigour in designing the task material enabled us to clearly pinpoint the
source or such i n l.eraction. Overall , we assume that apart from the perspective, the two main
determiners of d i fferences between tracers are format. and the level or detail and explicitness of
information about executed programs.

Further, trace outputs have different degree of e.....:plicit information. For e."<ample, informntion
about number of sub goals of a clause can be highly impl icit, as in a Spy trace, or fairly explicit, :Le;
in TPM • (as long the clause succeeds) , and in TTT (independent or whether the clause succeeds
or not). While, it is not difficult to provide exemplars to define our hot.ion of level of detail and
explicitness of information, in reality these t.wo aspects are often closedly inter-related. However,
I.his is not a serious drawback as long as it is clear that what.ever level of detail and the degree of
information explicitness, its the effect on access that. determines a trace output's usefulness. Thus,
i t follows thal. simply having more detailed or explicit information does not. increa.,e usefulness,
bl'c1tusc too much detail can be hindrance in some cases. This tension between being explicit and
overwhelming t.he user with "unnecessary" details (or redundant. information) is an important
tlcterminer of ease of access to informal.ion and therefore tracer usefulness. Hence, one of the
<1uestions that. this study addresses is the amount. and sort or information that is useful to novice
ptogrammers.

To recap, assuming that the information content of tracers was similar for all relevant aspect-,;
of Prolog, but that they varied in terms of access to information, how would this affect users'
abi l ity to solve Prolog problems? Leaving a.';ide the effect of perspective on information accec;.,;,

5

it. is probable that the more explicit. the informal.ion, the quicker a subject. would he 11blc loc11 1 1·
i t . In this study, the task required subject.s t.o study tr11ce outputs in order lo solve problem�
Typically, they would hav,. to work out whether a particular clause was matched on 1101. or
wli1?Lher it affecc.ed the execution or anothl'r part of the program. These problems required th,:
subjects to make i nferences based on trace out.put. It. was a.c;sumed thnt. the more explicit tlw
relevant information, the fewer inferences necessary, and therefore les.c; time spent on solving t.h•:
problem. However, according to t.his l i ne of argument there would be no reason for ease of ncces,;
to information to affect. acc11racy of response; all t h ings being equal, a suhjccl would be able 1 0
solve the same problem with different trace out.puts I.hough it. might. take her ,·1trying amounts of
t.i 111c. Therefore, any significant d ifferences in response accuracy would have to he acco1111led ror
i n t.erms or the effed or format. and perspecti\'e. Such an account would st rongly suggesl Llrnt 1 1 , ,,
choice of rormnt. 1111d perspective had import.1t11t. implic1tl.ions for human cogni tive prnccs.r;,is.

3 Method

3 . 1 Design

The trace output. evaluation task was presented on a VDU a.,; part of an auto1 11atc!d process i nclud
ing a learning and a trial phase. The stimuli consist.eel of five problems, d ividl•d into t.wo groups
which were roughly determined by aspects of Prolog on which their sol 1 1 1 ions depended. Group
I i ncluded thm? \'Cry simple problems which could be solved wit .h informal.ion on bachracking.
clauses tried and undefined predicates. Dy contrast, solution to the remaining two prohl,:ms in
t.hc second group depended (t.o a certain exl.<'111.) on i nformation about recuri.ion, syst.em goals.
goals with variahlcs, and list manipulation . ,\ 11 example of prol,lems from each group is gi \'•·11
in the Appendix. Each problem was presented three times; once with each trace out.put . Care
was taken to disguise similarity between quest.ion across different. trace out.put types as is e\·idc111
from the appended examples. This was done by alter ing words and phrases of problems, M wel l
as program code names or defin i tions and variables. The <lisguise,I problems wcrt• lest.cd in a pilot
study before being select.ed for the problem st.imuli set.

All subjects were given detailed instructions on TIT and TPM• t ype I.race outpuL,; aft,:r
which they h1td to solve at least !.l out of 1 1 problems designed to check t heir comprehension
of these trace outputs. Subjects who were not able to reach the criterion of correct responses
were excluded from the main evaluation study. The experiment was a single suhject design: ,\ I I
subjects alt.empted to solve a l l the stimuli problems. Problems were presented in a psuedo random
order; no problem was allowed to be followed by another or the same type but with a d ifferent
trace. Subjects responded by picking a response from a multiple choice responses. Data on t.im�
taken to solve a problem as well as the chosen response were collected.

3 .2 Subjects

13 undergraduate novice Prolog programmers at Sussex U n iversity com11lclcd t.111� problem sol vi 1 1i;
task , and were paid five pounds fo1· taking part i n both part.s of the experiment.

3.3 Procedure

The inst.ructions and problem solving task were prescnt.r.d on Sun workst11t.ions in three st.c1ges.
The entire process was self-administered by the subject, who reponded by prcs.-;ing a few keys
on the keyboard. Following the prel im inary instructions explaining the aim of the study and Liu�
nature of the problem solving task, subjects were given a tutorial on non-interactive, modified
trace out.puts based on TPM • and TTT tracers. Descriptions or various fea1 11res of both type

6

Prohlem Group 1 Group 2
Trace 1 2 3 4 5 Mean
TPM• 52.i 69.7 6i.9 i4.5 155.0 84.0
Spy 66.4 1 1 5.0 55.8 109.4 1 52.4 100.0
TTT 52. 1 85.5 1 15.5 64.0 170.5 97.5
Mean 57. 1 90.4 i0.7 82.6 159.3 -

Table 1: Times (sec.c;.) or all Problem by Trace (n= l3)

,>f trnrc oul.pu l.s assumed a basic understanding or S1>y traces outputs. Subjects who folL tlml.
1 ! 11:y had an inadl'l11 111 1 e understanding or Spy tracer,; thererore d id not take any forther part in
1 he study. In 1.hc ncxl. i;tage subjecl.s were required Lo ra.c;s a criterion tesL designed to ensure
1 llill I.hey had the 1wn•ssary understanding or TPM • and TTT to be able to attempt solving the
problems. The criterion test had 1 I questions on various reatures or both tracers, and subjecl-'>
had to get at least 9 correct in order to proceed to main part or the experimental task. Subjccl.s
were allowed three att empts to reach this criterion. Following an incorrect response, subjects were
�iven feedback explanations or the correct response. Those who railed to meet to criterion did not.
t.ake part in the rest of the study. This procedure ensured that only subjects with an adequate
understanding of Prolog as well as TPM* and TTT were included in the results reported he1·e.

The third stage was t he main problem solving t11Sk. Each problem was presented as a multiple
d1oic,: question (w i 1.h 1 he order of choices randomised) which the subjects were requested to r1::ul
1 l a rough before prt'SSiug a key Lo see the accompanying text. This enabled us to collect data
on 1 ime spent reading the question separately from time spent trying to solve the problem with
tl1i• aid of a trace out.put. Subjects picked a response which they had to confirm by pressing an
appropriate key which ensured the possibil ity of altering unintended responses. Response data
were recorded, but subjects were given no feedback on them. The order of presentation was as
random as possible and avoided presenting the same question (but with different trace out.outs)
consecutively. Subjects were asked to complete the task as fast and as accurately as possible.

3.4 Results
Solution tinu .. -s (ST) ANOVA was carried out with subjects as the random factor and Trace Output
(:J IP.,·cls) and Problem (5 levels) as fixed fact.ors. All solution time data is included in the analysis.
There was no significant main effect of trace output, indicating that d ifferences in overall mean
,;olutions times are not. significantly affected by tracer t.ype (see Table 1). There is a significant
main effect of problems, F(4,48) = 20.96, p $ 0.001 . Given the variance in level of difficulty
of problems this cffecL was expected ; subjects took varying length of time alt.empting Lo solve
d ilfol'ent problems. Broadly speaking, Group 1 problems (1 , 2 and 3) took less time to solve than
Group 2 problems (4 and 5).

The interaction between problem and trace type was marginally significant, F(8,96) = 1 .85,
I' $ 0. 1 . Over11 1 l , the combined effect of trace output and problem displays no particular trend.
The effect of difference in format. or trace out.puts is not consistent across different questions.
Table 2 shows solution times of correctly solved problems. As would be expected the means are
generally higher but no different in trend from those based on all solution times (given in Table
I) . Conect solut.ion to problems presented with Spy traces take the longest in all expect. one
problem; however, un like t.he rest., problem 2 is solved fasted with the Spy trace). Compared Lo
TPM .. solut.ions to problems presented with TTT trace outputs take longer in problems l, 2, 3
and 5. We will return to a more detailed analysis of these effects arter presenting the response
data analysis of variance.

An ANOVA similar to that of solution t ime data was carried out on the responses themselves.

7

Problem Group I Group .!
Trace I 2 3 4 5 Mean
TPM• 54 .3 i6.9 72.5 83.0 1 6 1 .4 85.9
S1>Y 66.4 153.7 59.6 17 1 .2 1 93.7 97.3
TTT 57.5 106.2 1 19.8 72.9 1 62.2 IO I . 1
Mean 59.5 105 .8 87.5 8 1 .7 1 6Ci.8

T,ilile 2: Times (secs.) of correctly solvecl Problem by Trace (n: 1 3)

Problem Group 1 Group 2
Trace I 2 3 4 5 Ml•an
TPM• 85 77 85 '1Ci 62 7 1
Spy 100 46 62 8 23 '18
TTT 77 54 92 85 62 74
Mean 87 59 78 46 49 -

Table 3: Percentage Correct Response by Problem 1111<1 Trnce (n= l3)

There is a significant main effect of problems, F(4,48) = 8.43, 1 1 $ 0.00 1 , which corresponcls 10
differences in solution times rerlecting the varying level of difficulty of problems. On avcragt•
subjects found Group 1 problems easier to solve. There is also a sig11ificu11L main erfect or Lrnc1!rs.
F(2, 12) = 14 .00, p $ 0 .00 1 . Overall subjecLc; performed best wil.h 'ITT (closely fol lowl'd by
TPM •) and worst with Spy, as show in Table 3.

There is a significant. interaction Lletween trnrer and problem, F(8,96) = 3.08, p $ 0.0 1 . A purl.
from problem l, correct responses \·aried significantly according to the accompanying trace out.put..
The pat.tern of differences between problems solved with Spy traces is similar to that obscn·ccl i 11
the earlier study (Patel et al., 1991a and 199 1 h) where it was evaluated in comparision with TPM •
and another textual (non-tree) Prolog tracer, EPTil (Extended Prolog Tracer for Beginners); t hr:
same is true for TPM• except that these percentages are consistently lower than those observed
in a previous study. These simi larities suggest that the effect of differences in trace format arc
independent of t.he specific experimental task and consistent acros.,; clifTercnt combinations of
Prolog trace outputs.

Apart from problem l , Spy trace outputs arc the least helpful in solving these problems; t.he
above average mean solutions times do not seem to aid correct solutions. Even when trying hard ,
subjects encounter difficulties in solving problems (l>articularly, problem 4) wit.la Spy. Problems I
and 2 are solved by more subjects with TPM* traces than with TTT; the reverse is the case for
the remaining problems. This is quite int.etesting because they both emphasise the same Prolog
perspective but. in different formats. Though subjects take longer to solve problems 3 and 5 wi1.h
TTT traces (compared to TPM•) , the responses are more likely l.o he correct (unlike Spy). Next
we consider differences in solution times and correct responses in more detail.

3.5 Details of Trace Output and Problem Interaction
Here we attempt to account for these differences by relating each problem with information avuil
nbil ity or access in each trace. Essentially, the following will highlight. the nature of compatiliility
of problems with trace outputs. Without doubt the problems (and the experimental design) could
not. possibly have tested all aspects of each tracer adequately. Apart from the complexity of such a
task, our experiment.al design precluded any interactive assessment. The following is a diagnostir
analysis aimed at. a more descriptive account of the nature of the interact.ion between problems
and traces outputs; in particular it aims to provide a more det.ailccl explanation of TTT I rac1:

8

011tp11Ls effect. on prohlcm solving performance. Similnrly detailed accounts of the effects of TP.M •
a11d Spy were reported in a previous study (Pat.el c/ al 1901c) and therefore wili'not repeated here
except where npproprint .e in illuminating our focus on I.he effect TTT format and perspective on
problem solving pcrfomrnnce.

Problem 1: To soh·e this simple problem, subjects had to work out how often a particul.u
procedure is called. To ensure that subject.,; ur;cd the trace output, it was presented without tlw
program. C.orrr.cl. response were relatively high for all trace outputs. Spy traces scored beu.cr
1.han either t he TPflt• or TTT probably hec1111sc of explicit reference to "call" whenever the
rl'levant clauses are c11ll1!d during execution . This information was no less clear in TPM* or T'rr
,•xcept that t.hcrt> arc no explicit references to "calls" in either. Further, in the TTT format
.-nils to procedurw, n1 11y have been confused with clauses displayed for the same procedure; ext.rn
i11fom111tion not. 11\'ai lahle in Spy traces. More cletailecl notations in TPM* and TTT traces may
h,i II hinclra11ce for sol\' ing t.his type of simple problem.

P1·oblem 2: This prohlr.m, also present.1!d without . the program used to generate the traces,
n.•quirecl subjects l.o find out how many t.imes a subgoal of a particular clause had been called.
:\gain not a ,·cry dilJicult problem but one that serves to highlight one major shortcoming of Spy
t races; the lack or explicit information about the number of calls Lo subgoals (see Patel et al.
1 !19 lc). Though 1.l1e mean solution t.imes or TPM• and TTT traces were similar, TTT trace was
I,'"" helpful in solving this problem. It seems that the layout or information about clauses, clause
1 1 11111bers and calls Lo subgoals is potentially conrusing in the TTT format. This may have led to
miscounting subgoals which accounts for most or t.hc errors .

P 1·oblem 3: To solv�· this problem subjects had to pick a raise statement from a choice or four .
The problem was presented without the program and with traces of the same program as for
Problems I and 2. The correct answer was that it was false that a particular procedure succeeds.
Other options (all true) included whether the first clause of a particular procedure had more than
1 wo subgoals , whet.her I.he second clause of the same procedure had exactly three subgoals, and
whet.her a 1>articular clause was tried. TTT and TPM* format traces were better than Spy at.
,inabling subjects to sol\'e this problem. However, TTT required nearly twice as long as TPM •
t race outputs. The main reason being that to a generally cluttered format together with the
unclear layout of TTT seems to more time to verify the true options and confirm the false one.
Spy's poor performance is accounted for by its less explicit representation of information about
d:,uses, and its non-localised display of the outcome (that is, success or failure) of calls2 •

P a-ohlem 4: This problem was present.eel with the program clauses corresponding Lo traces . To
!o;O(vc it subjects had t .o work out the number of t.ime a clause of a particular procedure had been
invoked. Trace outpuL,; based on TTT format performed better than TPM* format in helping the
,mh·e this problem. 1TI''s significantly better performance reflects the clarity of its representation
or t .his information ; lhl' status (goal) line ag11inst the relevant. clause number provides a summary
of every invocation of the clause (number), which is all that is necessary to solve this proble111.
Unlike solutions t.o problems 1 and 2, the confusing representation of information about calls 1.0
subgoals does not. have an adverse effect on problem solving performance. The main reason for
TPM* traces ' high error score is I .he less explicit nature or some clause matching ; in our stac.ic
traces only the most. recent clause number which matched a call is shown explicitly, and, Spy

2 111 the S1>y formftt, 1 hr. outcome of n cal l is shown hy mc,ma of An "Exil" or "Fnil" line, which mny be sonu:
wi,�· f11rthe1· down 1.he 1.1·11ce I hAn the co1·1·esponding "CAIi" line, separated by several lines pertaining lo subgoal•,
�ul,goAls of subgoAI,, 1111d so on.

0

performed as badly as expected because of iL, highly impl icit represent.at.ion of clause maLchi11:;
information . (For a detailed discussion of both these issncs sec, Patel et al., 1991c}.

Pa·oblem 5: To solve this problem subjects had to work out from the t.rncc how often a claw,,·
of a particular procedure was invoked. The prohlcm wn., prl'..scnted wit.h the relevant progra 11 1
code. Solution with a TTT trace output ., I.hough more accurate , took slightly longer than tha t
with TPM* traces. The overall lower means reflect the respective shortcomings of both typ,.·s
of trace outputs. As in the case of problem '1, TPM• t.r11ces obscure informal .ion about pre\'ious
in\'ocations. Anet the general cluu.er and it,; consequent. potential ror conrusion in I.he TTT for11 1a1
partly accounts for the overall below average performance. Correct solutions with a Spy t.ran:
output t.ook the longest and is the least. arcural.c; once again the mnin rcnson hcing lhc impli1·i1
representation of information aboul clause matching .

4 Discussion

Broadly speaking the limitations of perspective and format (notation) or S1>y tracer together with
the noted spareness of explicit information about certain key aspects of Prolog is once again
evident from findings reported here. The overall pat .tern of d ifferences in solution times a11 , I
response errors for Spy trace outputs were simi lar to those observed i n the previous study (Pat d
,it. al., 1901c). Similarly, bearing in mind I.hat . this study i n \'olved a much smaller group of subj,!l'.I " .
TPM• trace results more or less replicate the trends obscn·ed in the previous studies. l lowe\'1'1
t.hcrc arc some notable dissimilarities which we rresume are due to individual differences au. I
therefore not indicalfre about any general properties of t he I.race output . The rest of discussion
will be confined to TTT trace outputs' performance in I.his evaluative task.

Compared 1.0 EPTB's above a\'crage performance in t.l1e previous evaluative study, TTT t.rac1•
outputs did not perform nearly as wel l . From the detailed analysis the reason for this outcome
is not very clear. For example , it is not possible to explain t .he errors in the same way as TPM •
ones can be, t.lrnt is the resulting confusion due to the graphic format representation obscur ing
'historical' information about program execution (equivalent to the status field in TTT traces).
More generally, it seem that the particular order in which information about clause numbering .
clause calls and \'ariable binding was not very clear. While solutions to all problems rel ied on this
sorl. of informal.ion, it was not possible to pinpoint the exact effect of this cluttered representation
(with its potential for confusion) on the basis of response results to a particular quest.ion. U111
comparing the differences in performance of EPTB and TTT traces seems to suggest that som,�
or the informal.ion in TTT format trace out.put. was not . very clear. As i n EPTB, TTT tmccs
explicitly showed the syntactic form of e11ch called clause and the corresponding instantiation
of the clause head matching against a goal and the resul t .ant variable bindings. Howevct', 1.he
TTT notation was perhaps le,;s clear than the EPTIJ notation, one reason being that the number
identifying a clause was given on a l ine preceding the one with the information about the relevanl
clause. Further, we suspect I.hat the inclusion of a lot or <let .ails - again not a serious problem in
EPTB trace output notations though it rec;ulted in longer solution t.imcs - was superfluous for
I.he problem solving task and may have ended up being a hindrance. So the advantage of localis,·d
information on 1>ar ticular clauses was dissipated by the lack of clarity in the TTT trace outputs .
3 However, there is no direet e\·idence or t.his in response data reported here.

With this in mind the lat.est \•ersion a prol.otype TTT tracer has undergone a number of
changes since it was experimentally evalunt .cd. The I.race notation in the latest \'ersion is a lot

3 Al the time of Lhe cxpe1imenL, the prototype ,•crsion hAd not been implcmenLcd. So Lrnce o utputs w,:,·,:
na·tilicially co111lruc1.cd which nccounted for pa1·t of the c luttered look and 'feel ' of the notation, and inevi1 11Lt,,·
some errors crept in lhough lheir elTecl on 1,e1·fo11nnnce wu negligible since 1ol11lions to none of the stimuli prol,lc11,�
depended on such errors in the trace.

IO

,-impler, clearer and concise (compact). Many of this i mprovements have been based on the
,•.xperimental findings of both evaluative study. In the final version, the program code clauses wil l
1 ,c displayed in a separate databa6e wi11dotu, which wil l include explicit clause numbers. ll wi l l
also provide deLails on calls to subgoals (if any) of each clause suitably indented to coincide with
indentation of l ines in the main trace. Thus t.he clutter due to details about clause matches etc. ,
wi l l be shifted into a separate window.

In retrospect it was also felt that I.lie stat.us field may contain too much detail with the
potential to mislead n novice user. The use of S and s or F and f for distinct meanings is
pot.entially confusing. In particu lar, the combination Sf can be very easily misinterpreted us
meaning "success followed by a failure on backtracking" instead of its correct meaning, " success
of a fact" . The notation has been made simpler and clearer by reducing the number of fai lur,•
modes, and dropping 1.he distinctions between succes., modes. Thus replacing S s or Si· with 1111
S. ,L'I the information con\'eyed by Lhc smnllrr let.t.crs can be easily inferred from the presence (or
.ihscnce) of a subt.rtt corresponding to a clause.

5 References

Byrd , L. (1 980) . Understanding the control now of Prolog programs in Tarnlund S. ed. l'roc1.-c,/.
i11gs of the 1.,ogir Progr111nmi11g Workslm1,, 127- 1 38.

l > id1e\', C., 1111d du Doulay, J .0. 1 1 . (1 989) . An Enhanced Trace Tool for Prolog. In Procc-e,/.
i11gs of tlae Third Iut.cr11ational Confere11ce, Cl1ildre11 iii the Jnfornmtio11 Age. 149- 1 63 . Sofia .
Bulgaria.

tlu Boulay, J .0.1 1 , Pnlel, M .J . and Taylor, C. (fort.hcoming). Programming Environment-'> for
Novices. To appear in Proceedillgs of NATO AdvMced Jlesearcl, Worksl,op on Cog11itive Models
1111d Jntellige11t E11vironments for Learning Programming, Santa Margherita, Genoa, Italy, March
1 !192.

Eisenstadt, M. and Brayshaw, M. (1988). The transparent Prolog machine (TPM): An e.x,i
rntion model and graphical debugger for logic programm ing. Journal of Logic Programmi11g
J (4) :27i-342.

Eisenstadt, M. and Dixon, M. (1988). Intensive Prolog: workbook, The Open University Press,
Mi l ton Keynes.

G i lmore, D.J . (199 1a) . Does Thl' Not.ntion Matter? mss, Depl. of Psychology, Universily of
Nott.ingham, UK.

Gi lmore, ['.J. (199 1 b) . Models of Debugging. mss, Dept.. of Psychology, University of Nol
�i1 1gham, UK.

Green, T.R.G. (1 99 1) . Describing information artifacts with cognitive d imensions and structure
mnps. In Proceedi11gs of "IIC/'91: Usability No"'" Annual Conference of BCS Jfuman-Computer
Interaction GrouJ>, eds. D. Diaper and N .V. Hammond, CUP, U I< .

Hook, I<., Taylor, J . and du Boulay J .B.H. (1 990). Redo "Try Once And Pass": the influence of
complexity and graphical notation on novices' understanding or Prolog. Instructio11al Science 10
(4-5) :337-360.

1 1

Pain, II. and Dundy, A. (1987). What stories should we tell novice Prolog programmers"? In
Hawley, R. ed . • 4rtificial Intellige11ce Progrnmmi11g F.11\'iro11me11ts. Elli!i Horwood.

Patel, M.J. , du Boulay, J.B.H. and Taylor, C. (1 99 1 a) . Prolog Trac1:rs and Information J\c.
cess. In Proceedings of The First Moscow I/Cl '91 Worksliop, Mascall'.

Pat.el , M.J . , du Boulay, J .B.H. and Taylor, C. (199 1 b) . Effect or Format 011 Information and
Problem Solving. In Proceedillgs of tJ,e TJ1irtee11tl1 Annual Conference of tl1c Cognitii'e Scicure
Society, CJ1icago.

Patel, M.J . , du Boulay, J .B.11 . and Tnylor, C. (1 90 1c) . Working Title: E\'nluat.ion of Prolog
Trace Outputs. mss School of Cognitive and Computing Sciences, University of Sur;se.x, UI\ . (i n
preparation) .

Pai.el, M.J. , du Boulay, J .B .H. and Taylor, C. (199hl) . Aptitude Paper reference

Taylor, C., du Boulay, J .B .H. , and Patel, P.f .J. (1991). Outline Proposal for a J>rolog "'fe.x t.ual
Tree Tracer" ('Mvf). Cognitive Sciences Jlt,sc11rch Pap�r- 1 i7, School or Cognitive anti C-0111p111.i 1 1;;
Sciences, The llnh·ersity of Sussex, UI< .

Shu , N. C. (1988) Visual Programming. New York : Van Noslrand Reinhold .

6 Appendix

This section includes Spy, TPM* and 'M'T <111estions and scrc.>en dumps for question 2 and quc.-stion
4. There three examples of each quest.ion, one for each tracer output t.ypc. In each case the
quest.ion is shown together with the answer choices. The correct answer choice is starred .

TTT Question 2

The picture of the trace shovs the output for the goal

?- z7 .

for a program vhich contains several simple rules ,
such as for example

n : - lc9 , v, i8 .

Which one of the folloving statements is TRUE?

Clause 1 of v has tvo subgoais•
Clause 1 of n has f ive subgoals
Clause 2 of n has five subgoals
z7 has only one clause , vhich is recursive

1 2

SPY Quest ion 2

The picture of the trace shows the output for the goal

?- e .

for a program vhich contains several s imple rules of
which the . following is a single example

g : - j , k , l .

Which one of the following statements is TRUE?

The f irst clause for k has two subgoals•
The first clause for g has f ive subgoals
The second clause for g has five subgoals
e is def ined by a single recursive clause

TPH• Question 2

The p icture of the trace shows the output for the goal

? - a .

for a program which contains several s imple rules of
which the folloving is a s ingle example

c : - f , g , h .

Wh ich one of the following statements is TRUE?

The f irst clause for g has two subgoals•
The f irst clause for c has f ive subgoals
The s econd claus e for c has f ive subgoals
a is defined by a s ingle recursive clause

1 3

TTT Question 4

The procedure durl is defined as follows . What is the number
of times that its 4th clause is invoked (whether
successfully or not) when the following goal is evaluated :

?- durl ([1 , 1 9) , [0 , 1 , 1 1 , 2 1) , A) .

1 durl ([) , _ , [)) .
2 durl { _ , CJ , CJ) .
3 durl ([E I Rl) , [E (R2) , [E (R3)) :

durl(R1 , R2 , R3) .
4 durl ([El (Rl) , [E2 I R2) , R3) :

E 1 < E2 ,
durl (R l , [E2 I R2) , R3) .

S durl ([El l Rt] , [E2 I R2] , R3) :
E 1 > £2 ,
durl ((E 1 I R1) , R2 , R3) .

Once
Thr ice•
Four t imes
Never

SPY Question 4

Suppose the goal.

?- trundle([7 , 1 1] , [S , 7 , 10 , 12) , L) .

is evaluated against the program

trundle ([) , _, Cl) .
trundle{_ , Cl , CJ) .
trundle ([X I Xs) , (X (Ys) , (X (Zs)) : -

trundle (Xs , Ys , Zs) .
trundle ((X (Xs) , (Y (Ys) , Zs) : -

X < Y , trundle (Xs , [Y I YsJ , Zs) .
trundle ([X I XsJ , (Y I YsJ , Zs) : -

X > Y , trundle([X I XsJ , Ys , Zs) .

From the trace you are shown , how many
t imes does the head of the 4th clause
of "trundle" match a call to "trundle"?

Once
Three t imes•
Four times
Not at all

14

TPH Question 4

Let " zvys ick" be defined by the folloving
f ive clauses .

zwysick ([J , _ , [)) .
z11ysick{_ , CJ , CJ) .
z11ys ick ([A I P) . [A I Q) . [A I R]) : -

z11ysick(P , Q , R) .
zvysick ([A I P] , [B I Q) , R) : -

A < B , zwys ick (P , [B I QJ , R) .
zwysick ([A I P] , [B I QJ , R) : -

A > B , zwysick ([A I P] , Q , R) .

What is the number of invocations
(successful or other11ise) of the
4th clause 11hen the follo11ing
goal is computed?

? - z11ysick([3 , 7) , (2 , 3 , S , 8) , I) .

One
Three•
Four
Hone

15

···< 53> vcsd quoalUt.ptcl , src (t;DHIHG: quoolHt.ptcl.src) ••••••••••
••• 11 z7 lSr (CONTINUED F� PREVIOUS COl.lkN)
1 1
1 • • • • z7: -.,n
1 z7:-e,n

... 21 D l$r
12
1 •1 -y
I , . . , D: •y

.. •31 y lSf
1 1
1 y
1 'I

• " 4 : n 1Fg/2Sr
l l
I n: •l l,v,k
I n:•1 1 ,v,k

.. •S: 11 lSfFb
1 1
, 1 1
, . . " 1 1
•••G: v Fu
•••7: k9 l$r
1 1
, k9:•y
1 k9:•y

.. •B: 'I 1sr
1 1
, 'I
1 'I

u•9: W 1Sr
1 1
, w:•k91D
I , . . , w:•k9,D

.. 10: k9 lSr
1 1
, k9:•y
1 k9:-y
• •u: y 1sr
1 1
1 y
1 y

••• 12: • lSr
1 1
1 1 • • • . a : •y
1 1 •:-y

. . . 13: y 1sr
l l
1 1 • • • • y
1 1 y

.. • 14 : IB 1Sr
1 1
1 1 • • • , t B : ·w,u
I l lB:•w,u
. . ,15: w 1sr
l l
1 1
1 1
• • • 16: u 1sr
1 1
1 1 • • • • u
1 1 u

(CONTINUED NEl(T COLI.NH)

0

Figure 1: TTT Quest.ion 2

l G

.- a .
• • (I) Cal l e'
" (::?) Cal l I"
j• • (3) Cal l H"?
• • (3) b i t 11"
" (2) EMlt ,.,
" (-1) Cal l g'?
•• (S) Cal l h?
• • (S) Exi t h'>
• • (6) Cal l prolog.arror(IJNOEFIIIED PREDICATE, [1))7
" (6) Fal l prolog_orror(t!HOEFlllEO PREOICAlE, (I])?
:• • (S) Redo M
" (S) Fa l l h.,
• • (") Ca l l J"
• • (8) Ca l l 11'>
• • (8) Exi t 1 1'?
" (7) Exit j'?
" (9) Cal l t7
•• (10) Ca l l j?
•• (1 1} Ca l l f l"
• • (1 1) Exit fl'?
" (10) [Kit J?
" (12) Ca l l I"
" (13) Ca l I fl?
.. (13) Exi t f l'?
" (12) Ex i t f?

1 .. (9) E,dt : k'?
" (14) Cal l I?
• • (IS) Ca 1 1 t'?
•• (IS) E1<1 t t7
" (16) Ca I I !2?
" (16) Exi t 12'?
'., (14) Exi t 1"
" ('4) Exit : g?
•• (1) Exit : e'

OS

I?.

Figure 2: SPY Quest.ion 2

17

, �

Figure 3: '!'PM• Question 2

18

---< 53) vod quoa100tlt ,p1c l . vc (EDITING: quHlOOtlt.ptcl .sl"C) -----
• • • 1 1 dul" l ([l , 19), [O, 1 , 1 1 ,21), A) 4Fg/SS..
1 4
I • . • • dur l((E1_ 1 I R1_1] , (E2- 1 1 R2_ 1) , R3_ l) : -
I E l_ l < E2_ l , durl(Rl_l, [E2_1 I R2.. l), R3_ 1)
I dur l([l 1 (19)) , (0 1 (1 , 11 ,21)) , A) : -

1 (0 , dur-1 ((19], (0 l [l , 11 ,21]], A
15 A • (1]
I • . . . dur l ((E l- l l Rl_ l l, [E2_ 1 I R2_l), R3_ 1) : -
I El_ l > E2_ 1 , durl ([El_ l lRl_l) , R2_1 , R3_ 1)
I , . . . dur l ((l 1 (19]] , (0 1 (1 , 1 1 ,21]] , A) : -
1 1 > 0 , dur l ([l 1 (19)), [l , 1 1 ,21] , A

' " 2: I < 0 Fs
• 0 0 3: I > 0 Se
• 0 0 <1 : dur" l ((l , 19], (1 , 11 ,21] . A) 3Sr
13 A a (1)
I , . • . durl ([E_2 I R 1_2], [E..21R2-2], [E..2I R3_2]) : -

L . . . dur" 1 < c 1 1 c 19]] , c 1 1 [1 1 , 21 u . c� :g�zjs:�
-2

•
R3-2

>
I du.- 1 ((19], (1 1,21], R3..2)

' "5: du.- 1 ((19], (1 1 , 2 1], R3_2) <1Fg/5Sr
'"
t • • • • dur l ((E l_3I R 1_3] , [E2-3IR2_3] , R3_3) : -
I E 1-3 < f2_3, durl(R1-3, (E2-3 I R2_3], 113..3)
1 dur 1 ((19 1 (1], (1 1 1 (211] , 113..2) : -
1 19 < 11 , durl (C l , C 11 I [211], R3..2)
15 R3_2 : [)
(• . • • dur l ([f1_3I R &_3], (f2-llR2.3] , R3_3) : -
I E 1_3) £2-3, dur l ([E1-31Rl_3], R2_3, R3..3)
1 . • • • dur l ((l9 I C]), [1 1 1 (21)], R3_2) :·
I 19 > 11 , dur1 C [19 I C l 1, (21) , R3_2)

" 0 6: 19 (11 Fs
• • • 7 : 19 > ll Ss
' "8 : dur l ([19], (2 1] , R3_2) <IS.-
14 R3.2 : (]
I • • . • durl ([E1_4 I Rl_4], [EZ..41112_4], R3_4) : -
I f1-4 < fZ..4, dur l (R1-4, [E2-4IR2_4], 113..4)
1 • • • • dul"l ([19 l [l l , (21 I Cl l , R3_2) :•
I 19 < 21 , dur l ([l , [21 I C l], 113..2)

.. ,g: 19 < 21 Ss
" 10 : durl ((] , (21] , R3.2) 1Sf
1 1 R3_2 : []
(. • • • durl ([], _ 5 I

[]) .
I , . . . dur l ([] , (21] , []) .

yos

D

Figure 4: TTT Question 4

19

-··< 53 mo
•• (1) Ca l l
0 0 (2) Ca l l
" (3) Cal l
• • (4) Ca l l
0 0 (5) Cal l
0 0 (5) E1el t
" (4) E1e l l
" (3) E,cl t
• • (2) E K H
• • (1) E1el t
L : [7] .,
yH

D

����([��o����br;�· r�:� ;;j�·=;);·-·-·--·······--------
·

t.-undlo((7, 1 1] , (7, 10, 12] , _l)
trundle([l l], [10, 12), _2)
t.-undlo([1 1] , [12), .2)
trundle([] , (12], .2)
ll"undle([) , [12), [])
trundle([1 1], [12], [])
t.-undlo([1 1] , [le, 1 2] , C])
l.-undle([7, 1 1] , (7, 111, 12), [7])
t.-undlo([7, 11], (5, 7, HI, 12], (7])

Figure 5: SPY Question 4

20

J 11.,uuur1.111.a1
71,..,, .. 1111.111.111

Figure 6: TPM* Quest.ion 4

21

·� �

