
So1ne Thoughts on Designing an Intelligent.

System for Discovery Progran1ming

Haider Ramadhan
Computer Science and Artificial Intelligence

. I I '

'j

University of Sussex,
Briglito11, 13'.'JI !lQIL t·1,.

e-mail: haiderr:Llicogs.susx.ac. uk

This paper highlights and discusses some important design principles
and issues for developing an intelligent system for discovery-oriented pro­
gramming. The envisioned system synthesizes features of Human Com­
puter Interface (HCI) with features of an Intelligent Tutoring System
(ITS). In terms of HCL the system is capable of providing novices with

an open-ended, exploratory, and free discovery programming environment
(microworld) that enables them to observe and discover the dynamic be­

havior of both individuaJ elementary programming concepts aud wholt,
programs, and thus build the underl.ving conceptual knowledge associ­
ated with these concepts and a mental model of the programs' exec1nic11.
111 terms of an ITS. the �yst.em is capable of aut.0111aticall.v anal�·zin� and

debugging 110\'ices· parllal ::-.olutions lor st·manttc errors Jur111g a guided
discovery programming phase and provides them with i11tclligcnt feedback

that guides them in the problem solving process.

Keywords

Intelligent tut.oring systems, rnicroworlds, discovery systt>111s, aut.0111a11c dt>l>11g­
ging systems, visual programming, program \'isualizat.ion, case-based n'a:;011111g

and immediate feedback.

1 Introduction

Programming is a ubiquitous and cognitively demanding task. Novice program­
mers have difficulties in learning to program (Pea 1986, Bonar 1985, Soloway
1984, Anderson 1982, du Boulay 1986, Eisenstadt 1991]. Some computer scien­

t.ist.s even say that computer programming is just too hard and too mathematical
for novice programmers (Dijkstra 1982].

There are two main reasons behind these difficulties: lack of programming
knowledge and lack of programming experience. Programming knowledge deals
with the exact syntax and semantics of the programming language constructs be-
.. '., 1�::· ,! T!:i-.. i11.-l1irl,·:,,; 11111kr:c-ta11di11g I lw d� 11�111i, h,•lt;1,·i0r of prn�r;1111111!ll!.!

concepts such as variable declaration and binding, input and output operations,
conditional statements, looping constructs and other more abstract. concepts
:--ud1 as rccurs1011. Programming experience deals with the skill required to
,·0111wct. the low-level syntax and semantics of constructs t.o produce properly
i11t.t'grate<l higher-level plans (programs and algorithms) (Bonar 1985, Chi 1982].
111 other words, programming experience deals with t.hc ability to put individual
programming concepts together to come up with a complete solution for a given
problem. This requires acquiring a mental model of how the computer executes
the program, so that the reasoning through this execution can become possible.

This paper discusses principle design issues and decisions for developing an
intelligent discovery programming system. The envisioned system helps novices
to acquire both programming knowledge and programming skill. This is accom­
plished in two phases:

• In the first phase, the free discovery programming phase, the system helps
novices observe and discover the dynamic behavior of individual program­
ming concepts as well as whole programs t.o build the underlying rnnr,•p­
tual programming knowledge needed for problem solving tasks without
r,'quiri11g them to nw11I r11ly simulate t.hc int.ricat.c behavior of th<' 111achirw

• In the second phase, the guided discovery programming phase, novices
compose and coordinate programming concepts and language constructs,
discovered and observed in the first phase, to solve given problems un<ler
the intelligent guidance of DISCOVER, and thus transform their program­
ming knowledge into programming skill.

2 Main Design Issues

2.1 An Integrated System Image

A discovery programming system encourages a novice programmer to become
an active learner by allowing him to form his own hypotheses. explore his own
quest.ions, and draw his own rnndusions. The system develops the 11ov1rc 's

programming knowledge as au opportunistic learner by prov1d111g 111111 with a11
exploration-based, free discovery programming environment in which he rnn
explore programming co11cepts, discover their dynamic behavior through ob­
servation, detect any misconceptions associated with them, and he11cc build
the necessary underlying conceptual programming knowledge. To achie,·1: t.l1c·se
goals, a discovery programming system needs to support visibility [du Boulay
1981), program visualization [Myers 1988), and a concrete model of the under­
lying computer system with which the novice is interacting [Mayer 198 1 J. du
Boulay calls this concrete model of the machine the 'notional machine'. while
Norman [1983] calls it the 'system image'.

'.\]a_ yc1 il�li"l�, \,i1i.i.11. ,i.•',.�
J

.J.,11,:-. l:.::- ;
J

.1 ... i \; ·,.:,, ,· -; . ,
novices learn the concepts of a programming language more effectively and more
1'asily if th<'y art' prt·::-t·11t (·d \\'if h a co11crt'I ,. 1111>d(•I of t lie 1111d1·rly 111 �- ,·, ni 1p11 I 111.�
machine. Similar results have bce11 reported by Olson [1986) who s11��1·s1s t hr11
the main difficulty novices confront when learning to program is tlw ass1111ilat 11111
of a model of the computing machine. These findings imply that tlw darificat io11
of the notional machine facili t.at.es the task of learning to progra.111 for no\'ict•s.
However, Jones also report.s that pro\'iding a static concrt'l.c notional machine
on its own is not enough and that even when presented with a notional machine,
novices tend to build inaccurate models of programs' execution and still have
difficulties in comprehending the flow of control in such dynamic concepts a-:
looping constructs, conditional statements and procedure calls. Therefore, a
discovery programming system not only needs to present novices with a notional
machine but also needs to support program visualization and visibility to allow
them visualize how their programs dynamically behave and how hidden and
internal changes in the notional machine take place, and thus build a robust
model of the program's execution and the machine's behavior. This includes,
for example, seeing how variables are named, how they get their values, how
the corresponding memory cells in the mernory space are affected a11d how the
control flows from 011e slaterne11t tu a11other.

Most existing programming tut.ors and systems present novice programmers
with a static view of the program's execution and its dynamic behavior, ignoring
the issue of providing a visible, graphic and concrete base 011 which novices may
build their underlying conceptual programming knowledge and programming
skill. Some examples of these systems include Proust [Johnson 1984). Talus
(Murray 1985), Aurac [Ha.semer Hn,a), Laura [Adam and Laurent 1980], Spade
[Miller 1982] and the Lisp Tutor [Anderson 1985). As a consequence. novices
are required to mentally simulate the execution of t.he program whid1 they are
writing and imagine it.s dynamic behavior and side-effects: a task they normally
fail to accomplish.

Several programming systems have attempted to incorporate some of these
design features in their implementation. However, these systems support only
one or two of these features and lack au inlegraird image of the notional machine:
the incorporation of visibility and program visualization within a concrete model

of the underly ing com puter system . Therefore , they fal l shor t. of prov iJ i 1 1g a
t rue d iscovery p rogramming system or f"n v i ron 111e1 1 t. B ip [Bc1 r r 1 97<>] . an I TS for
B AS IC , th rough showi ng poi n ters which move arou nd the p rogra 1 1 1 rodt' as i t
is execu ted and ch anges i n t.he val ues o f vari ab les . su pports progra 1 1 1 \' is 1 1 a l i za ­
t ion and s imple v isi b i l i ty. S imilar features were also provided by p rogramming
systems for FO RTRAN [Shapiro 1 974] , for PASCAL [N ievergdt. 1 978] . and for
assembly l anguages [Schweppe 1 973, Shapiro 1 974) . Br i dge [Bonar 1 988] also
supports program visua l i zation by h ighl ight ing program l i nes d u ri ng exccu l ion
and showing how d i fferent programming plans are connected in a graph ic and
<l ia,grammat. ic fash ion . Ry supporti ng th.., v isual Pxec 1 1 t ion of whol<' rrogra.ms .
1 ! l.w1· u 1 1 1 •;::- pu.'):-- J l , k i 1 1 i i J 1 , ·:-,1 · :-,} :-- t , : 1 1 1 ::- i , , 1 1 , · i j , . . . , ·, , , , :-- i l \ l 1 , d . i : , ; , i , i . d i ; " " j , · 1 , • !

the whole program 's execu t ion. However, they lack a t ru ly i n tl'ract ive e 1 1 v i ­
rn 1 1 nwnt t ha t a l lows 1 1ov i c•'s 1 1 1) 1 on ly v i s 1 1 ,t l i z, · th ,, d�· n a r n i c I H' l t a \· i l) r of w l io l { ·
programs but also ,· isua l i z<' the behav ior of i nd iv i dual pro_!!;r; 1 1 1 1 1 1 1 1 1 1 g rn1 1 ccp t s
and language co1 1s t. ru c l s .

Visual Program ming syst.erns, such as B A LSA [B rown I Y8(i] and Ti 1 1 ker
[L i eberman 1 985] , also attempt to show novices t l tc dynamic behav ior of t i t <'
whole p rograms and algorithms. However, these systems emphasize the rep re­
sentation of programs i n graphical terms, sometimes i n more than two d imen­
sions. There is no emp i rical evidence yet to suggest that v isual programming
is i nherently more effect i ve than conventional l inear and text-orien ted program­
ming for teaching novices how to program. In fact , as Green [1 990] claims,
i nstead of focusi ng on visual programming and creating new programming nota­
t ions, one can cont inue with the existing notation but use enhanced typography
to make perceptual cues reflect the notational structure .

2 . 2 Case- based Reasoning

- I t has been wel l advocated even before Socrates ' t ime that people· rt'a:--01 1 a bou t
t h,! s i t. uatio 1 1s t. l i t·y f ind t hcmsd ves i 1 1 by referr ing to s1 1 n i lar s i 1. ua 1 1u 1 1 ;-; tha t. tl 1cy
have experienced , heard or seen . Therefore, a d iscovery progra 1 1 1 1 1 1 i 1 1 g �yst.ern
should develop the novice's programming capab i l i t. ies as a case- based learner liy
prov id iug h im w i th relevant cases (examples) to help h im in tack l l l lg l 1 1s ow 1 1
programming problems. This i s different from learning-by-analogy which focuses
on issues of analogical t ra 1 1sfer: connect i ng the 1 1e\\" mater i al tu lw lt',H 1 1 cd w i t h
the k now ledge that al ready ex ists i n memory [Hoc 1 983 , Pa pert 1 9�0. Bonar and
Soloway 1 985 , A 1 1derson 1 985 , Bayman and M ayer 1 984] . W hc1 1 presenti ng a
novi ce w i th a desc r ipt ion of a problem dur ing the gu ided d iscovery programmi 1 1g
rhasc, a d iscovery programmiug system should also a l low him to look at several
example cas,�s or sol ut ions to d i fferen t bul sim i lar problems. The:-:t· exam ple
cases shou ld be designed to h ave a close mappi ng onto the cu rrcn l problem .
The novice shoul d be able to use the example solution as a model for his own
solut ion by transformi ng the whole or a part of the example sol ut io1 1 i n to h is
own solution . replac ing and mod i fy ing only those i nd i v i dual d, ·rn1_' 1 1 ts of t l tc

- 1

example solution t hat do 11o t. sat asf'y the new requi rements.

2.3 Intel l i gent Coach ing

A di�covery progra11 1m i11� syst c- 1 1 1 develops the novice ·s programming skill by
providing him with a guided discovery programming phase . In this phase, the
novice composes and relates different programming concepts and language con­
structs to form complete algorithms for given problems. The system monitors
the novice 's actions as he moves along the solution path , automatica l ly analyzes
partial so lutions for semantic <>rrors and misconceptions . and offers intelligent
� ! ' J i ' • • O : \ 0 '• I • t • i ' � \ I j • '

Many of the automat.ic program debugging systems, including Proust {John­
:--,) 1 1 1 98 1]. Ta l 11:-- [\ l 11 rray 1 q s1jJ. :\ 1 1 rar [H asemer J !l�:{J . Bip { Ha rr 1987) . and
Luara [A dam and Lau rent 1 91')0) , cannot debug pa rtial code segments and wait.
u n t il t.he e lll i re program rode is com pleted before attem pting any debugging
a nalys is . As a result , these systems lack any rich interact.ion with novices dur­
ing p rogram construction and require them to possess a high level of bot h pro­
gramming knowledge and progr;i m mi n g sk i l l . A 11 l 1 1111 a t i r p rogra m d ,•hugg,�r.s
embodied and incorporated in a discovery programming :.ystem should be r.apa­
ble of debugging partial solutions as they are provided by nov ices . This feature
is mandatory for a discovery system to be able to monitor novices ' progress
in putting programming concepts and language constructs together, and decide
when to interrupt and what to say. Novices can only be expected t.o have partial
programming knowledge of how programming concepts and language constructs
work , how they affect the underlying notional machine and how the machine
executes and treats w ho le programs. In a discovery system, this knowledge is
expected to be gained during the free discovery programming p hase. It is the
task of t he discovery programming system , t h rough its guided disco very p ro­
gramming phase , to hel p nov ices t rnnsform their programming knowledge into
progra111m i1 1g sk ill .

Several programmi ng �yst.ems and tutors support. the debugging of partial
solutions, among which are the Lisp Tut.o r {Anderson 1 985] , Bridge {Bonar 1 988) ,
and Gil [Reiser 1 988] . Unlike Bridge . wh ich rcquin•s t.he novice to specifically
request the automat i c analysis of his program (passive-like mode) , a discovery
programming system , l i ke the Lisp Tutor and Gil . should support. active, au to­
matic debugging for it to be able t.o monitor each a11d every step that novices
may take w hile moving on a solution path, determine when novices s how evi­
dence of misconceptions and decide when to interrupt and what to say. This
requires support for possible immediate feedback on both failure and success.
However , immediate feedback should not spoil the spirit of d iscovery learning,
and should not impose on novices t.he rigidity found in the early version of Lisp
Tutor, for example. This can be achieved by supporting a more flexible s tyle of
tutorial interac tion t hat :

1 . I ncreases the grain size of automatic debugging to a com p lete expression
or statemen t , not j ust a si ngle sym hol ,

2 . Perm i ts the user to enter the code in any order . not. j ust left - to- r igh t . and

3 . Allows the user to backtrack and delete previously en tered code.

By supporting these features, a d iscovery programming system combines the
v i rtues of both d iscovery learning and immed iate feedback . A fu rther d iscussion
on these princip le design issues can be found in Ramadhan [1 99 1] .

. \ ! l f ' \\' i m p l < · trl" ! l f ; 1 f i ()n nf t i , ,, f j ._ p T1 1 1 n r r 1 1 l ,,d ·1 ..: t n d 0 n l r n n l rn l l ,, , ! t 1 1 t n r

lA 1 1derso 1 1 1 ��Uj , att.e 1 1 1 p ts t.o ea:;e t. he ng1 J 1 ty tuu l l ll 1 1 1 t he· c l a.,::-1 r \ 1 · 1 :-. 1 u 1 1 ul t lw
tutor . I n add i t ion t.o p rovid ing nov ices with the th ree foat u res mc1 1 t io 1 1ed aho,·,, .
t.he 1 1 c w t u tor also enables them to cu1 1 L rol t l tc 1 1 1 1 1 1 1 1 g uf t lw f,:nl h; 1 , · k 1 1 \) \,·n , · r .
these featu res a re supported on ly in the p rogram t•d i t. i 1 1?, 1 1 1od <' d u r i 1 1g w h ich t.hc
tutor has no i n teraction with the nov ice. This transi t.ion from tu t or- co 1 1 t ro l l <,d
i n teraction to studen t-control led interaction makes t.he 1ww t i l t.o r . l i ke� B ridge ,
a passive system that waits for the nov ice to request automat ic ana lysis of h is
code, and thus loses the rich interaction w ith h im . In add i t ion , when the nov ice
asks for automatic debugging of his code, the tutor checks over the code in the
same sequence as the original version: top-down , left-to-right . Feedback is gi ven
on the fi rst error found and the rest of t.he code is just. ignored . A l though the
new i mplementation is an improvement, it takes away a very important feature
from the tutor : the abi l i ty to monitor the novice's p rogress 011 the solu tion
path , determine when he shows evidence of m isconceptions within the i r proper
and immediate context and decide when to guide him and what t.o say d u ring
i n teract ive tutor ing .

3 Conclusion

This paper d iscusses a framework for design ing and deve loping a d iscovery pro­
gramming system . It is argued that a tru ly robust d iscovery programmi ng
system m ust be able to allow novices acqu i re both program mi 1 1g k nowledge
and programming skil l . A discovery system supports novices in the initial free
discovery programming phasP. and the subseq uen t guided d isco\·ery progra 1 1 1 -
m i ng phase. I n the i u i tia l phase, novices observe and discover the dynam ic
behavior of i nd i vid ual programming concept.s as wel l as of whole p rograms to
bu ild the u nderly ing conceptual programming k nowledge. 1 1 1 the su bsequent
phase, nov ices compose and coord inate p rogramming concepts and l anguage
constructs, observed and d iscovered in the i n i tial phase. together to sol ve given
problems under expl icit i n tell igent guidance of system :s domain expert i n order
to transform their programming knowledge into programming ski l l .

The i n tegrat ion of visib i l i ty and program visualization within a concrete
model of the u nder ly ing notional 1 1 1achine, cou pled with tht> case- ha.--ed n�asoni 1 1g

(j

and the i m medi acy of i n te l l igent tutor ing are expected to prov ide a d iscovery
program ming system wi t.h a potential to combine v i r t ues and foa t. u res of bot. I i
I ICI and ITS to teach novices basic com puter program ming i 1 1 a dynam ic and
conceptual l y r i ch way.

Acknowledgement

I am deeply greatfu l to Ben du Bou lay for many helpfu l d iscussions, suggestions
and stim ulating i n tel lectual chal lenges to do with my researc h , and also for
, · r i t i , · ; t l l y r, •; i d i n g c •a r l i t · r \ t · r :-- i (I IJ:-- of 1 l i i :-- l · · ' l " ' I' T l 1 1 :-- r , ·:--, . 1 1 · · l : j , 1 ; , . 1 : · 1 . . r : 1 1 1 \ I l l

going P h D study supported by a fu l l scholarsh ip gran t from the Su l t.an Qaboos
h1 i vt>rs i t.y, Oman

References

[Adam and Laurent 1 980] Adam , A. and Lau ren t . . I . LA U RA , A System to
Debug Student Progra.1 1 1:; . A rl1jic1a/ lu /c//zgcuce 1 5
(1 5) : 75- 1 22 , 1 980 .

[Anderson 1 982] Anderson , J . R. Acqu isi tion of Cognit ive Skil l . Psy­

chological Review 89, 369-406 .

[Anderson 1 985] Anderson , J . R. , Boyle , C. F . and Reiser , B . J . I n­
tel l igent Tutoring Systems. Science 228 , 456-462 .

[Anderson 1 990] Anderson , J . , Boyle , C . , Corbet. , A. and Lew is. M .
Cogn it ive Model i ng and I n te l l igent Tu tor ing . Jo u r­
nal of A rtificial !1l telhge11 ce 42 . 7-49

[Harr l U76] Uar r , A . , Heard , M . , and :\ 1. k 1 1 1so 1 1 , IL The l'o 1 1 1 -
p u ter as a Tutor ial Laboratory. In t crnalwnal Jo ,n­

nal of Ma n- Mach.we St u dzcs 8 . 567-596 .

(Bayman and Mayer 1984] Bayman, P. and Mayer , R. Instructional man ipula­
tion of user's mPnt.al mo<l<'ls for e lec t ron ir r.c1 l cu la ­
tors . ln l erna twnal .Jou rn al of Ma11 - .\lacl1 1 1u . St u d­
ies, 20, 1 89- 1 99 .

[Bonar 1 985]

[Bonar 1 988]

Bonar. J . G . Personal Prngram mwg m HA SIC.

Academic Press, USA .

Bonar . J . G . Intel l igent Tutor ing with l n t.crme1d iate
Representations. Proceedings of the First Conj er­

e u cc 0 11 lnte//igc11 I Tu lorwg Syslnu .'i . ITS- 88. ;\fon ­
t. real , Canada .

[Bona r and Soloway 1 985] Bonar , J . and Soloway, E . Preprogram m i 1 1g k nowl­
edge: a major sou rce of misconceptions i n 1 1ov i c<'
p rogrammers. Huma11 -Computer Studi es rn Malh t· ­
mallcs, 20, 293-3 HL

[B rown 1 986] Brown , M . A lgorithm A n imations. Ph . D . thesis.
Brown Un iversity, USA , 1 986.

[Ch i 1 982] Chi , M . T. H . , G laser , R. and Rees , E . Expertzsf
in Problem Solving. I n Strenberg, R. (ed i tor) , A d­
,·: 1 1 1 •"" 1 1 1 t h0 pq·rhn ln(!\· nf H n rn ;1 1 1 l n t <' l l i �•·n ,· , ·
La.\\" f l " l l t t · Lrl bau 1 1 1 a 1 1 d ,\:-:-.unat.e:-, l l dbda lc . \ c\\·
.J ersey .

[d u Bou l ay l !:J� I]

(du Bou lay 1 986]

[d u Bou lay 1 987)

[E is<> 1 1s t ad t 1 99 1)

[G reen 1 �90}

[H a.-;emcr I �83]

[Hoc 1 98:J)

D ijkstra . E . VV . How do we Tel l Tru th:-- tha t M i�ht
l l u rt? SIGPLA N Noll,cs. 1 7 (5) : 1 3 - 1 :> . M ay.

d u Bou lay, J . 13 . H . . O 'Shea . T . and :\ Jo 1 1 k . .J . Tl ic
Black Box I nside the G lass Box : Present ing Com­
puting Concepts to Novices. International Journal
of Man-Machine Studies, 14 , 237-249 .

d u Boulay, J . B .H . Some Difficu lties of Learn ing to
Program . Journal of Educational Computing Re­

search, 2, 57-63.

du Boul ay, J . B . H . , Taylor . J . Computers. Cogn zt zon
and Development. J . Wi ley and Sons. l 987 .

Gisenst.adt, M . . Rajan , T . and Kcaue . ;\J .\"onn
Progmmmi11 g E11 1·1 ro 11 m u1 t� Ab lex Puh l i�h i ng .
B r ighton , C I, .

G reen , T. Programming Language� as l n forrua­
t. ion Structu res. I n Hoc , G reen , Sarnu rcay and
Gilmore (Eds .) , Psychology of Progra mming, Aca­
demic Press, London .

Hasemer, T . A n Empmca lly- Bascd Dcb uggrng :,·ys­
lem for Novzce Pmgra m m ers. P h . D . t . hesis . The
Open U n iversi ty, U K , 1 983 .

l loc , .J . Analysis of beginner 's p robk1 1 1 snl v i 1 1g
strategies i n p rogramming . l n G reen , Payne and
Van der Veer (Eds.) , The Psychology of Computer
Use , London : Academic Press

8

(J ohnson 1 985]

[Jones 1 984]

[Lieberman 1 985]

(M ayer 1 98 1]

(:\1 i l ler 1 982]

[Moran 1 982]

[M urray 1 986]

[l'vtyers l 988]

[N ievergelt 1 978]

[Norman 1 983]

[Olson) 986]

J ohnson , W. Int en tion- Based /Jzagnos1s of ETTors
zn Novice Progm m mers. Ph . D . thesis , Ya le U n i ver­
si ty, U S A , 1 985 .

Jones, A . How Novices Learn t.o Program . JJro­
ceedings of the First IFIP Conference on Human

Computer-Interaction, IN ERACT-84 , London , U K .

Lieberman , H . Seeing what. your programs are do­
i ng. International Journal of Man- Maclune Stud1es,
J 'l :' -, :1 ·:-:- !

May�r . B . E . The Psychology of H ow Novice� Learn
Com puter P rogra 1 1 1 1 1 1 1 1 1g . Co mpu lrny .<11 1 1 c y , 1 . ;
1 2 1 - 1 4 1 .

M i l ler . . J . , Keh ler . T . . M ichaels , P. a nd .M ur ray . \V
lnlelligent Tu tor1 11 g for Programmrng Tasks . Tech ­
n ical Report , Texas l nstrumc-n ts , 1 982 .

Moran , T. and Card , S . Applying cognitive psychol­
ogy to computer systems: A graduate seminar . In
Moran, T. (Ed .) , Eight Short Papers rn User Psy­
chology, Palo Alto, CA, USA: Xerox.

M urray, W . A ulomatzc Program Debugging for In ­
telligent Tutoring Systems. Ph . D . thesis, Texas U ni­
versity, A usti n , U S A , I 986 .

Myers , B . A . The State of the A rt i n V isu a l
Programming and Progra m V isu al i zat . ion . Ca rn tqt ,
Mellon Unwasity Tech 1l lca l /lcport, Com p u t er
Science Department , Carnegie Mel lon U n i vt�rsi t y.
USA .

N ievergelt, J . XSO: A Self Explanatory School
Computer . SIGCE Rull l O . 66-69

Norman , D . Some Observations on Mental :\ lod­
els . In Gentner and Stevens (Eds .) . Mnctal Models.

Hi l lsdale, NJ , USA : Erlbau m .

Olson , G . and G ugert.y, L . Com prehension d i f­
ferences i n debugging by ski l led and novice p ro­
grammers. I n Soloway and Iyengar (Eds .) , Empir­
ical Stud,cs of Progmm mers, Norwood , l\ .J . l" S:\
A blcx .

g

[PaperL 1 980)

(Pea 1 986)

[Rajan 1 99 1]

[R amadhan 1 99 1]

[He iser l 988]

[Schweppe 1 973)

[Shapi ro 1 974J

[Soloway 1 984]

Papert 1 S. Mt1ulston11s: c/1 1/drw, compulas a n d
powerful ideas. N('w York : Basic Books .

Pea, R. D . Language- I ndependent Conceptual
'Bugs ' in Novice P rogrn 1 11 r.-1 i 1 1g . Journal of Educa­
tional Computing Reseacc'1 2. 25-36 .

Rajan, T. Novice Programming E11 t111'011menls.
Ablex Publ ish i ng, Br igh ton , U ({ .

R.amadhan , H . A Oiscovny Pro.e:ra m m i n g S�'st.em .
(

0
ll!J fl l l l / t ."\ , l l /i l l ;,' : • r ,i i • I, " , ,, • . . , ' · .'> , 1 :-,.-.., \ \ ; , o • C j

si ty, Brighton , lJ h: .

Reiser, l3 . , K i mberg . D . , Luvdl . . :\ J . a 1 1 d H.a l l lH 'Y ,
ivl . K now ledge Represen t.at it1 1 1 and Ex p la 1 1 a t ion i 1 1

G I L , an I ntel l igen1 Tu t.or for P rogram m i ng . Cog11 1-
lwc Science Labonr lory Hcprnl . P r i w, ·1 nn l " n i \· c · r ·
sity, NJ , USA

Schweppe 1 E. J . Dynamic Instructional Models of
Computer Organization and Programming Lan­
guages. SIGCE B1tll 5 , 26-3 1 .

Shapiro 1 S . C. , and Witner , D . P . T n tcract.ive Visual
Simulations for Beginn ing Programming Students.
SJGCE Bull 6, 1 1 - 14 .

Soloway, E . and Ehr l ic h , K . Empir ical Stud ies o f
Programming K now ledge . I Ef:.:E Transactions 0 11

Software Engin eering. Sprcrnl Issue Rcusability,
Sep t .

10

