Some Thoughts on Designing an Intelligent
System for Discovery Programming

Haider Ramadhan
Computer Science and Artificial Intelligence

oo v . A .

ljniversity of Sussex,
Brighton, BNT 9QIH. UK.

e-mail: haiderr@cogs.susx.ac.uk

Abstrace

This paper highlights and discusses some important design principles
and issues for developing an intelligent system for discovery-oriented pro-
gramming. The envisioned system synthesizes features of Human Com-
puter Interface (HCI) with features of an Intelligent Tutoring System
(ITS). In terms of HCI, the system is capable of providing novices with
an open-ended, exploratory, and free discovery programming environment
(microworld) that enables them to observe and discover the dynamic be-
havior of both individual elementary programming concepts and whole
programs, and thus build the underlying conceptual knowledge associ-
ated with these concepts and a mental model of the programs’ executicn.
[n terms of an ITS. the svstem is capable of automatically analvzing and
debugging novices” paruial solutions lor semantic errors dunng a guided
discovery programming phasc and provides them with intelligent feedback
that guides them in the problem solving process.

Keywords

Intelligent tutoring systeins, microworlds, discovery systems, automatic debug-
ging systeins, visual programming, programn visualization, case-based reasoning
and immediate feedback.

1 Introduction

Programming is a ubiquitous and cognitively demanding task. Novice program-
mers have difficulties in learning to program [Pea 1986, Bonar 1985, Soloway
1984, Anderson 1982, du Boulay 1986, Eisenstadt 1991]. Some computer scien-
tists even say that computer programmingis just too hard and too mathematical
for novice programmers [Dijkstra 1982].

There are two main reasons behind these difficulties: lack of programming
knowledge and lack of programming experience. Programming knowledge deals
with the exact syntax and semantics of the programming language constructs be-

loarnd Thisinelodes imderstanding the dynamie hehavior of programmnnng
concept,s such as variable declaration and binding, input and output operations,
conditional statements, looping constructs and other more abstract concepts
such as recursion. Programming experience deals with the skill required to
connect the low-level syntax and semantics of constructs to produce properly
integrated higher-level plans (programs and algorithms) [Bonar 1985, Chi 1982].
In other words, programming experience deals with the ability to put individual
programming concepts together to come up with a complete solution for a given
problem. This requires acquiring a mental model of how the computer executes
the program, so that the reasoning through this execution can become possible.

This paper discusses principle design issues and decisions for developing an
intelligent discovery programming system. The envisioned system helps novices
to acquire both programming knowledge and programming skill. This is accom-
plished in two phases:

e In the first phase, the free discovery programming phase, the system helps
novices observe and discover the dynamic behavior of individual program-
ming concepts as well as whole programs to build the underlying concep-
tual programming knowledge needed for problem solving tasks without
requiring them to mentally simulate the intricate behavior of the machine

e In the second phase, the guided discovery programming phase, novices
compose and coordinate programming concepts and language constructs,
discovered and observed in the first phase, to solve given problems under
the intelligent guidance of DISCOVER, and thus transform their program-
ming knowledge into programming skill.

2 Main Design Issues

2.1 An Integrated System Image

A discovery programming system encourages a novice programmer to become
an active learner by allowing him to form his own hypotheses, explore his own
questions, and draw his own conclusions. The system develops the novice’s

134

programming knowledge as an opportunistic learner by providing him with an
exploration-based, free discovery programming environment in which he can
explore programming concepts, discover their dynamic behavior through ob-
servation, detect any misconceptions associated with them, and hence build
the necessary underlying conceptual programming knowledge. 1o achieve thesce
goals, a discovery programming system needs to support visibility [du Boulay
1981], program visualization [Myers 1988], and a concrete model of the under-
lying computer system with which the novice is interacting [Mayer 1981]. du
Boulay calls this concrete model of the machine the 'notional machine’, while
Norman [1983] calls it the ’system image’.

Mayer (1usl)) Noviire Lo, Joncs oS aed Mew oo L ‘
novices learn the concepts of a programming language more effectively and more
easily 1 they are presented with a conerete model of the underlyime compuning
machine. Similar results have been reported by Olson [1986] who suggests that
the main difficulty novices confront when learning to program is the assimilation
of a model of the computing machine. These findings imply that the clarification
of the notional machine facilitates the task of learning to program lor novices.
However, Jones also reports that providing a static concrete notional machine
on its own is not enough and that even when presented with a notional machine,
novices tend to build inaccurate models of programs’ execution and still have
difficulties in comprehending the flow of control in such dynamic concepts ax
looping constructs, conditional statements and procedure calls. Therefore, a
discovery programming system not only needs to present novices with a notional
machine but also needs to support program visualization and visibility to allow
them visualize how their programs dynamically behave and how hidden and
internal changes in the notional machine take place, and thus build a robust
model of the program’s execution and the machine’s behavior. This includes,
for example, seeing how variables are named, how they get their values, how
the corresponding memory cells in the memory space are affected and how the
control flows from one statement to another.

Most existing programining tutors and systems present novice programiners
with a static view of the program’s execution and its dynamic behavior. ignoring
the issue of providing a visible, graphic and concrete base en which novices may
build their underlying conceptual programming knowledge and programming
skill. Some examples of these systems include Proust [Johnson 1984]. Talus
[Murray 1985), Aurac [Hasemer 1983], Laura [Adam and Laurent 1980}, Spade
[Miller 1982] and the Lisp Tutor [Anderson 1985]. As a consequence. novices
are required to mentally simulate the execution of the program which they are
writing and imagine its dynamic behavior and side-effects: a task they normally
fail to accomplish.

Several programming systems have attempted to incorporate some of these
design features in their implementation. However, these systems support only
one or two of these features and lack an integraied image of the notional machine:
the incorporation of visibility and program visualization within a concrete model

of the underlying computer system. Therefore, they fall short of providing a
true discovery programmingsystem or environment. Bip [Barr 1976]. an I'T'S for
BASIC, through showing pointers which move around the program code as it
is executed and changes in the values of variables. supports prograin visnaliza-
tion and simple visibility. Similar feawures were also provided by programming
systems for FORTRAN [Shapiro 1974], for PASCAL [Nievergelt 1978], and for
assembly languages [Schweppe 1973, Shapiro 1974). Bridge [Bonar 1988] also
supports program visualization by highlighting program lines during execution
and showing how different programming plans are connected in a graphic and
diagrammatic fashion. By supporting the visual execution of whole prograrns.
U ccolines possible doi iiese STy Go Befje aiov oo s Drusiad o e deiad dieonded o
the whole program’s execution. However, they lack a truly interactive envi-
romment that allows novices not anly visualize the dvnamie behavior of whaole
programs but also visualize the behavior of individual programunng concepts
and language constructs.

Visual Programming systems, such as BALSA [Brown 1986] and Tinker
[Lieberman 1985], also attempt to show novices the dynamic hehavior of the
whole programs and algorithms. However, these systems emphasize the repre-
sentation of programs in graphical terms, sometimes in more than two dimen-
sions. There is no empirical evidence yet to suggest that visual programming
is inherently more effective than conventional linear and text-oriented program-
ming for teaching novices how to program. In fact, as Green [1990] claims,
instead of focusing on visual programming and creating new programming nota-
tions, one can continue with the existing notation but use enhanced typography
to make perceptual cues reflect the notational structure.

2.2 Case-based Reasoning

It has been well advocated even before Socrates™ time that people reason about
the situations they find themselves in by referring to sinilar situations that they
have experienced, heard or seen. ‘I'hereflore, a discovery programmning svstem
should develop the novice’s programming capabilities as a case-based learner hy
providing him with relevant cases (examples) to help him n tackhng Ins own
programming problems. Thisisdifferent from learning-by-analogy which focuses
on issues of analogical transfer: connecting the new material to be learned with
the knowledge that already exists in memory [Hoc 1983, Papert 1950, Bonar and
Soloway 1985, Anderson 1985, Bayman and Mayer 1984]). When presenting a
novice with a description of a problem during the guided discovery programming
phase, a discovery programmiung system should also allow him to look at several
example cases or solutions to different but similar problems. These example
cases should be designed to have a close mapping onto the current problem.
The novice should be able to use the example solution as a model for his own
solution by transforming the whole or a part of the example solution into his
own solution, replacing and modiflying only those individual clements of the

example solution that do not satisly the new requirenments.

2.3 Intelligent Coaching

A discovery programming system develops the novice's programming skill by
providing him with a guided discovery programming phase. In this phase, the
novice composes and relates different programming concepts and language con-
structs to form complete algorithins for given problems. The system monitors
the novice’s actions as he moves along the solution path, automatically analyzes
partial solutions for semantic errors and misconceptions, and offers intelligent
R T T L S O IY AN

Many of the automatic program debugging systems, including Proust [John-
son 19811, Talus [Murray 1986]. Aurac [Hasemer 1983]. Bip [Barr 1987]. and
Luara [Adam and Laurent 1980], cannot debug partial code segments and wait
unul the entire program code is completed before attempting any debugging
analysis. As a result, these systems lack any rich interaction with novices dur-
ing program construction and require them to possess a high level of both pro-
gramming knowledge and programming skill. Automatic program debuggers
embodied and incorporated in a discovery progratnming system should be capa-
ble of debugging partial solutions as they are provided by novices. This feature
i1s mandatory for a discovery system to be able to monitor novices’ progress
in putting programming concepts and language constructs together, and decide
when to interrupt and what tosay. Novices can only be expected to have partial
programming knowledge of how programming concepts and language constructs
work, how they affect the underlying notional machine and how the machine
executes and treats whole programs. In a discovery system, this knowledge is
expected to be gained during the free discovery programming phase. It is the
task of the discovery programming system, through its guided discovery pro-
gramming phase, to help novices transform their programming knowledge into
programming skill.

Several programming systems and tutors support the debugging of partial
solutions, among which are the Lisp Tutor [Anderson 1985), Bridge [Bonar 1938].
and Gil [Reiser 1988]. Unlike Bridge. which requires the novice to specifically
request the automatic analysis of his program (passive-like mode), a discovery
programming system, like the Lisp Tutor and Gil. should support active, auto-
matic debugging for it to be able to monitor cach and every step that novices
may take while moving on a solution path, determine when novices show evi-
dence of misconceptions and decide when to interrupt and what to say. This
requires support for possible immediate feedback on both failure and success.
However, immediate feedback should not spoil the spirit of discovery learning,
and should not impose on novices the rigidity found in the early version of Lisp
Tutor, for example. This can be achieved by supporting a more flexible style of
tutorial interaction that:

1. Increases the grain size of automatic debugging to a complete expression
or statement, not just a single symbol,

2. Permits the user to enter the code in any order. not just left-to-right. and

3. Allows the user to backtrack and delete previously entered code.

By supporting these features, a discovery programming system combines the
virtues of both discovery learning and immediate feedback. A further discussion
on these principle design issues can be found in Ramadhan [1991].

A new implementation of the Tiep Tutor ealled a stndent-contrallad 1yrar
(Anderson 1990], attempts 1o ease the rigidity tound i the classic version ot the
tutor. In addition to providing novices with the three features mentioned above,
the new tutor also enables them to control the tmng of the lfeedback However,
these features are supported only in the program editing mode during which the
tutor has no interaction with the novice. This transition from tutor-controlled
interaction to student-controlled interaction makes the new tutor. like Bridge.
a passive system that waits for the novice to request automatic analysis of his
code, and thus loses the rich interaction with him. In addition, when the novice
asks for automatic debugging of his code, the tutor checks over the code in the
samesequence as the original version: top-down, left-to-right. Feedback is given
on the first error found and the rest of the code is just ignored. Although the
new implementation is an improvement, it takes away a very important feature
from the tutor: the ability to monitor the novice’s progress on the solution
path, determine when he shows evidence of misconceptions within their proper
and immediate context and decide when to guide him and what to say during
interactive tutoring.

3 Conclusion

This paper discusses a framework for designing and developing a discovery pro-
gramming system. It is argued that a truly robust discovery programming
system must be able to allow novices acquire both programming knowledge
and programming skill. A discovery system supports novices in the initial free
discovery programming phase and the subsequent guided discovery program-
ming phase. In the initial phase, novices observe and discover the dynamic
behavior of individual programming concepts as well as of whole programs to
build the underlying conceptual programming knowledge. In the subsequent
phase, novices compose and coordinate programming concepts and language
constructs, observed and discovered in the initial phase. together to solve given
problems under explicit intelligent guidance of system’s domain expert in order
to transform their programming knowledge into programming skill.

The integration of visibility and program visualization within a concrete
model of the underlying notional inachine. coupled with the case-based reasoning

0

and the immediacy of intelligent tutoring are expected to provide a discovery
programming system with a potential to combine virtues and features of both
HCI and ITS to teach novices basic computer programming in a dynamic and
conceptually rich way.

Acknowledgement

I am deeply greatful to Ben du Boulay for many helpful discussions, suggestions
and stimulating intellectual challenges to do with my research, and also for
critteally reading earlier versioms of this paper This rescaelo s vt of anon

going PhD study supported by a full scholarship grant from the Sultan Qaboos
University, Oman

References

[Adam and Laurent 1980] Adam, A. and Laurent. J. LAURA, A System to
Debug Student Prograins. Artificial Inlelligence 15
(15): 75-122, 1980.

[Anderson 1982] Anderson, J. R. Acquisition of Cognitive Skill. Psy-
chological Review 89, 369-406.

[Anderson 1985] Anderson, J. R., Boyle, C. F. and Reiser, B. J. In-
telligent Tutoring Systems. Science 228, 456-462.

(Anderson 1990] Anderson, J., Boyle, C., Corbet, A. and Lewis, M.
Cognitive Modeling and Intelligent Tutoring. Jour-
nal of Artificial Intelligence 42. 7-49

[Barr 1976] Barr, A., Beard, M., and Atkinson, R. The Com-
puter as a Tutorial Laboratory. Intcrnational Jour-
nal of Man-Machine Studics 8. 567-596.

[Bayman and Mayer 1984] Bayman, P. and Mayer, R. Instructional manipula-
tion of user’s mental models for electronic calcula-
tors. International Journal of Man-Machine Stud-
tes, 20, 189-199.

[Bonar 1985] Bonar, J. G. Personal Programming m BASIC.
Academic Press, USA.

[Bonar 1988] Bonar, J. G. Intelligent ‘Tutoring with Intermeidiate
Representations. Proceedings of the First Confer-
ence on Intelligen! Tuloring Systems. ITS-88. Mon-
treal, Canada.

[Bonar and Soloway 1985]

[Brown 1986]

[Chi 1982

[Dijkstra 1982]

{du Boulay 1981]

[du Boulay 1986)

[du Boulay 1987]

[Eisenstadt 1991]

[Green 1990]

[Hasemer 1983]

[Moc 1983)

Bonar, J. and Soloway, E. Preprogrammming knowl-
edge: a major source of misconceptions in novice
programmers. Human-Compuler Studies in Mathe-
matics, 20, 293-316.

Brown, M. Algorithm Animations. Ph.D. thesis,
Brown University, USA, 1986.

Chi, M. T. H., Glaser, R. and Rees, E. Ezpertise
in Problem Solving. In Strenberg, R. (editor), Ad-
vinees in the Pevehalogv of uman Intellicenee
Lawrcnce brlbaum and Associates, Hillsdale, New
Jersey.

Dijkstra, E. W. How do we Tell Truths that Might
Hurt? SIGPLAN Notices. 17(5): 13-15. May.

du Boulay, J.B.H., O'Shea. T. and Mouk. J. The
Black Box Inside the Glass Box: Presenting Com-
puting Concepts to Novices. International Journal
of Man-Machine Studies, 14, 237-249.

du Boulay, J.B.H. Some Difficulties of Learning to
Program. Journal of Educational Computing Re-
search, 2, 57-63.

du Boulay, J.B.H., Taylor. J. Computers, Cognition
and Development.). Wiley and Sons. 1987.

Eisenstadt, M., Rajan., T. and Keanc. M Novice
Programming Environments Ablex Publishing.
Brighton, UK.

Green, T. Programming Languages as Informa-
tion Structures. In Hoc, Green, Samurcay and
Gilmore (Eds.), Psychology of Programming, Aca-
demic Press, London.

Hasemer, T. An Empirically-Based Debugging Sys-
tem for Novice Programmers. Ph.D. thesis. The
Open University, UK, 1983.

Hoc, J. Analysis of beginner’s problem solving
strategies in programming. In Green, Payne and
Van der Veer (Eds.), The Psychology of Computer

Use, London: Academic Press

(=)

[Johnson 1985]

[Jones 1984)

[Lieberman 1985]

[Mayer 1981]

[Miller 1982]

[Moran 1982]

[Murray 1986]

[Myers 1988]

[Nievergelt 1978]

[Norman 1983]

[Olson 1986)

Johnson, W. Jatention-Based Diagnosis of Lrrors
m Novice Programmers. Ph.D. thesis, Yale Univer-
sity, USA, 1985.

Jones, A. How Novices Learn to Program. [ro-
ceedings of the First [FIP Confercnce on Human
Computer-Interaction, INERACT-84, London, UK.

Lieberman, H. Seeing what your programs are do-
ing. International Journal of Man-Machine Studies,
10 253 271

Mayer, R E. The Psychology of How Novices Learn
Computer Programuung. Compuling Suricys 15
121-141.

Miller. J., Kehler, ‘T.. Michaels, . and Murray. \V
Intelligent Tutoring for Programming Tasks Tech-
nical Report, Texas Iustruments, 1982.

Moran, T. and Card, S. Applying cognitive psychol-
ogy to computer systems: A graduate seminar. In
Moran, T. (Ed.), Eight Short Papers in User Psy-
chology, Palo Alto, CA, USA: Xerox.

Murray, W. Automalic Program Debugging for In-
telligent Tutoring Systems. Ph.D. thesis, Texas Uni-
versity, Austin, USA, 1986.

Myers, B. A. The State of the Art in Visual
Programming and Program Visualization. Carnegie
Mellon Uwmwversity Techmical Rcport, Computer
Science Department, Carnegic Mecllon University.
USA.

Nievergelt, J. XS0: A Self Explanatory School
Computer. SIGCE Bull 10. 66-69

Norman, D. Some Observations on Mental Mod-
els. In Gentner and Stevens (Eds.). Mnetal Models.
Hillsdale, NJ, USA: Erlbaum.

Olson, G. and Gugerty, L. Comprechension dif-
ferences in debugging by skilled and novice pro-
grammers. In Soloway and lyengar (Eds.), Empir-
tcal Studics of Programmers, Norwood, NJ. USA-
Ablex.

[Papert 1980)

[Pea 1980]

[Rajan 1991]

[Ramadhan 1991]

[Reiser 1983]

[Schweppe 1973]

[Shapiro 1974]

[Soloway 1984)

Papert, S. Mwmdstorms: children, computers and
powerful ideas. New York: Basic Books.

Pea, R. D. Language-Independent Conceptual
‘Bugs’ in Novice Programrmng. Journal of Educa-
tional Computing Reseaech 2. 25-36.

Rajan, T. Novice Programming Enwronments.
Ablex Publishing, Brighton, UK.

Ramadhan, H. A Discavery Programming Svstem.
Cognal i C Do licd S sedn o o o on, Sans A« s

sity, Brighton, UK.

Reiser, B., Kimberg, 1., Lovert. M. and Ranney,
M. Knowledge Representation and Explanation in
GIL, an Intelligent Tutor for Progranming. Cogm-
Lwe Science Laboratory Reprol. Princeton Univer-
sity, NJ, USA

Schweppe, E. J. Dynamic Instructional Models of
Computer Organization and Programming Lan-
guages. SIGCE Bull 5, 26-31.

Shapiro, S. C., and Witner, D. P. Interactive Visual
Simulations for Beginning Programming Students.
SIGCE Bull 6, 11-14.

Soloway, E. and Ehrlich, K. Empirical Studies of
Programming Knowledge. [FEE Transactions on
Software Engineering. Special Issuc: Reusability,
Sept.

10

