
An Analysis of Novice Programmers Leaming a Second Language

Jean Scholtz

Abstract

Computer Science Department
Portland State University, Portland, OR

Susan Wiedenbeck
Department of Computer Science and Engineering

University of Nebraska, Lincoln, NE

This research studied novice programmers with some Pascal knowledge during their ini-
�� ..i.U�mp�..:, ...i.i. :\.'..l.rning �!i0�L�r µrugr�m!1iing L.iLb�···-=-- ·:: ... ·· :� .: ·. :,�� ... ::·_. .· · • ·
gramming knowledge they had previously acquired and to determine how they were_ able
to use this knowledge in learning a second language. We found that plan srructur� d1ffrr
ences could be used to predict problems programmers encountered. This both

�strengthens the claim for plan knowledge and suggests some basis for tutoring devel�p
ment. Additionally, we discovered trends showing that when the language was more dis
tant from the one programmers knew a bottom up or plan creation methodology was
more successful than a plan retrieval process.

Introduction

During an undergraduate program in Computer Science, the typical student talces such
courses as programming languages, data structures, operating systems, algqrithms and
theory. While studying these courses, students are required to write various types of pro
grams in several different languages. Students typically learn a first language such as
Pascal or Modula 2. They then use C in courses such as operating systems and compiler
theory. They may use Lisp or Prolog in a course in Artificial Intelligence. They may also
be introduced to object oriented languages and parallel languages. Much of the early
empirical work has focused on novice programmers, what they know (Soloway et
al.,1984; Soloway, Bonar, and Ehrlich, 1988) and misconceptions they have(Bonar and
Soloway, 1988; Spohrer, Soloway, and Pope, 1988; Spohrer and Soloway, 1988). While
students in their second or third year of study are still relatively new at programming, we

� feel their process of learning a new language will differ significantly from the process
r involved in learning a first language. Students will be building on the knowledge they

acquired in learning the first language. We felt that an interesting study would be to
examine the knowledge novices have about programming and see how or if this
knowledge is used in the process of learning a new programming language.

Soloway et al. (1984) formulated the idea of a plan in program knowledge. Rist (1991 a)
defines a plan as a series of actions that achieve a goal. So a running total plan involves
declaring a variable to be used for the counter and incrementing this variable by one after
the appropriate condition has occurred. Plan knowledge is classified as strategic, tactical
or implementation plan knowledge. Strategic plans are defined to be plans independent
of language, having to do with a global strategy. Tactical plans are considered to be
language independent but at a more detailed level than the strategic plans. At this level
of planning, Soloway maintains that the programmer would consider such items �is
abstract data structures needed, the action to be accomplished and the output. Implemen
tation plans then deal with the code for this particular tactical plan given a particular pro
gramming language. In experimental studies, Soloway discovered that less than 60% of
the novice programmers (students in first and second term programming courses were

- 2 -

used) successfully completed any of three programs they were asked to write. These
three programs emphasized looping constructs. An analysis of the errors subjects made

re�ealed }hat the majority_ of the unsuccessful solutions could not be attributed to "silly
mistakes_ . Further �nalys1s_ also show� that the correct choice of language construct did
n�>t predict success m _soluuon ge�eranon. _However, the correct choice of strategic plan
did mdeed correlate wnh success m generatmg a working solution.

Other researchers have looked at plan knowledge in programming. Rist (1991a) looked
at extracting plan structure from program code. Rist makes a distinction between swface
plan structure and deep plan structure. We believe that his "deep" plan structure is com
parable to Soloway's strategic and tactical plans. His surface plan structure compares to
the implementation plans defined by Soloway. A program is composed of many complex
plans that are linked together. Complex plans are likewise composed of basic plan units.
A basic plan unit possesses the following parts; declaration of variables, initialization (or
· , .· r � . ' , '. ' .. • ·.c. l ' I � . ' . · f ' ' :;:F�ij 01 \·�.uutS, c:.i .. �ui'1iJuli \.-.:un�lGcicu lO uc �,1c ;0,..�. i;vn .. vi� u U1� p1.1i1) ��!11..: vG:p��:
Output may result in a physical print statement or the production of a value which may

by used by other plans. Rist presents an algorithm for deriving the plan structure from
any given program. Actions or lines of code are connected by data flow and control flow
links. The plan dependencies can be one of four types: use, make, obey, or control. Use

and make refer to data flow. A calculation line such as total:= a+ buses two values, a
and b, and makes one value, total. Obey and control refer to control flow. A loop line
would control all the lines within its block. The algorithm traces out plan structure by
starting from the output and then tracing backward, identifying use links for the vari
ables and control links. See Figures 1, 2 and 3 for sample plan structures obtained using
Rist's algorithm. In the plan structure diagrams, control flow is represented by arrows to

the left and data flow is represented by arrows to the right.

Rist (1991 b) also looked at plan creation and plan retrieval for novice and e\perienced
programmers. Plan retrieval is seen when the elements of the plan appear in a top down
fashion. For example, initialization or inputs would appear prior to the focus or calcula

tions line. Plan creation is done by generating backwards from the focal line. Rist found
strong evidence for plan creation in solution plans for novices. A shift from plan creation
to plan retrieval was shown for the more experienced subjects. Although, even experi
enced programmers were shown to reson to plan creation for difficult problems.

We wanted to explore several aspects of transfer to a new programming language.

1. If we assume that students have prior programming knowledge in the form of plans,
would they attempt to use this knowledge in writing a program in a new language?

2. Would this knowledge help or hinder subjects in producing correct solutions in the
new language?

3. Would a correct choice of strategy again correlate with success in producing a
correct solution?

4 Would the type of new language have an effect?

In order to find answers to the above questions we conducted exploratory protocol studies
with novice programmers writing programs in one of three languages. One language was
the language they were all familiar with, Pascal. The other two languages used in this

study were Ada and Icon. Our analysis included the following: plan creation versus plan
retrieval, percentage of effort devoted to Soloway's three different types of planning, and

- 3 -

correlation of this effon to differences in plan structure between programs in the three
languages.

Methodology

The subjects used were Computer Science students at either the University of Nebraska
-Lincoln or at Portland State University. They had either just finished their first term of
Pascal or were just staning the se cond term. (Pascal was the first language taught at these

universities at the time these studies were condu cted.) These thirteen subjects were ran
domly assigned to one of tlrree groups: three students wrote the program in Pas cal, five
students wrote the program in Icon, and five students wrote the program in Ada. Verbal
proto cols were collected, transcribed and analyzed to obtain the data discussed in this
paper.

The two languages, Ada and Icon, were selected to represent languages not different in
type from Pascal. That is, all three languages are procedural in nature. Icon, however, is
a string oriented language that possesses many functions that operate on strings as enti-

�ies. Icon also contains the pattern matching features of SN OBOL. Therefore, tactical
plans appropriate in Pascal would not be appropriate in Icon. In this respect, Ada is more
similar to Pascal. In this study, the data abstraction features and concurrency features of
Ada were not used.

The program that subje cts were asked to write a solution to was called the Count A's
problem. The following description was given to the subjects:

You are asked to write a program which reads in lines of text
counting the nwnber of a' s and outputting·this number.

Subjects were provided with computer facilities and text books on the language in which
they were asked to write solutions. Video e quipment was used to collect subjects' ver
balizations as they "thought aloud" and also to collect the in formation displayed on the
computer monitor during a session. Sessions lasted a maximum of two hours. Subje cts
were allowed to quit if they be came completely frustrated (only one subject took advan
tage of this op tion) or if they finished the solution prior to the two hour time limit

Subjects' protocols were transcribed and analyzed by two independent evaluators. The
� transcriptions were first broken into episodes. An episode was defined as a behavior dis
t in ct from surrounding behavior. There fore, the start of a new episode could be signaled

by a shift in physi cal behavior. A time frame in which a subje ct who had been reading
the text book and then began writing code would signal the beginning of a new episode.
A shift in mental focus would also determine the beginning of a new episode. So a sub

ject who has been looking at for loops and then switches to looking at while loops would
exhibit a change in episode. The thirteen protocols contained 1148 episodes. The
evaluators then classified each episode as to whether it dealt with syntax, sem antics, or
one of the three classifications of pl anning: strategic, tactical or implementation. The
evaluators had a 94.8% agreement on their independent cl assifications. Disagreements
were then resolved by discussion between the evaluators. The r ange on agreement levels
was from 88.9% on one Ada transcript to 100% on one Icon transcript.

- 4 -

program countas (input.output);
var count: integer;

ch: char;
l\

begin
writeln ("input text);
count:= O; �
while not eof do

begin
read (ch);
if ch = "a" then count := count + 1
end;

writeln ("number of a 's", count)
end.

Pascal solution

while not eof do var ch:char

V
read (ch) var count:

/ ?
if ch = 'a' then count:=0

count := count + 1

write In (count)

Pascal plan structure

Figure 1: Pascal Solution and Plan Structure

integer

while not

- 5 -

with ada_io; use ada_io;
with tcxt_io;
procedure counting is

count: integer:=O;
ch: character;

begin
put ("enter text");
newline;
while not text_io.end_of_file loop

while not text_io.end_of_line loop

get(ch);
if ch= 'a' then count:= count+ 1;

end if;
end loop;
skip _ lin<>:
end loop;
put ("the number of a' s is '');

put (count);
end counting;

Ada solution

with text_io

tex�d of file
with ada_io; use ada_io

while � - -

not text_io.end of line
" - -

'0
haracter ch

get (ch)

if ch =�n

\
integer count:=0

count �t + 1

/
put (count)

Ada plan structure

Figur� 2.: J\d�1 Soh1lion and Plan Slrucwrc

- 6 -

procedure main ()
count:= 0
while line := read() do {

every find ("a", line) do
count+:= 1}

write ("the number of a 'sis", count)
end

Icon solution

while line:= read()

every

find

line := read()

("a" ,line) count:=0

count+:= 1

write (count)

Icon plan structure

Figure 3: Icon Solution and Plan Structure

- 7 -

Solutions Produced

Figures 1,2 and 3 show one solu tion to the Coun t � 's prob�em in each language. 0� the
three Pascal novices, all three produced a working solunon. Two of these solunons

closely resembled the solution given in Figure 1. The third subjec t _ though t there was a
need to retain all input and devised a system of arrays of records wi th each _re�ord con
taining a line (stored as an array of char��ters) �d �e number of charac!ers m It. All of
these subjec ts used an end of file condinon to mdicate the end of the mp� t. All three

solutions contained a label for the output but none prompted the user for the mpu t.

Four of the five Ada subjects produced a working solution. Of these, three used a sen
tinel character to represent the end of the input. The fourth asked for a specific number
of charac ters to be input and was only attempting to do one of these limi ted lines. The
sole subjec t trying to use end_ of _file as a terminating condition did not get �is solution to

, . .,�-' r.' ,., .. - .. .,J...: . ..,,...•� ,.,.,..,� ;,....,,'.t �.-n;;:;'t, �;lr, f\'.'I"' p,('(l f"\l�t""n• 1:)hnl(' �h,-. '"'"""• �-('l;::r!•-
were mos t likely produced because o{ the necessi ty to indica te wha t the termina ting char
ac ter was.

�Three of the five Icon sub jec ts produced working solutions. All of these solutions were ·
similar to the suggested solution in figure 3. A fourth subjects used string scanning and
did not get this put in to a loop to do more than one line. The fifth subject was attempting
to use a sentinel value to terminate input and was using the subscripting feature to exam

ine a character at a time from each line. Four solutions contained input prompts. Three
solutions contained labeled output.

It was interesting to note in the protocols that none of the subjects working in Pascal con
sidered using a sentinel character for termination. And only one subject in I�on felt the

necessity to do this, having not discovered the success and failure aspect of the read func
tion. In Ada, several subjects did not even attemp t to loca te an end of file. A few who
did quickly gave up and resorted to a sentinel character.

Inpu t prompts and output labels seem to be optional for novice programmers. If this type
of input or output seems di fficult, it is skipped. This was the case in Ada where put, the
ou�u t procedure, can only be used with one parame ter a t a time.

Analysis of Program Development

1m

Pascal
Ada
Icon

Fi gure 4: Percen tage of time in each area of program developmen t

All classified episodes were timed. Non classified episodes had to do with concerns
�bou t using the tex t edi tor or were merely commen ts u t tered by the subjec ts while wai t
mg for the program to compile. \\'hen verbalizations had nothing to do with soh·ing thl·

problem, they were no t classified and were no t coun ted in the s;lu tion time for the sub
jec t. The time tha t each subjec t spen t in the five areas of program developmen t, the three
planning ca tegories previously discussed and syntactic and semantic concerns of the
language, were then added up and divided by the to tal amoun t of classified time. Figure

- 8 -

4 shows the resu l ts of this classi fica tion . Firs t o f al l, we expec ted th at sy ntac tic concerns
would consume �ore e ff�n in the new langu ages. Subjec ts wor king in Icon spen t some
�h at _less of the ir e ffo n m syn tax, mos t l ikely because the syntax of Icon is somewh at

s 1mp her than th at of Ada. Ada has ma tc hing keywords, li ke if and end if and lo o p and
end lo o p while Icon consis tently uses c urly b races to group s ta temen ts. The percentage

of ep �sodes devo tC? to sem �tics is much hig her in Icon . T his is to be expec ted as Icon
con �ns many u mque f u:°c uons tha t s tuden ts needed to inves tiga te. Implemen ta tion
plann ing effo rt d oes no t differ muc h from language to language. Pasca l subjec ts spen t a
gre ater percen tage of their time in tactica l and str ategic planning t han did Ad a and Icon
s ubjec ts. W hile on t he s urface t his seems contra dic to ry, reme mber tha t these Pascal s ub
jec ts spen t li ttle time on synt ax and no time on semantic issues . Also, t he Pasca l subje c ts
were able to ex hibi t more "t houg ht-ou t" solutions than were the o ther subjects .

We constr uc ted "optima l " solutions to the Coun t A 's program in al l three languages. An
or,timt1l snlntion tn n� 1 1 <:f".<: nniqne rnnstr nrts th::lt t1rr. ;:ivni l :lhlr. in th<> l nn?-l l rt?-<:> to :whiev�
a so lu t ion w ith the mos t e legance an d lea st poss ibi lity o f e rror. The re fore, w e consider

solu tions tha t decompose and subse quen tly recompose d at a struc tu re elemen ts infe rior to
solu tions th at oper ate on the en tire d ata s truc ture. Decomposition follow ed by composi
tion is more error p rone . Fig ures 1, 2 and 3 con tain our solu tions and the co rresponding

plan str ucture der ived using Ris t' s a lgori thm . Ag ain, no te t ha t in the plan struc tu res
s hown in t hose fi gures , t he lef t arrows represen t control flow and the righ t arrows
represen t da ta flow. Ris t 's algo rithm does no t inco rpora te declarations in to the plan
struc ture. We fel t, however , tha t t he use of a variable in many languages depends on
having declared i t previo us . We fel t tha t s ubjec ts wo uld express concerns abo ut this dur

ing p rogra m development. T here fore we incl uded declara tions of v ariables in our "ver
sion " of the algori thm.

Differences in Plan Structure

Loo king a t the Pasca l and Icon solutions and plan struc tures (figures 1 and 3), the follow
ing di fferences are apparen t:

I. In Icon, t here is no need to declar e v ariables . A declaration is used only if va riables
are l ocal to tha t pr ocedure.

2. In Icon, the au to in cremen t capabili ty of C is used (coun t+:= 1). However, the
longer version (Coun t : =coun t + 1) is also syn t ac tically valid.

3. In Icon , every is a genera tor w hich is used to loop through all charac te rs posi tions of
a s tring . Every, there fore, produces a vec tor of ou tpu t.

4. The Icon s ta temen t, while line:= read() is used for two purposes. line := read()
reads in a line of inpu t and assigns i ts value to the va ri able line. The read func tion
also re turns an indication of success or fail ure. Tha t is, if the end of file h as been
reac hed, the read function fails, causing the w hile loop to termina te.

5. find is an Icon function tha t looks in a ch arac ter string to find t he firs t occu �ence of
a subs tring . This func tion re t urns e ither the posi tion o f the occurrence or failure .

Loo king a t the Pascal and Ada solu tions and plan s truc tures (figu res I and 2) the re a re
few la rge difference s . Some minor di fferences are :

1 .

2.

3.

- 9 -

In Ada, the procedures get and put are used for input and outp�t. Newline �s. used to

advance to the next output line, whereas Pascal uses wrzteln for wntmg and

automatically supplying a carriage return.

In Ada, variables may be initialized at the same time �s. �e.y are �eclared. A
separate assignment statement (as in Pascal) also serves to m1nal1ze variables.

The input and output routines in Ada are contained _in several packages. In. order to
use any of these routines, one has to be sure that with statments have been mcluded
that reference those packages. The use statement indicates that the package name
does not have to be declared as a prefix when referencing a routine in the package.
This is similar to the dot notation used in Pascal to refer to record fields.

";!� �- �: . : : �: : ·. c :� � � : :: � :: .:c ::d � t ic, ;� : n Ada is treated somewhat differently than Pas
cal. In order to process multiple lines of text using an end of file exception, one
must use two loops: an inner one for end of line and an outer loop for end of file.
This is necessary as each condition is handled using a different exception handler.

.
We hypothesized that differences in surface plan structure could be used to predict the
kinds of problems programmers would have in attempting to learn a new language. In
order to talk about "kind of problem" we will refer to which of the five areas of program
development the programmer will need to devote some effort.

�

We made the following hypotheses about plan structure differences and their effects:

1 . If a makes or uses structure element is missing in the new language, (e-.g. declara
tion statements) the programmer will spend some time validating that these are not
needed. This would result in implementation concerns.

2. If the structure of the element maps onto a similar structure but the corresponding
statements differ, the programmer will first need to locate the appropriate construct
and then understand how it functions, resulting in implementation and semantic
concerns. For example, the Ada procedure get is used for input as opposed to read
in Pascal. Programmers need to find the get stannent (implementation) and verify
how it works (semantics).

3. If the control structures of the corresponding elements differ efforts will have to be
devoted to tactical plans, that is, a rethinking of how the flow works.

4. If the new language requires makes or uses structure elements which are not
required by the original language, programmers may have difficulty discovering,
and using these. This would result in implementation concerns. That is, program
mers would attempt to get a particular concept working although its hidden depen
dency has not been discovered.

To see whether our hypotheses showed any validity we looked at several lines in Icon
and Ada which illustrated these structure differences. We then counted the number of
episodes in each area of program development per subject for each of these lines. We
looked at the number of episodes here rather than time. As we already have an indication
of where the majority of the efforts are, we were more interested in seeing the type of
concerns expressed for each of these differences.

- I O -

We look ed a t the following four di fferences be tween Ico n and Pascal :

Figure 5: Plan Stru cture Di fferen ce s be tween Icon and Pa scal

From our hypothe se s we expe cted tha t we would see semant ic and implementa tion
epi sode s in find, ta cti cal epi sode s for while line:= read(), implementat ion con ce rns for
, t, ,� .,., ; .::s '1 n "' d•"'c1 •1 -·1 • ; ,-. • , ,. ·1-d t '1c � : c � 1 n •· ; �- � .. <: r , , , .. . 1. , ! w 1 l , l .. 1 .. l b � .l L--. • u u \J J l ..) 1 " , ! 1..&. l J U., l. j.1 • • .1 \. t� ;.. .. 1 . Li. � . '- , _,• .

hne sub je c t synta x semant ic s 1mplemen tanon
find S I 7 4

S 2 2
S 3 I
S4 2 6
�=> 1 5 . 6

lin e= read S l 1 3 I
S 2 I 4
S 3 2 6
S4 3 3

S5 1
d eclara tton S l 2

S 2 1 1
S 3 l
S4 6
S 5 1 9

eve ry S I 2 2 4
S 2 4 4
S 3
S4 6
S 5

tac ti cal stra te gic

I

1
2
1 ,

1

Figure 6: Number of Pro gram Development Epi sode s for Plan S tructure Di fference in I con

Fig ure 6 li st s the number of epi sode s per subj ect per line for Icon subjec ts . For find,
there are numerou s semanti c and implementatio n epi sode s, thu s suppo rting hypothesi s 2.
For while Line:= read(), the epi sode s deal with semanti c s and implemen ta tion but al so

with ta cti cal con ce rns, thu s su ppo rting hypothe si s 3. For de claration s, we found imple
mentation epi sode s, gi ving suppo rt to hypothe si s 1. For every, we expe c ted to see sup
port for hypothe si s 3 and again see more ta cti cal epi sode s than oc curred . Thi s wa s no t
the ca se. A plau sible explanation is that subj ect s in the se experimen ts found se ve ral

e xamples o f every that were eas y to e xte nd to t he desir ed resul t withou t acwall y full y
un derstanding the con stru ct. We need to further inve stigate thi s.

For A � the following di ffe ren ce s were examined :

- I I -

H

Figure 7 : Plan Srrucrure Differences between Ada and Pascal

For the references to the IO package, text_io, needed to use end_of _file, hypotheses 4
predicts that implementation concerns will arise. That is, . becau�e e� _ of _file in Ada
requires a with text io statement whereas no such statement 1s required m Pascal. Indeed
we did see subjects searching for how to implement this. Subjects who produced work
ing solutions made a decision not to use end_ of _file and instead used a sentinel character
to t1.:rrninatt: input, 1 ,:.�u;,il ig i i , �u1i1t.: ia.;:;c,1; anJ su :1tegic 1 evisio11s. I lad subjects per
severed in attempts to use end_ of _file, more implementation episodes would have
occurred. The additional loop on end of line condition needed for Ada would suggest by
hypothesis 3 that tactical episodes are -needed. However, as subjects gave up on the
end_of _file condition, no data was available for end_of_line. Subjects simply failed to
develop this particular portion of the plan.

The get input statement and put output statement of Ada are only different constructs
from Pascal. Therefore, implementation and semantic concerns will be seen. Indeed,
implementation concerns dominate. The one subject showing higher tactical concerns
was attempting to read in an entire line but later revised this, thus requiring some tactical
planning.

\

The references to the Ada_io package necessary to use the get and put procedures have
no corresponding requirements in Pascal, therefore hypothesis 4 predicts implementation
concerns. This prediction did not hold true. While a few implementation concerns
appeared, syntax and semantics were investigated more frequently. A possible explana
tion seems to be suggested by the protocols. Again, subjects saw examples of programs
using the with ada _io and use ada _io statments and were content to incorporate these
into their programs. The questions arose as to what their function was. Most subjects
quickly resolved that this was some statement that allowed you to use input and output
statements and were content to let it go at that.

- 1 2 -

Statement sub_1ect syntax semantics 1molementation tactical strategic
end_of_file S I I

S2
S3 3 I
S4 2 1 1 1 1
S5 6

get/put S I 1 3 3
S2 1 3
S3 1 4 1
S4 1
S5 4

ada_10 S l 1 1
S2 1
S3 4
� 1 , 1

I end of line I S5 2 1
NA

Figure 8: Number of Program Development Episodes for Plan Structure Differences in Ada

Although this study was small and exploratory in nature, we feel that the differences in
surface plan structure can seive to give some guidance about problems that programmers
will have in constructing a solution in a new language.

Another difference in plan structure also exists. The composition or decomposition of
plan elements may cause problems. For example, Pascal requires the programmer to use
two separate statements to declare and initialize variables. In Ada, an initialization can
also be accomplished this way but can also be accomplished by initializing the variable
when it is declared. (integer count:=0) Likewise, the autoincrementing feature in Icon
(count +:=1) was not discovered as subjects could also use the standard incrementing
plan (count := count + 1). These composition /decomposition differences seem to be
overlooked in many cases. A question for further investigation is how a programmer
eventually discovers some of these unique features. In this study subjects used the two
statement approach and never bothered to look further for an alternative approach.

The use of newline in Ada to cause the output file to be advanced one line was also inves
tigated. In Pascal, the writeln procedure incorporates this automatically. Three Ada sub
jects found and used newline. Two of the subjects used it correctly. The third subject
seemed to feel it had something to do with the input file. They had few total concerns
however (5 episodes). Implementation concerns made up two episodes with one episode
each of tactical, semantic and syntactical concerns. Subjects saw this procedure used in
an example and once again, merely duplicated it with few questions.

Plan Creation Versus Plan Retrieval

We also wanted to examine plan retrieval as opposed to plan creation when using a new
language. Are novice programmers able to retrieve any plans and use them in a new
language? Is this, in fact, an appropriate strategy in transfening to a new language?

Figure 9 shows the plan name and the corresponding statements in each language.

. �

Plan
Rea

Runn ing tot

output

count :
count :=count + 1
rea c
i f c h ='a' t hen
w nte (num er o
write(count

- 13 -

Fig ure 9 : Plans in Pascal, A da an d Icon

Icon
wnt e("mpu t t ext"
l in e:=r ea d()

co unt:
count +:=1

me :=rea)
fin d('a' ,line)
v,:nte ("number o a)

write (count

Ea ch plan in figure 9 shows an initialization por tion first, followed by the focai or calc u
lation l ine . If the plan appears in t his top down fas hion, it in dicates re aieval. If a sub jec t
creates a plan he s tarts wit h t he focal line an d works backwar d. The p lans in figure 9
woul d t hen appear reve rse d, so c reation o f the running total plan woul d be seen if

� ount:= count + 1 appeared p rior to count:= 0. To examine creat ion versu s re trieva l, we
not ed t he sub je cts' verbal iza tions about eac h plan . We di d not an alyze t he actual appear
ance o f t he line o f code . We felt t hat if a sub je ct thoug ht about a par ticular l ine, even i f it
was not w rit ten down at the time, he, in fact, ha d entere d it in to his menta l representa tion
of the solution.

Figure 10: P lan Creat ion an d Retrieva l in Each Lang uage

.-.fi gu re 10 s hows t he number o f sub je cts in eac h lan guage produc ing t he plan forwar d (F)
r-'l1dica tin g retrieval or bac kward (B) in dicatin g creation. Note that t he Pascal group con

tain ed only three sub jects.

The two plans w here t he most di fferences we re s hown were t he fin d A an d output plan.
In t he input an d ou tput plans a missing prompt or label was scor ed as appea ring later t han

the focal line. There fore, a s a back war d plan or crea tion of a plan. Pasca l sub jects all
produce d a labele d ou tput in a forwar d fas hion. This was not oue o f t he A da an d Icon
sub ject s, w ho eit her did not label the output (50%) or create d the plan (50%). The fin d A
plan was retriev ed and used for bo th Ada an d Pascal. For Icon, three su bjects did the
plan in a forwa rd fas hion. O f t hese t hree, only one was ab le to produce a wor king so lu
tion . Two sub jects c reated t he plan. Bot h o f these sub jects were able to pr oduce a work
ing solu tion closely resemb ling the suggeste d solution. I t is in te resting th at th e fin d A
plan was th e plan r eoiev cd mor e o f th e time t han any o ther plans regardless o f language.
T he ot her plans were o ft en created due to t he ini tia li zation line po rtion either appea ring
later of not appea ring at al l.

We also looke d a t t he o rde r in w hic h each p lan m aking up the loop of the solution was

- 1 4 -

gener ated. A top down genera tion wou ld resu lt in the following order :
loop con tro l

read
find A

running tota l

Notice tha t the read p la n is separa ted with the i n itia lizatio n or p romp t for the inpu t ou t
side the loop contro l a nd the ac tua l read statme nt co ntai ned w i thi n the loop .

The find A plan is co ns ide red the calculation or f oca l po int of the co mp lex p lan so a crea
tio n of the comp lex p lan wou ld s tart b y looki ng a t this b asic p la n. For Pasca l, o nly o ne
subje c t ou t of the th ree showed retrie val for this complex plan. The o ther two de ve loped
the enc losed basic p lans i n order, the n pu t the loop arou nd them . For Ada, one sub jec t

ou t of five was ab le to do th is i n a forward fashio n. Two subjec ts used a bac kward
deve lopme nt. A four th subjec t de ve loped the body of the loop i n order, then enc losed i t
w ith the contro l statemen ts. The fifth did a m ixed order, deve lopi ng the read p lan firs t,
the n the rema i nder i n a top -dow n fash ion. For Icon three subjec ts us ed a strict ly bo ttom

up or creation approach. A ll three of these subjec ts produced g ood, working so lutions .
The rem aining two subjec ts, nei ther of whom p roduced wo rking so lutions showed ei ther
forward or mixed deve lopm ent. In Ico n, i t s eems tha t sub jec ts, who look ed a t the foca l

l i ne firs t disco ver ed the find fu nctio n and the ge nera tor , every, were more li ke ly to p ro
duce a wo rking so lutio n. Aga in, this is a n exp lora to ry s tud y bu t t his trend be ars further
in vestigatio n. Perhaps as o ne mo ves to languages tha t are less simi lar to f amili ar
la ngua ges , the bo ttom up or creatio n of p lans and comp lex p lans allows the programmer
to d isco ver more sui tab le p lans.

An Interesting Observation
\

The Ico n lan gua ge also co ntains a reads functio n. Th is functio n is used to read a
spec ified number of charac ters from the i npu t, failin g if tha t many charac ters do no t ex is t
be tween the c urre nt positio n i n the file a nd the e nd of file . The de fau lt number of charac
ters is one. An al ternative so lution to the Coun t A 's program wou ld then be the fol low

ing:

proc edure m ain ()
cou nt :=O
write ("i npu t, p lease ")

wh i le ch := rea ds () do
if ch = " a " then coun t +:= I

wri te (" The num ber of a ", cou nt)
end

This so lutio n produces a p lan struc ture ve ry simi lar to the Pasca l p la n struc ture.
lnteres tly, no ne of the no vice p rogrammers cons ide red us i ng reads. Eve n the o ne subjec t

who deco mposed h is li ne in to s i ngle ch aracters to chec k for a' s did no t co ns ider rea ding
i n a sing le charac ter. Although bo th read and reads are desc ribed i n t he append ix of the
Icon tex t, o nly read is used in ear ly examp les i n t he tex t. T his te nde nc y of subjec ts to

reuse c ode th at the y see i n examples needs to be investi gate d. Wh at is the inter ac tio n, if
a ny, of c ode re use and the pro grammers ' plan know ledge ?

- 1 5 -

Conclusions

Th is study has perhaps r aised more ques tions then it has answer ed. Although e xplorato ry
in nature, de finite trends have been revealed in the analysis . First, it seems as if p lan
stru cture di ffe ren ces can be used to predict areas of progr am development that program
mers wi ll have con ce rns about . This assumes a progra mmer 's capability to produ ce a
working, ster eotypi ca l so lu tion in the fami liar language. Wi ll t his genera lize to o ther
languages, su ch as ob ject oriented and de c lara tive ? Is t he same true of more experien ced

prog rammers ? This s tudy suggests t hat as languages b ecome more dist ant a bottom up or
crea tion mode l is like ly to lea d to more su c cess . Again, t his n eeds to be inves tigated

more t ho roug hly and wit h resp ect to lan guage type and expe rtise .

This study suggests t hat pe rhaps a new app roa ch to automat ed tutoring systems is
needed . T he mode l for tuto rs c urren tly being deve loped is rea ctive (Ri ch and
Wa ters , 199 0: Johnson and Solowa y, 19 85; Ande rso n and Reiser , 19 85). That is , o nce
the tutor o bser ves that the s tudent has de viated fro m the corr ect p lan, i t steps in to help.
We suggest that a proa ctive tutor might be more bene ficial espe cially in the early stage s

of le arning. Rather than w aiting until an error or devia tion has oc curre d, a proa cti ve
�tutor wo uld conve rse with the student and he lp the s tudent fo rmulate op tima l plans ini
. cia lly. The p lan stru cture di fferen ces cou ld be use d as a basis for bui lding a tutor that

wou ld predi ct the app ropriate leve l of he lp given . When the tutor sees plan differen ces in
contro l flow, t he tutor mig ht step in and he lp the student in plan creation . Ra ther than

presen ting the new p lan in a typi ca l ly top down fa shion, the bo ttom up or crea tion model
m ight be more a c ceptab le and na tural to t he s tudent .

References

Anderson, J. and Reiser, B ., (19 85) . T he LI S P Tutor. Byte. 10(4). pp 1 59 -1 78.

Bonar, J. and So loway, E. (19 88) . Prepro gramming Know ledge : A Major Sour ce of
Mis con cep tions in Novi ce P rogr ammers . in E. So loway and J. Spoh rer (Eds.) Study
ing the Novice Programmer. (pp 325 -355). Hills dale, N .J . : Erlbaum .

Johnson, W . and So loway, E. (19 85). P R O US T. Byte. 10(4). pp 1 79 - 19 2.

Ri ch , C. and Waters, C., (199 0) . The Programmer's Apprentice. New York, N.Y :
A C M Press .

Rist, R . (1991a). Se arch thro ugh Mu ltip le Representation . NATO ARW User Cen
tered Requirements for Software Engineering Environments . Bona s, Fran ce . (to be

pub lished as an A RW pr oceed ings)

Rist, R . (1991b) . Know ledge Creation and Retrie val in P ro gram Design : A Com
p arison of Nov ice and Intermediate S tudent Pro grammers . Hwnan-Computer
Interaction, Vol . 6, No. I, pp. 1 -46.

Ri st , R . (1 989). Sche ma Crea tion i n Pr ogrammin� . Cog�irive Scif'nce . 1 3 . 3 .pp.
3 89-4 14.

Soloway, E., Ehr li ch, K., Bonar, J. and Greenspa n, J. (19 84). What do No vi ces
Know About Programming? in A . Badre and B . Shneide nnan (Eds.) Directions in

- 1 6 -

Hwnan-Computer Interaction (pp 27-54). Norwood : N.J . : Ablex .

S ol oway , E., Bona r, J. and Eh rlich, K. (19 88). Cognitive Strategies and Looping
C ons tructs : An Emp irical St udy. in E. S ol oway and J. Sp ohr er (Eds.) Studying the
Novice Programmer (pp 191 -2 08) Hillsdale, N.J.: Erlba um.

Sp ohrer , J. and S ol oway, E. (19 88). N ovice Mistake s: Are the F olk Wi sd om s
Correct ? in E. S ol oway and J. Sp ohrer (Eds.) Studying the Novice Programmer (pp

401-416). Hillsdale, N.J.: Erlba um.

S pohrer, J., S ol oway, E. and P ope , E. (19 88)., A Goa 1/Plan Analysis of Buggy Pas
cal P rograms. in E. S ol oway and J. Sp ohrer (Eds.) Studying the Novice Program
mer (pp 355-400). Hillsdale, N J.: Erlba um.

