
r

r '

r

r

r

r

r

r

r

r

r

r ',

r

r

r

r

r

r

r

r

Towards an experiential description of programming and learning to
program.

Abstract

Shirley Booth
Department of Education and Educational Research

University of Gothenburg
Sweden

shirley@ped.gu.se

The work I wish to present is a move towards describing learning to program (as a
limited aspect of programming in a more general sense) by taking an experiential
perspective on programming. By "an experiential perspective on programming" I mean
focusing on what occurs when a person (a student or an experienced programmer) meets
a problem for which a program has to be devised, and what shapes the program that
emerges. That is to say, it is the programmer's experience of writing the program that is
to be described, in terms of his or her awareness of the problem and the resulting
developing field of awareness of the required program. In contrast to a purely
psychological perspective, this experiential perspective aims neither to determine possible
rules of programming behaviour, nor to posit structures and forms of programming
knowledge, nor to explain the programming process in a normative sense. The
experiential approach to describing programming seeks rather to investigate the
relationship between the programmer, the problem and the evolving program, and tries to
answer the question, "What does it mean, to learn to program?"

Such an experiential perspective has been discussed by Peter Naur, who took a keen
interest in programming education and programming behaviour; in 1965 he wrote as
follows about programming:

... we are dealing with three elements: problems, tools and people, and [...] the essence of the
situation is the interplay between them. More specifically, we cannot, as people, think of a
problem without at the same time implying some kind of tool. Stronger yet, when the tool
changes, the problem is not the same anymore. On the other hand, our opinion about what is a
proper, or desirable, tool surely depends on our understanding of the problem. In any case the tool
and the problem are nothing if they are not recognized as such by a person- that is where the
people come in. (Naur, 1965, p 3)

In 1985, stating at the same time that he would "use the word programming to denote the
sole activity of design and implementation of programmed solutions", he wrote:

It is suggested that programming properly should be regarded as an activity by which the
programmers form or achieve a certain kind of insight, a theory, of the matters at hand. This
suggestion is in contrast with what appears to be a more common notion, that programming
should be regarded as a production of a program and certain other texts. (Naur, 1985, p 37)

Instead of taking a psychological perspective, looking for generalities, he was taking
more of an experiential stance in talking of the meeting between the programmer and the
problem for which a program has to be written and the development that ensues.

The paper is based on an empirical study of university students learning to program in a
functional programming language, S:ML (Wikstrom, 1987), carried out with a
phenomenographic approach. A phenomenographic study aims to describe qualitatively

9

distinct ways in which people experience, or understand, or conceptualise particular
phenomena of interest (Booth, 1992a). In particular, such studies are carried out in
educational settings, one goal being to inform teachers of ways in which their pupils or
students are probably understanding the ideas (or phenomena) they are meeting. The
phenomenon in question may be either central and thematised (e.g. recursion in a study
of student programmers (Booth, 1992b)) or peripheral to instruction, unthematizecl, yet
still of importance (e.g. the nature of programming and programming languages (Booth,
1990)). An extension of phenomenographic studies is sometimes to delve into the·
structure of topics of study, seen through the eyes or awareness of the learners, with the
goal of making didactic changes which can lead to better understanding. Apart from
phenomena characterised as the central themes of instruction (e.g. recursion, program
correctness, functions) and phenomena more peripheral to learning to program, this study
also focused on students tackling specific text-book problems, and it is this part of the
study which is central to the paper.

In the study, 14 undergraduates studying Computer Science and Computer Engineering,
chosen to represent the class variation of factors such as age, gender and educational
background, were interviewed six times during their initial course in programming. The
interviews were - following phenomenographic principles - semi-structured, open and
deep. This means that while certain themes were planned in advance to form the structure
of each interview in a set (semi-structured), after the planned opening questions the
discussion was allowed to take a natural course (open) in an effort to understand the
student's thinking on the theme (deep). Some themes were taken up in more than one
interview and other themes were taken up when topical. Soon after the start of their
studies, students were asked, in an interview situation, to try a very small and apparently
simple text-book problem - the take problem (Fig. 1) - which was taken from their
current problem sheet. I am not suggesting that this was an interesting problem in itself,
nor is it like the problems the students have to face i� laboratory projects, let alone in the
future work-place. It was, however, a challenge for these students who were just starting
to develop algorithms and express them as programs in the unfamiliar S:rv.tL functional
form.

Write a function take which has two arguments: an integer i between 1 and 8 and another
integer n between 1 and 99999999. The function is to return the ith digit of n. For example:

- take (1,1234);

> 4:int

- take (2,1234);

> 3:int

- take (3,1234);

> 2:int

- take (4,1234);

> 1:int

If there is no ith digit in n then a zero should be returned:
- take (5,1234);

> O:int

Figure 1. The take problem

They were asked to read the question and then tell me what it meant. Then they were
asked to try to write a suitable program; I let them work as they wished but requested that
they should describe what they were doing and broke in on occasion for clarification.
When a solution was obtained or impasse reached, the work undertaken was discussed
with the aim of reaching an understanding of what had been done and what the result of
the algorithm might be.
The data thus obtained was analysed together with data from a later and similarly
conducted program writing session. The main result consists of a set of four qualitativeiy
distinct approaches to writing programs. I use the word "approach" to refer to the way m
which the student immediately identifies what is central to the problem in hand, which
then constitutes the starting point for the development of a program. These have been
named

10

,

l

1

1

1

l

l

1

1

1

,

l

l

1

l

l

1

l

• an expedient approach, where a program or function from S:tvfl..'s standard repertoire
is the starting point;

• a constructual approach, where possible constructs needed for the program are the
immediate focus;

• an operational approach, where the operations needed within the program are taken
up as a start; and

• a structural approach, where it is the structure of the problem in its own domain that
is first considered.

The four identified approaches will be described more thoroughly and discussed in the
paper, but it can be pointed OU! that, in the order they are stated above, they form a
hierarchy of greater meaning for the inexperienced student. The first pair tend to
opportunism while the second pair are interpretative, and while either of the first two are
common and to some extent desirable in professional programming, students generally
lack the experience which leads to their being successful.

Taking these empirically obtained and logically distinct approaches as a point of
departure, I am now looking at their significance for learning to program in terms of the
ways in which students were found to understand other phenomena connected with
programming, both technical and more peripheral, much in the ways suggested by Naur.
The ideas of the field of awareness and the stream of awareness which were developed
by the phenomenologist Aron Gurwitsch (Gurwitsch, 1964) have laid the ground for an
experiential description of progranuning and learning to program, which comes some
way toward integrating the results of the study in that it enables the interplay between
different ways of understanding different aspects and tools of progranuning to be
discussed. My immediate aim is, on the one hand, to elaborate and refine this description
- by drawing on the results of the existing study, by recourse to other studies, and by
planning further studies - and, on the other hand, to consider mutual implications for
psychological research into progranuning and learning to program. In the longer term,
one aim is to develop the phenomenographic, or phenomenological, view of learning
complex subjects such as programming, where logical or rational thought and problem

. solving play an important role, and a second - but equally important - aim is to develop
the didactic implications of such a view of learning.

References

Booth, S. A., (1990). Conceptions of programming: A study into learning to program.
Publications of the Department of Education and Educational Research of the
University of Gothenburg. 1990:01.

Booth, S. A. (1992a). Leaming to program: Aphenomenographic perspective. (Goteborg
studies in educational sciences 89). Goteborg: Acta Universitatis Gothoburgensis

Booth, S. A._(1992b) The experience of learning to program. Example: Recursion. In F.
Detienne (Ed.), 5 eme workshop sur la psychologie de la programmation (The fifth
workshop of the "Psychology of Programming Interest Group"), (pp 122-145).
Paris: INRIA.

Gurwitsch, A. (1964). The.field of consciousness. Pittsburgh: Duquesne University
Press.

Naur, P. (1965). The place of programming in a world of problems, tools and people .
Proc. IFIP Congress '65, pp 195-199. Reprinted in P. Naur, (1992). Computing: A
human activity. New York: ACM Press.

Naur, P. (1985). Programming as theory building. Microprocessing and
microprogramming, 15, pp 253-261. Reprinted in P. Naur, (1992). Computing: A
human activity. New York: ACM Press.

Wikstrom, A.. (1987). Functional programming using Standard :ML. Hemel Hempstead:
Prentice Hall.

1 1

