
Learning graphical progra11111ing: An evaluation of
KidSim™.

David J Gilmore. Karen Pheasey. Jean Undenvood & Geoffrey Undenvood

ESRC Centre for Research in Deveiopment. Instruction and Training
Psychology Dept

Universitv of Nottine:ham
Nottine:ham. NG7 2RD. UK

dg-@psyc.nott.ac.uk

KEYWORDS: Programming. Graphical programming. abstraction. \!ducational
technology. learning.

ABSTRACT: This paper presents part of an evaluation of a new children's
programming environment. developed by Apple Computer Inc. for 10-13 year old
children. We studied 56 children. generally working in groups of 2-3. using
KidSim TM for between 2-12 hours. over a period of between 2 days and 3 weeks.
The results show that children of this age can readily learn to master the
programming environment. and that they greatly enjoy using the system - indeed in
most cases it clearly fired their imaginations. However. questions remain about the
level of programming abstractions that they were able to understand.

The evaluations have led. however. to a small set of changes in the KidSimrn

environment. all of which are intended to suppon improved comprehension of these
abstractions. Further evaluations will be needed to discover these chan2es can
maintain the motivational advantages of the present system. and yet improve the
system's educational impact

INTRODUCTION TO KidSimrM°�
Smith (1993) describes the programming environ
ment KidSim n.1

• developed by Apple Computer Inc.
as an end-user programming environment targeted at
children aeed between 10-13. KidSimn• is a whollv
graphical -programming environment. containing
agents for whom the children can construct graphical
production rules which will move them around a 2-
dimensional world.

Manv of the ideas embodied in the svstem are
derived from teachers· suggestions following the use
of HyperCard for modelling Dewdney·s �-d world
·'The Planiverse" (Dewdney. 1982).

KidSim rn is still in the process of being developed
and the version we used for these evaluations was an
early prototype. It was extremely similar to that
described in Smith (1993). Being a prototype it
consumed large amounts of disk space and RAM
and this imposed constraints on the evaluations in

'kKidSimTM is a registered trademark of Apple
Computer Inc.

ways described below. By contrast. production
versions of KidSim n.r are expected to run on home
machines. with minimal RAM requirements.

All interactions. whether programming or drawing
(of the 2-dimensional world) are bv direct
manipulation. Except for naming agencs. and maybe
naming some of their characteristics. the children
have no need to use a keyboard. The appearance of
the world. objects within the world and of the
agents themselves is all under the control of the
children. through simple drawing tools.

The basic programming architecture is of a graphical
production rules in which the interpreter tries to
match the world around an aeent to the left-hand
side of one of their rules. When such a match is
found then the world around the agent is changed to
that represented by the rule's righ.t-hand side. Each
agent can have multiple rules and a world can
contain multiple agents.

The ·world-around-an-a2ent' is of flexible size.
thou2h the size must be same for the left- and ril?ht
hanl sides. It could be simply an agent and one
adjacent space (the world is divided into square
spaces·,. or it could be a large rectangle surrounding

1

l

l

l

l
�

l

l

l
J

1

1 '

l

l

l

l

1

1

l

1

1

r

r

r

r

r

r
r
L

r

r
t

r

r

r

r

r

r

r

r

r

r

r

the agent by any number of spaces in differing
directions. The whole of the world defined bv the
rule has to match in order for the rule to be
triggered.

PROGRAMMING ISSUES

At CHI'92 a special workshop on end-user
programming was held (see Gray et al. 1993). at
which there was lengthy discussion about both the
potential and the interfaces for end-user program
ming. Rather pessimistically Gilmore presented an
argument that people were assuming that end-users
could acquire a complete conceptual grasp of prog
ramming. including the tough concepts of abstrac
tion. modularity and analysis. Arguing that abstrac
tion was the most important concept. it was claimed
that end-users would not really acquire programming
skills unless the interface provided concrete
embodiments (visualisations I of abstraction.

As an example one can consider the abstract concept
of a \'ariable in HyperCard. Many Hypercard
programmers do not use variables. since they are
uncertain oi their exact status and usaee. However.
people do use fields quite freely. and then they adapt
to the slightly abstract notion of invisible fields
(occasionally made visible when debugging). In fact.
apart from long-term storage and speed. there are no
differences between variables and invisible fields.
Hypercard provides an ideal vehicle for scaffolding
the concept of variable out of domain-specific text
fields. What is not clear is whether the variable
concept acquired is genuinely abstract. or whether it
is HyperCard specific.

Unfonunatelv. this is not a readilv testable idea.
since HyperCard is neither a novice: nor an end-user
programming environment. The discussion at
CHI'92 was mixed - some believed that end-users
would not be able to (or should not have to) learn
anv abstractions. whilst others felt that a eood
scaffolding environment could lead them through to
general programming skills.

To date there have been no tests of end-user
programming skills and knowledge - the studies
have focused on task analvsis and documenting the
actual activities undertaken. However. there is an
interesting and striking parallel here with the use of
computing in classrooms. Indeed. maybe children are
the ultimate end-user programmers.

Classroom co111>uting
Papen (1970) argued that the study of programming
is intellectuallv beneficial and for a number of years
the notion persisted that programming was a ··new
Latin" which would promote good. domain
independent thinking skills in our children. Initial
studies with LOGO offered the possibility that these

claims might actually be true. but then more detailed
and more riswrous studies came along which were
generally unable to find any evidence of transfer
from programming to general problem-solving skills
(e.g. Mayer. Dyck & Vilberg, 1986).

However. most of these studies had a very narrow
view of transfer. and used lane:uaees Cusuallv
LOGO) which embodied a narro-w view of
programming. And one of the key problems in the
studies was that too many children acquired too
little expenise in programming (e.g. Kurland, Pea.
Clement & Mawby, 1986).

One of the key factors about programming skills is
that most key concepts seem to be acquired when
people are trying to solve their own problems. rather
than the exercises provided by the teacher.
Programming seems to be inherently a 'discovery
learnine· domain. Manv of the earlv LOGO and
other studies used fairiy traditionat" instructional
regimes. in which programming was taught throueh
language features. code templates. procedural skiils
(e.g. planning and debugging) and finally general
problem-solving. It isn't perhaps too surprising that
children showed little transfer of this knowledge.

Linn & Dalbey (1985) showed how quality of
instruction was of prime imponance in determining
children· s programming success. with 'exemplary
instruction· (which emphasised design skills and
general transferable skills) advancing the students
furthest along the chain of cognitive
accomplishments. However. even here the only
example of a general transferable skill was an
understanding of a general sorting algorithm.

KidSimn.1
• therefore. offers a chance to look at

classroom computing in a manner which goes
beyond most of the studies conducted so far. It
offers children the possibility of studying problems
of their own choosing, in a context which does not
strongly associate programming with Maths or
Science. or any other specific discipline. And yet.
KidSim nr concains tough, general programming
abstractions to be understood (e.g. the concept of
abstraction itself. variables. a black box system).

At the current stage of development. our primary
goal was to provide an early formative evaluation.
hoping that our evaluations of Kid�im TM can inform
not only classroom computing, but the development
of end-user programming systems too.

THE EVALUATION

If children can learn about abstraction and
modularity. through good interface and environment
design (rather than by instruction). then the

87

potential for truly powerful end-user programming is
more promising.

KidSim rn provides an opportunity to investigate
this question. The nature of the prototype at the time
of this evaluation constrained us to usin2: machines
in our Department. rather than being able to take
KidSimTM into schools. It should also be pointed
out that there was practically no documentation
available about the system for the children to use.
and the two research staff who were always present
had themselves only been using KidSim rn for 2-3
weeks prior to the evaluation.

These constraints meant chat we were engaging in a
very conservative evaluation. since the system was
both slow and unreliable. both seemingly
undesirable propenies in software intended for 11
year old children. Because of these constraints we
decided against engaging in a serious educational
evaluation. preferring instead to concentrate on
interface issues and the children· s general
understanding of programming in KidSimnr .

Evaluators
In total we studied 56 children for varying lengths
of time. The majority of these came as a class from a
local school for 3 afternoons (two classes were used.
one aeed 11 / 12 and the other 13/ 14). Other children
in the study were the 1 1-12 year old children and
friends of our colleasrnes. These latter children
tended to come in for two or three whole days.

In most cases the children worked in groups of 2-3.
though sometimes groups coalesced into larger
groups. Also. sometimes some of the children
preferred to work alone.

The data reponed here relate to the 12- and 14- year
old children from the local school. This was a total
of approximately 32 children. who worked in groups
of 2-3 children at each machine. for a total of about
6 hours ..

Activities
Across all 56 children the acuvmes were very
varied. since they were all present for differing
lengths of time. However. the children whose data is
presented here were all given relatively structured
activities to perform. with the focus being on the
writing and comprehension of rules.

Thus. for example. they were asked to write a rule to
move an agent to the right (or left). and a rule to
enable the a2:ent to climb over an obstacle. etc. As
well as being given specific rules to write. the
children also were given opponunities to create their
own rules for their own agents.

Besides the on-line KidSim TM activitv. the children
were also given a pencil-and-paper test of their
understanding of rule construction in KidSim™.
This contained monochrome images of some simple
graphical rewrite rules. which the children had to
write a one sentence description ot'. These rules were
in fact much the same as the ones we asked them to
write. but they included some important
characteristics (for example. two versions of the
same movement. but one with !!round beneath the
agent and one without).

Results
Our studies did not aim to produce clean readily
analysable data - partly due to the speed and
unreliabilitv of the KidSimnt svstem anywav.
However. from the videos it is possible to extract
substantial quantities of information concerning
their comprehension and their enjoyment.

Ease of Use

A striking feature of the children· s activities is their
overwhelming enjoyment of using the system. This
was more true of the 1 1/12 year olds than the 13/ l 4
year olds. but there was a strong sense of
disappointment at the end of each session and an
eagerness to return.

[n the time when the children were able to create
their own worlds and aeents it was clear that
KidSimrn was a spur to their creative imaginations.
An enormous varietv of different worlds were
created. ranging from \vars and battles. to aquariums
or soccer pitches! However. there were few differ
ences in the rules written for these different worlds -
although the agents concerned were very different.
their programmed actions were surprisingly similar.

[t appears. therefore. that KidSim TM does provide an
environment where children have the opportunity to
learn about programming at the same time as solving
their own problems. rather than teacher-defined ones.

Hardly any of the children had any major difficulties
in using the interface to construct agents and rules.
Across all their sessions (40-80 minutes) the
children constructed an average of 8 rules per
session (3-15). Some of these were rules suggested
by the us. whilst others were of their own invention.

The most common problem was over-eager mouse
clicking due to the slow responses of the system.
This. coupled with a problem in the rule
construction process (due to our use of 16 ..
monitors). led to a number of "dud" rules that did
absolutely nothing.

88 , I

l

,,
I

,
r

i

,
l

l

,
I

1

l

l

1

,
J

,

,

1

Figure l: A successfully written rule for jumping over a rock. incorporaung 4 actions.

Figure 2: A similar rule using an unnecessarily large spotlight (e.g. the 12 squares at the ri!!ht end) and
IO separate actions. Such a rule could be labelled an animation.

Rule-Writing
Ignoring some minor interface difficulties tO rule
writin!l. it is the choice of rule and its
implementation which gives us much information
about the children· s understanding of programming.

A rule in KidSimrn is defined by a spotlight around
an agent which indicates the scope of matching
required before the rule can tire.

A key question. therefore. is what size of spotlights
did the children prefer to use? A small spotlight
indicates a comprehension of the matching process
and the general model of repetitive rule application.
Likewise one can ask about how manv actions an
aQent makes within a sin!!le rule. si'nce a more
useful. generic rule (containing a single small
action) would seem to reflect a greater degree of
understanding than large rules containing- many
actions.

For example. Figure l illustrates a rule successfully
written tO make an agent jump over a rock . . whereas
Figure 2 shows a different pair's attempt at the same
rule. This second rule shows how some of the
children. at least. had a model of the system which
did not distinguish between single and repeated rule
firing. Their rules resembled animations rather than
programs for action.

Figure 2 also illustrates how some of the children
included squares in the spotlight which were not

used by the animation. These redundant squares
limit the applicability of the rule and su!!oest that
the children do not have a !!OOd modei of the
matching process. In fact. their discussions with each
other sugges� that they have a model in which empty
squares are irrelevant. whereas in fact. KidSim TM

will only match an empty square with an empty
square.

�umma'.ising over the children reported here. we
tound differences in a variety of measures between
when the children were doin!! our exercises and
when they wrote their own rules.

The average spotlight size when wnung rules to
meet our specifications is 5.5 squares. -but when
writing their own rules. this increases to an average
of 36 squares (ranging from 6 to 80). Likewise the
number of redunda�t squares in the spotlight
averages 2.5 on exercises and 14 on their own rules.
It is interesting to note. however. that this is
approximately the same proportion of redundancv in
each case (approximatelv 40%). Finallv the number
of steps in each rule av

.
erages l . l for· the exercise

rules. but 3.1 for their own rules.

Rule Comprehension
The average score on the test of rule comprehension
was 7/10. with the majority of marks being lost on
the three qu�stions �hich involved spotlights which
included pieces ot ground. Figure 3 shows an
example of one of these questions. which is almost

89

Figure 3: Question 2 from the rule comprehension test. for which only
22% of children mentioned the imponance of the ground.

identical to the test item preceding it. except for the
presence of the ground squares.

A further means of studying rule comprehension is
to examine the set of rules written for its coherence.
What we observed here is that the children seem to
spend very little rime reading back over the rules
they have already written for an agent. Indeed. one
pair of children. who initial ly appeared very
productive (l 5 rules written in just over one houri.
turned out to have been producing multiple copies
of verv similar rules. Of the 15 rules written. onlv 6
can reallv be re!rnrded as distinct rules (a rule· to
move right four spaces was written 4 times>.

Similarlv. on occasions where a rule did not work as
expected. the children showed no awareness of the
concept of debugging. In most cases. the reaction to
a rule which did not work as expected was an
attempt to rewrite the rule from scratch.

Confirmation of the animation model of KidSimrn

also comes from some the dialogue which occurred
when things did not go as �xpected. A quite
common utterance was of the form .. But we didn't
write that rule for there indicatin!!: that thev
expected a rule to apply in the context ,�here it wa·s
written and not simply anywhere that matched.

Qualitatively
As already mentioned the children enjoyed their
KidSimTM activities and. despite some of the lack of
comprehension. they produced some surprisingly
interesting worlds. These worlds were of great
interest to the children. not just to us.

For example. there were a number of occasions where
the children demonstrated their worlds to other
children. along with discussions about how various
effects had been achieved.

One of the pairs actually took control of the video
camera and constructed their own short
demonstration of KidSimrn and how to use it. In
this video they actually make jokes about the speed

of the program. but still manage to offer a sales-srvle
presentation.

Another indicator of the children· s enthusiasm. and
one which surprised us. was their willingness to
reconstruct worlds which were lost when the svsrem
unexpectedly crashed. Some of the children had 2 or
3 attempts at constructing the same large world (up
to 30 minutes each time) which was lost due to
unreliabilitv. Whilst it would not be true ro sav that
rhey did not complain about having to rebuild the
world. the agents and the rule-sets. rhev set about
the reconstruction with remarkable patience.

Surnmry
The children understood how to use KidSimTM :rnd
in many cases were not aware of their lack of
comprehension. They became actively and
enthusiasticallv involved in constructing their own
worlds. agents and rule-sets and it is- clear that
K.idSim ntwas a great spur to their imaginations.

However. there is plenty of evidence to suggest that
they really didn" t have any depth of understanding
about the programming concepts involved. Many
children expressed puzzlement over the use of the
word ·rule· : many of them wrote rules which
appeared more like animations (canoons) than rules:
few of them showed any clear understanding of the
graphical matching process.

DISCUSSION

The implications of these results are mixed. since it
would seem that KidSimrn has manv features which
the earlier LOGO environments lacked and which
may be conducive to learning about programming.
BuL at the same time. we haven' t obtained any good
evidence that the programming concepts have been
learnt.

This gives rise to two possibilities:-
a Children would acquire more programming

knowledge if KidSimrn were redesigned.

90

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

b. Children I end-users cannot acquire these
programming abstractions.

Possibil ity (a) is our currently preferred conclusion.
since the svstem used in the evaluation had so manv
weaknesses. For example. the system was slow and
crashed resrniarlv. there was no documentation and
the main research staff did not have much knowled2:e
of the detailed workings oi the system.

However. it is not our bel ief that the redesign
should make the interface anv easier. since children
seem to be successful with it already. The problem
seems to be more one of the interface beine too easv
and. therebv fail ine: to encouraee reflection and
learning (see Gilmore. 1994).

-

Possibil ity (b) may be true for situations where
there is no scaffolding for the acquisition of these
concepts. or where the interface I system reliability
obscures them. The design challenge is to make the
system support the learning of the programming
abstractions. whilst maintaining the acceptability of
the user interface. where the former will almost
inevitably add more complications to the interface
and the user's model of the system.

Analysing our data for the problems which arose,
and which may have prevented programming concept
acquisition. we generated a list of over 20 possible
features to redesign. However. almost all of these
changes have side-effects on the others.

The goal was a system in which interface and funct
ionality encourage children towards ·small spotlight.
small action rules ' . not · large spotlight. multiple
action animations · . in the belief that without the
former the abstractions will not be learnt.

In the end three chane:es were selected which were
felt to be achievable within the available time-frame
and were also thought to have the desired effects
without unwanted side-effects:-

(. Speed improvements. These were inevitable
anyway. but one reason for the children· s preference
for animations may have been the speed at which the
rule editor appeared (once open. they felt obliged to
use it for as much as possible);

2 Rules apply to all agents of the same type.
Currently a rule belongs just to the agent it is
created for and. therefore. it is not surprising if
children do not appreciate the generality of the rule.
If rules apply to all similar agents in the world. then
there is a big cue to the imponance of generality.

3. Individual agents can be saved and imponed
into new worlds. Along similar l ines it can be
argued that enabling agents to be moved between
worlds means that it is important to consider how
one· s rules will work in an. as yet unknown. world.

The advantage of these changes is that they should
maintain. or even increase the acceptability of the
system (since rule writing is faster. applies to more
agents and may not always be necessary) to children.
whilst at the same time providine: clear scaffoldim?
for the development of programming concepts.

-

SUMMARY

It is possible to offer a graphical programming
environment to voune children which enables them
to address their· own -problems and interests rather
than those of a teacher. Whether they acquire the
generalised programming constructs and thinking
skills from such a system is as yet untested. but the
enthusiasm with which the KidSim™ svstem was
received suggest that this will provide a· very good
test bed for addressing this issue.

On the basis of our results. KidSim nr can be
labelled an end-user programming environment. The
long-term imponance of this is that if it does indeed
prove possible to scaffold the acquisition of
programming concepts in 1 1 year old children. then
the prospects for genuinely powerful end-user
programming languages are extremely promising

ACKNOWLEDGEMENTS

This collaborative project between Nottingham and
Apple Computer Inc. was supported by a NATO
Collaborative Research Grant (no. 920469).

REFERENCES

Gray, W. D .. Spohrer. J. C .• & Green. T. R. G.
(1 993). End-user programming languages: The
workshop repon. SIGCHI Bulletin. 25(2), 46-50.

Kurland. M.. Pea. R. Clement. C. & Mawby, R.
(1986). A study of the development of programming
abi lity and thinking skills in high school students.
Journal of Educational Computing Research. 2(4).
429-458.

Linn. M. & Dalbey. J . (1 985). Cognitive
consequences of programming instruction.
Educational Psychologisr. 20(4). 1 9 1 -206.

Mayer. R. Dyck. J. & Vilberg. W. (1986). Learning
to program and learning to think: What 's the
connection·? Communications of the A CM. 29(7).
605-6 10.

Papert. S. (1 970). Teaching Children Thinking.
Mathematics Teaching. 1970.

Smith. D.C. Cypher. A & Spohrer J. (1 994).
KidS im: Program m i n g agents w i thout a
programming language. Communications of the
ACM. 1994 (Jilly). 54-67.

91

