
MAINTENANCE OF OBJECT ORIENTED SYSTEMS

AN EMPIRICAL ANALYSIS OF THE PERFORMANCE AND STRATEGIES OF

PROGRAMMERS �EW TO OBJECT.ORIENTED TECHNIQUES

J. van Hillegersberg

K. Kumar

Depanment of informauon scienc. Rotterdam School of Management. Erasmus University

G 1-�0 PO.Box l 738. 3000 DR Rotterdam

The Netherlands. Email jhillegersberg@fac.tbk.eur.ni

AND

R .. J. Welke

Computer Information Systems dept .. Georgia State Uni'"ersity

P.O. Box 4015m. Atlanta Georgia. USA

EXTENDED RESERACH ABSTRACT

NOVEMBER 2. 1994

ABSTRACT

The structured paradigm for software development did not solve the software

maintenance problem. Currently object-orientation l 00) is \·iewed as a main

opponunity to improve maintenance productivity. Although some promising

results haven been reponed. other studies conclude that understanding and

maintenance of 00 systems can be difficult. Development and mainten3:1ce of 00

systems is often performed by developers which were originally trained in

structured languages and techniques and are relatively new to 00. This paper

describes the results of a controlled experiment designed to evaluate the

maintenance strategies and productivity of such developers. The experiment

concludes that programmers with experience in structured development but with

low experience in 00 development have trouble understanding and maintaining an

00 system.

12 l

l

l

l

l

l

l

l

1

l

l

l

l

l

l

l

l

l

1

1

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

1. Introduction

''For every dollar you spend on software development you will spend two dollars

on software maintenance (Boehm. 1987) ". This quote clearly shows the

importance of software maintenance. It also reveals that the currently dominant

structured paradigm for software development failed to reduce the huge effort

required to maintain sotfware. The last decade. as systems became more complex.

software maintenance started exceeding all other data processing division's efforts.

Research shows that about 70% of the software budget is spent on maintanance of

existing systems I Pfleeger. 1991).

As an alternative to the structured paradigm. the Object-Oriented (00)

paradigm emerged (Coad & Yourdon. 1991: Meyer. 1989: Booch. 1993).

00 promises to relief the maintenance-burden. A variety of claimed benefits

of 00 exists (Hillegersberg, 1993). The following claims directly relate to

improved maintenance productivity:

• 00 systems are easier to comprehend than Structured Systems (since

encapsulation enforces system modularity & information-hiding)

• 00 systems are easier to extend than Structured Systems (since inheritance

supports extension)

Although a number of case and system development studies have been

performed using 00 there is hardly any experimental evidence for this assumption

(Booch. 1993; Love, 1993).

To evaluate the impact of 00 on software maintenance we designed a

controlled experiment. This paper describes the preliminary results of this

experiment.

13

2. Background and Related Work

2.1 MAINTENANCE OF STRt:CITRED AND OBJECT-ORIENTED SYSTEMS

ln the 00 paradigm systems are decomposed based on their objects. Objects

encapsulate both data and process. By organizing objects in classes. objects can

inherit characteristics from their ancestors. The main technique in 00 development

is bottom-up system composition. The low-level objects are identified and

organized into class-hierarchies.

An increase of maintenance produtivity should mainly be caused by the fact

that 00 systems are easier to comprehend than their structured counterpans.

Comprehension of sofware by the programmer is critical, since is it a subtask of all

other maintenance activities.

To comprehend a program. three actions can be taken: read about it (e.g. read

documentation,: read it (e.g. read the source code); or run it (e.g. watch execution.

get trace data. watch dvnamic storage etc). Although reading documentation and '-"

executing the program can be useful. the source code is often the primary and only

accurate source of information. Today's programmers spend most of their time

studying old source code before they can implement an enhancement (Corbi.

1989).

Structured source code typically consists of data structures and procedures

which operate on the data to complete a cenain process. If an enhancement

requires a change in the data structure. this can effect many procedures. To add a

new function. the maintenance programmer needs to have an understanding of the

control flow of the program. that is, the calling hierarchy of the procedures.

00 source code consists of objects. Both the data and behavior of the object

are specified. To understand the code a programmer will examine the objects.

Since objects correspond to real world entities the programmer will have little

trouble understanding their purpose. If a change is required the programmer will

locate the appropriate object and change its behavior. As long as the object

1

1

1

l

l

l

1

l

1

1

l

l

l

1

l

,
/

1

l

l

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

interface remains unchanged. other pans of the system are not effected. Some

enhancements will require the programmer to create a new object. In many cases

this new object will resemble other objects allready present in the system. By using

inheritance the programmer only has to specify the new behavior.

Maintenance of 00 systems as described above is believed to significantly

increase the productivity of developers. However. recent studies have also

reported problems with maintenance of 00 systems. Only few empirical- and field

studies have been conducted to investigate differences in maintenance productivity

on 00 and structured systems. The following section will briefly review these

studies. The remains of this paper describes an empirical study we conducted to

investigate differences in maintenance on 00 and structured systems.

2.2 EMPIRICAL SITDIES COMPARING :'v1AlNTENAi'lCE OF OBJECT-ORIENTED AND

STRUCTIJRED SYSTE�IS

This section summarises empirical studies which have been conducted to compare

00 and structured maintenance. Table 1 presents the main characteristics of these

studies.

Henry and Humphrey (1990) let students add new features to object-oriented

and procedural systems with identical functionality. They found the number of

changes required for the 00 code to be significantly lower. Also changes in the

code were more localized for the 00 program. Strong features of the experimental

design are the large size of the programs used and the automatic data collection.

However, the within-subject design requires all subjects to implement all tasks

twice using C and Objective-C. Although subjects were told not to think about the

00 and structured solution simultaneously, interaction effects can easily occur.

The completion of a task is measured by running the adapted program using four

sets of test data. This technique assures objective testing but fails in judging the

quality of the modified code. As an example. a subject can extend an Objective-C

program by writing some additional procedural code. The authors recognize the

limitations of using students which are inexperienced in object-oriented

15

programming. However. they also argue that this bias gives even more suppon to

the power of object-oriented programming.

Mancl and Havanas (1990) recorded maintenance activities on a telephone

operation control system which consists panly of procedural C code and panly of

C++ code. They investigated effects of all modification requests (adaptive.

corrective. perfective, on structured and 00 modules. The data shows a lower

proponion of interface changes per modification request for the 00 modules. This

result seems to suppon enforced information hiding in the object-oriented pans of

the system. Also the number of source code lines that had to be changed were

registered. Especially for adaptive maintenance the object-oriented modules turned

out to be more stable. The number of files changed per modification request was

higher for the 00 pan of the system. This finding does not suppon the claim that

the effects of modifications are more local in 00 programs. The authors explain

this by the intensive use of header files in the C++ language. Among strength of

this research are the realistic setting and the large size of the system. Also the

metrics only focus on the nature of the changes. No actual productivity data is

recorded.

Wybolt (1990) reponed on the object-oriented re-design and re­

implementation of a commercial CASE-tool which was previously written in C.

The main benefits were improved maintenance and reuse. Adding new

methodology-support to the tool required 3.000 to l 0.000 new C++ lines compared

to 25,000 to 67.000 Clines for the original product. During maintenance of the re­

engineered product navigating through the C++ code was difficult. The developers

found inheritance to decrease encapsulation: "Inheritance does not necessarily

isolate where functions can be found. nor does it localize their effect".

Wilde and Huitt (1992) collected project statistics and developers experiences

on the software maintenance of three object-oriented systems at Bell

Communications Research. They identify some concepts of object-orientation

which may complicate high-level understanding of the system. First. the calling

hierarchy of methods can be difficult to grasp. Dynamic binding makes a static

analysis of the message chain impossible. Especially for beginning programmers

16 l

1

,
J

1

1

J

1

l

l

1

l

l

l

l

1

1

1

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

the absence of a real "main'' method tends to be disconcenimr. Second. findine:

where different functions are carried out can be difficult since functionality is

dispered into different object classes. Wilde et al. suspect this problem to be even

more serious than in conventional systems. Third. polymorphism can cause subtle

errors. Several different implementations of the same method can lead to

misinterpretation of the method by the maintainer.

Authorts) Method Developers Language Program Dependent Results tor 00

Size Variable

i-ienry. Laboratory senior !eve1 C I 4000 loc size1locat1on of Requires less cnanges

Humphrey study college Objective-C changes Changes are more local

!1990) students (24) errors made Perceived more difficult

perceived difficulty

time spena

Mand. Case stuay professionals C!C'l"1" > 100.000 interface changed Lass changes of interface

Havanas foe size/location of Changes are smaller

(1990) changes Changes are not significantly

more local

Wilda & Field stuay profeSS1ona1s 3 systems 500-2000 Dynamic binding and

Huitt .' SuNey C++ methods rnileritance comp11cate system

i1990) Smalltalk understanding

Changes can be disperseo

among objects

Wybolt Case stuav orofesS10na1s c:c.,.. > 100.000 size of changes Changes are smaller

(1992) Ice perceived difficulty Chages are easier

"Visual" navigation through C++

code is more difficult

Class-inheritance violates

encaosulation

Table 1. Studies comparing 00 and structured maintenance

2.3 SUMMARY

The studies conducted repon several advantages and problems in maintainance of

00 systems compared to structured systems. The results of these studies are in

many cases inconsistent. Some studies provide evidence for claimed benefits of

17

00. Other observations repons on possible problems caused by 00 concepts such

as polymorphism and inheritance.

In the laboratory experiment described in the next sections we investigate

maintenance productivity on 00 systems compared to structured systems. By

taking a closer look at the behavior of maintenance programmers we have collected

data about the problems programmers have in maintaining 00 systems.

3. Experimental Design

3 .1 RESEARCH MODEL

The hypothesis of this study is that building systems in an 00 manner

increases maintenance productivity compared to structured systems. Higher

maintenance productivity means chat the programmer can make enhancements to a

system of the same quality in less time. The underlying assumption is that

programmers have less difficulty in understanding an 00 system. By having a

better understanding of the system. they will be able to change code more

efficiently. Also the 00 concept of inheritance should enable che programmer to

extend a program with less effort.

The central research question is: What is the effect of development paradigm

(00 I structured) on software maintenance productivity '? To investigate this

question a laboratory experiment was designed. The research model is shown in

Figure l. The model depicts the relationships among the variables. tasks and

subjects of the study.

3.1.1 Independent Variables

The main independent variable 1s the development paradigm l 00 or

�tructured). The other independet variable is the complexity of the task. The

complexity can be low (only making a minor change in one code line) or high

(adding a whole new class or procedure to the system).

181

1

l

1

l

l

l

l

l

1

l

,

l

l

,

l

1

l

l

1

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

3.1 .2 Dependent Variables

Depent variables are productivity and problem-solving behavior. Also

perceived difficulty, motivation and confidence in every task were measured.

Productivity is measured by dividing a task quality score by the time required to

complete the task. The perceived difficulty. motivation and confidence were

obtained by giving the panicipants a post-experiment questionaire. The problem

solving behavior was recorded automatically by the development environment

specially built for this experiment.

3.1 .3 Control variables

There may be other extraneous factors that can influence the relationship

between the independent and dependent variables. Therefore the development

environment. wtal time. general education levet developers experience and

documentation are held constant during the experiment.

Control Variables
Development Environment
Total time
General Education level
System Documentation Dependent Variables

Independent Variable
Maintenance Task ProductMty

Paradigm
\II ... Perceived Difficulty

Task Type

i
· / Perceived Confidence

Perceived Motivation

Background Varibles Problem Solving Behavior

Attitude

Figure 1 . Research model

3 .2 PARTICIPANTS

The subjects were 1 4 advanced graduate students enrolled in a software

engineering course. Subjects had an average of 5- 1 0 years experience in structured

programming. Each subject knew about 6 structured analysis and design

techniques and 2 structured programming languages. All subjects were novices in

19

00 design and implementation (6 monthes experience J� knowing only one analysis

and design technique (Coad/Yourdon J and one programming language (00

Pascal) .

3 .3 MATERIALS

Both systems to which the changes were made were coded from identical

specifications. They were functionally identical so that when running. it was

impossible to distinguish the programs.

System l was a payroll program which calculated salaries of different type of

employees. The structured design and implementation of this system were adapted

from a software emzineerine: course book (Peters ill. 1986). The 00 design and - - -
implementation were developed by the authors. System 2 was a simulation

program which calculated and animated the behavior of a industrial robot which

picked-up randomly placed targets. The 00 design and implementation of this

system were adapted from a 00 textbook (Lane. 1 990). The structured design and

implementation were developed by the authors. These programs were chosen for

the experiment since they encompass a wide range of programming problems.

administrative as well as process control. The size of both systems is listed in

Table 2 .. Developers also obtained a copy of the global design diagrams which

showed the system decomposition in objects I procedures.

Payroll Robot Simulation

Structured 00 Structured 00

Lines of Code 160

Table 2. : Experimental matenals

3 .4 PROCEDURE

340 360 490

A special development environment. called EXP, was built for conducting the

experiment. Using EXP the subjects were able to do basic editing of the source

1

1

1

1

1

1

l

1

1

l

1

1

1

1

code. compile and run programs. see error messages and view the maintenance task

they had to complete. EXP has a very simple graphical user-interface < see Fig 2 ..)

which eliminates the effect of differences merely caused by the expenise of the

developer with complex commercialy available development tools. EXP also

registered how the subject navigated through the source code. what pans of the

program were changed. what error messaged were received ere.

To maximize control. all subjects panicipared simultaneously in the computer­

lab using a net\vorked PC. All instructions and documentation (change requests.

design diagrams etc. l were given by EXP. They were first presented a very simple

·'warming-up" task which consisted of making a simple change to a very small

program. This task was used to let subjects gam familiarirv with the EXP-

environment.

Subjects could decide for themselves when they were satisfied with the

modification. By pressing a ··next task" button they were presented the next task.

(- Benefits Salary Object -)

PBenelitsSalary = ·sene1itsSaJary:
BenelitsSalary = OBJECT (Salary)

CONSTRUCTOR Create:
PROCEDURE ShowEamings: virtual:

END:

(- RetirementsBenefits Object-)

PRetirementBenefits = "RetirementBenefits:
RetirementBenetits = OBJECT (BenetitsSalary)

CONSTRUCTOR Create:

Fig 2 .. The user screen of EXP.

All subjects performed enhancement maintenance on two systems. The two

systems were designed and implemented using both 00 and structured techniques

which resulted in four programs.

21

All subjects performed seven tasks. The first task was a warming-up excercise

to gain familiarity with the experimental environment. In this task all subjects

made a small change to the same simple program. The remaining six tasks were

organized as a · ·within subject" test. Subjects were randomly assigned to two

treatment groups. Group A first completed three tasks on the 00 implementation

of the Payroll system. followed by three tasks on the structured implementation of

the Simulation system. Group B first modified the structured version of system

Payroll system. followed by the 00 version of the Simulation System.

The maintenance tasks were enhancements to the systems varying from a

simple enhancement to a full new feature. The task were presented to te developer

as a user's request for change. This assured independence of the implementation

language.

Subjects had a maximum of two hours to complete the seven tasks.

Afterwards they were asked questions by EXP about their development and PC­

experience. education and attitude towards 00 methods. Also each maintenance

task was again presented on the screen and the subject was asked to rate the

difficulty, motivation and confidence he had when completing that task.

3 .5 MEASUREME�'T

Most of the data was automatically collected by EXP. Only the quality of the

changes made by the programmer was judged independently by two experienced

programmers. A maximum of two points were given for a correctly completed

task. The scores were significantly correlated (r = 0.76. p = 0.000). Task

productivity was defined as the average quality score divided by the time needed to

complete the task.

1

l

l

1

1

,
I

l

l

l

1

1

1

l

l

l

1

l

1

,

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

4. Experimental Resuits

4. 1 COMPLETION TIMES

Table 3 . shows the average completion times for each task. Maintenance

productivity is defined as:

score
productivitv =

· completion_ time

Table 4. shows average productivity for each task. In task l all subjects performed

the same task on the same program to gain familiarity with the EXP experimental

environment. The completion times and productivity do not differ significantly

which provides evidence for the assumption that the two treatment groups are

equal.

Task 2 consisted in a small change in the user interface of the program. The

main problem for the programmer here was to locate the part of the program

which handled the user input. There were no significant differences in completion

time and productivity for this task.

Task 3 and 4 both required the programmer to add a new type of employee to

be handled by the program. For the 00 implemetation this meant adding a new

class making use of inheritance. For the structured implementation this meant

adding a new record type and changing part of a function. For both tasks subjects

were significantly slower and had a lower productivity on changing the 00 system.

23

3ystem iask Nr Mean Time (sl Mean iime !Si 00 P =

Slructurea

Warming-up 1 96.7 226.7 0.569

Payroll 2 1 667.4 1 087.6 0.325

;:,ayroll ., 945.0 � 643.7 0.012·

::iayroll � 725.9 1 228.6 :l.003"

�obot Simulation 5 598.7 �077.6 0.027"

�obot Simulation 5 12 15.4 1 694.4 1372

Robot Simulation 7 525.0 331 .8 0.334

iable 3.: Average task como1et1on times and ANOVA significance tn=14. • indicates a signrticant resum

System Task Nr Mean proauctlVty Mean proauctivity :J =

00 Structurea

Warming-up 213.3 253.5 0.561

?ayroll 2 6 1 .1 30.3 0.257

Payroll 3 1 7.2 43.8 0.01 1 ·

Payroll 4 31. 1 58.1 0.034"

Robot Simulation 5 40.0 68.3 0.023"

Robot Simulation 0 7. 1 1 9.7 0.216

Robot Simulation 7 3.4 30.6 o.o3r

Table 4.: Average maintenance producttv1t1y ana ANOVA sigmtrcance in=14. • indicates a s1gmficant resu1u

Task 5 encompassed increasing the size of the target in the robot animation.

This change required the programmer to locate the part where the target was

drawn. Again the 00 group was significantly slower and less productive.

In task 6 the programmer was asked to make a change in the algorithm which

controlled the robot movement. This change could be made adding an extra

function or method. No significant difference in productivity or completion times

were recorded.

Task 7 asked the programmer to add a second target to the simulatio.n and than

let change the algorithm in such a way to let the robot pick-up the closest target

first. This could be done by changing 2 methods I functions. A significant lower

productivity for the 00 group was found.

1

l
Pi

1

1

l

l

l

l

l

l

l

,
I

l
r,

I

l

l

l

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

4.2 PROCESS ANALYSIS

The previous section showed that the 00 group performs significantly lower

on four out of six maintenance tasks. We expected. based on the literature. that

subjects would be productive with 00 after extensive training for about 6 month.

Apparently shifting to 00 is not that straightforward. To invest the problems the

subjects had understanding and changing the 00 programs we investigated the

protocol data further. Our findings are summarized in this section. To limit the

number of results we will concentrate on task 3 (Payroll) and 5 (Robot simulation)

which both showed significant differences. Also in these two tasks the

understanding of the program was vital to make the extension to the system.

5. Discussion

The assumption that 00 concepts are very easy to learn and use is not true for

the studied population. These programmers, which had extensive training in

structured programming, and limited experience in 00 development had more

difficulties understanding and maintaining the 00 systems than the structured

systems. Similar results were found in other studies on 00 maintenance. Future

research will be focused on analysis of protocol data to learn more about why

programmers have difficulties being productive with 00. Also other groups of

subjects with more experience in 00 development will be used in the experiment

to find out more about the learning-curve associated with Oo development.

6. References

Boehm. B.W. (1987). Industrial software metrics top 1 0 list. IEEE Software. 4 (5)

September. 84-85.

Booch. G. (1 993). Object-oriented analysis and design with applications. (2nd ed.)

Redwood city, California: The Benjamin/ Cummings Pub. company.

25

Coad. P. & Yourdon. E. (1 99 1). Object-Oriented Analysis. (:!nd ed.) Englewood

Cliffs. NJ: Prentice Hall .

Corbi. T.A. (1 989). Program understanding: Challenge for the 1 990s. IBM

Systems Journal. 28 < 2). :!94-306.

Henry. S .M. . Humphrey. YI. & Lewis. J .A. (1 990). E\'aluation of the

maintainability of object-oriented software. In Anonymous (Ed.) . Proceedings of

the conference on computer and communication systems (pp . 404-409) . Hong

Kong:

Hillegersberg, J .v. (1 993) . Object-Oriented versus Structured software

development: A controlled experiment. Management Repon Series. 1 53 . 1 -

32.Lane. A. (1 990). Object-Oriented turbo Pascal. Redwood City. CA: M&T Pub . .

Love. T. (1 993) . Object Lessons: Lessons learned in Object-Oriented development

projects. New York. NY: SIGS Books. Inc.

Mancl. D. & Havanas. W. (1990). A study of the impact of c++ on software

maintenance. In Anonymous (Ed.). Proc. Conf. software maintenance (pp. 63-69) .

Los Alamitos. Calif. : IEEE CS Press.

Meyer. B . (1 989). From structured programming co object-oriented design: the

road to Eiffel. Structured Programming, 1 . 1 9-39.

Peters ill. J .F. (1 986). Problem solving with PAS CAL. programming methods.

algorithms. and data structures. New York. NY: CBS College Pub . .

Pfleeger. S .L. (1 99 1). Software engineering : The production of quality software.

(2nd ed.) New York: MacMillan Pub. Comp . .

Wilde. N . & Huitt, R . (1 992) . Maintenance suppon for object-oriented programs.

IEEE Transactions On Software Engineering, 1 8 (1 2), 1 038- 1044.Wybolt. N.

(l 990). Experiences with C++ and Object-Oriented software development. ACM

Sigsoft Software Engineering Notes, 1 5 (2), 3 1 -39.

l

l

1
fWw)

I

l

l

l

l

l

l

l

l

1

l

1

