Control Strategies Used By
Expert Program Designers.

Steve Lang
Department of Human Sciences. Loughborough University
and
Tom Ormerod

Department of Psychology. Lancaster University

Paper submitted to PPIG 7, Edinburgh January 1995.
Abstract

In this paper we report a study of tour expert Prolog programmers designing and
coding solutions to an enlarged version of the well-known 'signals’ problem. Data are
provided showing that experts adopt a predominately structured rather than an
opportunistic approach to decomposing design problems. However. the structured
approach they appear to adopt is not one ot the generally prescribed pure top-down
approaches of breadth-first or depth-first problem decomposition. Instead. expert
Prolog programmers adopt what we have termed a ‘children-first” approach to
problem decomposition. in which the relative advantages of breadth-tirst and depth-
first approaches are maximised whilst the disadvantages of these approaches are
minimised. We also discuss causes of the tew structure-divergent activities that were
observed, as well as examining reasons why designers might switch between different

structure-congruent S[I"J[CgiCS.

N R

3

3

c

—d

{

-2 -3 _3 _3 _3 __3 .3 _3 _3 __3 ._3

1. Introduction.

There have been a number of studies investigating the order in which a solution is
produced for a design problem. These studies tall broadly into two categories. The
first category is where researchers have observed expert designers using a structured
approach to the construction of the solution’s hierarchy (e.g., Jeffries et al. 1981;
Adelson & Soloway, 1985: Ormerod & Ball. 1993). A problem with such studies is
that the programmers were generally presented with ‘toy’ problems such as the
signals problem (a program to collect statistics from vehicle survey data) that can be
solved with shallow design goal hierarchies. The second group of studies have
observed designers solving problems opportunistically (e.g. Ullman et al, 1988;
Guindon, 1990: Visser, 1990). These studies have generally focused on larger and
more realistic problems in the domain of engineering design (though see Davies,
1992). Researchers have generally measured opportunism as deviations from a
prescribed structured control strategy. Where the goal hierarchies were shallow. such
deviations cannot be identified easily. On the other hand. it has been argued (Ball &
Ormerod. submitted) that weaknesses in the definition of structure-congruent
strategies have led some researchers to over-estimate the predominance of
opportunism.

Whilst two distinct top-down control strategies. breadth-first and depth-first. have
been identified. there is another possible method. We shall call the third approach
children-first. Superticially. children-tirst appears to be a mixture of depth-first and
breadth-first. The children-first strategy is applied as follows. First the goal is
recognised. then the programmer proceeds to describe the goal by recognising all of
its immediate sub-goals. So far it appears identical to breadth-first. The final stage is
to select one of the sub-goals and apply the above steps until that sub-goal has been
completed. When a sub-goal has been completed. the programmer selects the next
sub-goal to complete. This continues until the programmer has completed all the sub-
goals. and thus has completed the goal itself. This is illustrated in Figure 1 (the
designer following an alphabetical order of goul decomposition)

/a\
o) C
3 e J K
AN A A
= 3 n b L

m n O

Figure 1: A Children-First design decomposition strategy

57

Each of these strategies has advantages and disadvantages. A depth-tirst strategy
identifies the tewest potential problems in an emerging design. since each sub-goal in
a solution is recognised and completed independent ot all other sub-goals. The
breadth-first can identity the most potential problems. as each sub-goal is not
described until all other sub-goals of the same generation have been recognised. This
allows tor possible interaction between sub-goals to be discovered. However a
breadth-first strategy requires a large amount of cognitive resources to be applied.
since the designer must maintain a whole generation of a goal hierarchy at any one
time. A designer using u depth-first strategy only focuses on one sub-goal. thereby
minimising his/her cognitive load. The children-first strategy takes a middle ground:
a sub-goal can be described once its siblings have been recognised. It is not necessary
to wait until all the sub-goals of the same generation have been recognised. A
designer using a children-tirst strategy needs only to comprehend all the sub-goals of
the same parent.

Two important issues remain to be resolved. On the one hand. it may be that
when the goal hierarchy ot a programming task is not shallow the designer will work
opportunistically. On the other hand. it may be that expert programmers use a
structured control strategy that was not recognised by researchers reporting large
degrees of opportunism. since it did not conform to one of their prescribed control

strategies.
2 The Observational Study.

This study was an investigation of the control strategies used by experienced
Prolog program designers. Prolog is a modular language. Therefore the interaction
between sub-goals is limited to their siblings. We hypothesise that designers will use
a children-first strategy when there is only a negligible possibility that a sub-goal will
directly affect another sub-goal which is not its sibling. The source of a problem
which a breadth-tirst strategy can identity but which a children-first strategy can not.
is eliminated by using a modular language. In such a situation a solution designed
using a children-first strategy is likely to be as good as a solution obtained using a
breadth-first strategy, and a children-first strategy would be cognitively easier than a
breadth-first strategy. In addition a children-tirst strategy is likelv to obtain a better
solution than one arrived at when using a depth-first strategy. Although a depth-first
strategy will be cognitively easier to use than a children-first strategy. this is only of
secondary importance to an expert designer whose main aim is to design a good

solution.

1

3

3 _ 3 __3

.3

—32 _3 _3 _3 _ 3

3

—3 ~—3 ~— 3 — 3 3 773

— —3

We collected verbal and keystroke protocols from four programmers. all of whom
had a number of vears ot Prolog programming experience in both commercial and
academic settings. The task they were given was to produce a solution to an enlarged
version of the ‘signals’ problem (e.g. Rartcliffe & Siddigi, 1985: Green, Bellamy &
Parker. 1987) that was developed such that any solution hierarchy would have at least
five levels (see Appendix). To determine whether designers were using a children-
first strategy or any other strategy we examined the nature of the transitions from one
sub-goal to another. Each strategy allows tor some transitions and prohibits others.
By comparing the actual transitions between goals with those allowed by the various
strategies we will be able to determine which strategy best matches the observed
transitions. We also examined the nature of verbalisations at transition points. using
the coding scheme developed by Ormerod & Ball (1993). This enabled us to identify
causes for activity transitions and reasons for switches between solution
decomposition strategies.

3. Results.
3.1. Global Control Strategies.

We classified whether a transition trom one node to another conformed to each of the
three structured control strategies. The table below shows for each designer the
percentage of their transitions that contformed to each structure.

breadth | children depth | breadth & | breadth & | children | all three
children | depth | & depth

Al 4743% | 50.85% | 72.57% | 53.14% | 80.57% | 80.57% | 82.86%

A2l 56.18% | 61.80% | 69.67% | 62.36% | 83.71% | 87.08% | 87.64%

A3 |l 51.46% | 5

99

A0% | 6990% | 56.31% | 83.50% | 81.55% | 84.47%

A4l 56.67% | 39.44% | 60.56% | 63.33% | 7944% | 80.00% | 83.89%

X | 52.93% 6.37% | 68.17% | 58.79% | 81.80% | 82.30% | 84.71%

L]}

Table 3: Percentage of moves conlorming o structured control strategies.

From the above table it appeurs that the best fit with the proposed strategies is the use
of either breadth and depth-first. or children and depth-tirst strategies. Presupposing

59

programmers use all three strategies merely complicates the model without
significantly increasing the number of transitions that can be accounted for.

Further analysis shows that the contribution to the breadth-first’s score is almost
exclusively movement between siblings. This also happens to be part of the children-
first’s definition. However. the predictions of the two strategies deviate once all the
children of a node have been recognised. A designer using a breadth-first strategy
would start describing u sibling of the node (if there were any remaining non simple
siblings), while a designer using a children-tirst strategy would start describing one of
the children of the node (if they are not simple). Inspection of the keystroke protocols
showed that whenever there were non-simple children of a node that had just been
described and the designer was not employing a depth-first strategy, the designers
always chose to describe one ot these non-simple children rather than describing a
non-simple sibling of the node. This supports the assertion that designers used
children-first and depth-tirst approaches rather than breadth-first and depth-first
approaches.

3.2. Structure-Divergent Activities.

On average 82% of a programmer’s activity transitions can be accounted for by
him/her using a mixture of children and depth-first strategies. The remaining 18% of
transitions are divergent trom these two top-down structured control strategies.

These structured-divergent transitions were analysed further by examining the
verbal protocols and the goal hierarchies to determine their nature. They were found
to consist of § types: (1) a transition to a node whose parent has not been coded. but
which has been recognised: (2) a transition that jumps back to return to a structured
approach after a divergence: (3) debugging, a transition to amend an erroneous node:
(4) a rransition to capitalise on an analogy: (5) a transition to implement a pre-
requisite for the current goal: (6) selecting a goal based on its ease of implementing;
(7) bottom-up, a transition to implement a higher level goal: and (8) a transition to
implement a post-requisite tor the current goal.

Parent not Coded 3.52%
Jump-Back 3.04%
Analogy 1.89%
Debugging 1.83%

Easv Goul 1.51%
Pre-requisite 1.36%
Post-requisite 1.32%

Bottom-u 1.23%
I Total 17.70% I

Table 4- Diciribntion o the R Tynee of Simictired.Diverosnt Trancitionc

-3

-3 3 __3

3

3

3

-3 3 __ 3

2

—3 3 __3

3

3 _3

~—3 —3 3 —3 -~ 3 ~ 3 — 3 ~— 3 —3 ~ 313 —3 3 T3 71 T3 "3

1

3.3. Factors in Switching Between Structured Strategies.

From examination of the final goal hierarchy of each programmer’s solution along
with analysis of relevant verbal and keystroke protocol sections. we determined two
factors that contribute to switches between depth-first and children-first strategies.
These were: (1) whether the sub-goals to be developed were disjunctives; and (2) the
difficulty of designing the sub-goals. Asa measurement of a sub-goal’s difficuity, we

calculated its complexity which is the number of generations below the sub-goal.

Whenever the designers encountered disjunctives they emploved a depth-first
strategy. In the situations where the designers were confronted with conjunctive sub-
goals their choice of strategy depended on the difficulty of the sub-goals. Designers
were likely to use a children-first strategy when the sub-goals were difficult, but a
depth-first strategy when the sub-goals were easy. Using the Wilcoxon Rank Sum
test at the 99.99% level. we found (1V/(15.15) = 143.5) that the complexity of the sub-
goals according to our chosen measure of goal complexity was significantly lower

when using a depth-first strategy than when using a children-first strategy.
4. Discussion.

This study has demonstrated that expert Prolog programmers do adopt a
predominately structured approach to the design of programs. for both simple and
more complex progrumming tasks. They appear to use a combination of children-first
and depth-first strategies. rather than a breadth-first strategy. We also have identified
the causes of structure-divergent behaviour. From our classification. we would argue
that the majority of structure-divergent activities retlect the repair of a structured
approach in response to u locul divergence trom the goal hierarchy. Typically. these
retlect the later coding of design components that had been recognised earlier as part
of a structured approach.

Why do Prolog programmers not use a breadth-first strategy”? The designer seems
to choose the most economical strategy for producing a good design. The economical
cost of a strategy involves: the ditficulty of using the strategy; and the likelihood of
the strategy producing incompatible goals against the perceived cost of producing and
rectifying incompatible goals .

economic cost = difticulty of strategy + (chance ot incompatible goals x cost

of producing and rectitving incompatible goals)

Exact parameters for this formuia have vet to be established. but they are probably
dependent upon task. experience. lunguage and design environment. This formula is

61

in some respects similar to the proposals offered by Visser (1990) to account for
opportunistic design activity. However. whilst she proposes cognitive cost as the
primary motivation for choosing which design goal to focus upon at any one time,
like Ball & Ormerod (submitted) we argue that experts also evaluate the longer term
cost-effectiveness of a design strategy in choosing a method of problem
decomposition.

[s this result generalisable to experts in other programming languages? The
likelihood for a children-first strategy and a breadth-first strategy of producing
incompatible goals is the same if the heuristic of modularisation is adopted. A
children-first strategy is more likely to produce incompatible goals than a breadth-
first strategy if an alternative heuristic is used. Within the modular language Prolog,
a children-first strategy and a breadth-tirst strategy will identify the same sources of
problems. Whereas in a non modular language such as C, a breath-first strategy will
identify more sources of problems than a children-first strategy.

The cost of producing and rectifving incompatible goals is generally dependent on
the difficulty of the goals. Within this study the difficulty of a goal was measured by
its complexity. the depth of sub-goals below the goal. If a goal consists of sub-goals
which are not complex. the designer may choose a depth-first strategy as the cost of
producing and recovering from a mistake is low. [f a goal consists of disjunctive sub-
goals. the dependency of the sub-goals on each other is low. It is unlikely that a
depth-first strategy would produce incompatible disjunctive sub-goals. as their
dependency on each other is low.

Although this observational study has highlighted factors which may intluence the
designer’s choice of control strategy it remains to be seen whether this will hold in
other circumstances. such as designers using a different programming language.
Furthermore it remuins to be seen whether forcing a designer to adopt a strategy
which s/he would not have chosen voluntary enhances or reduces his/her ability to

produce a good artefact.

(=)
[38)

-3 3 3y _3 3 _3 _.3 _3 _3 3 _3® 3 _3 _3 __3

_ 13

3 3

=3 /3 3 3 /3

—3 3

|

TTE

References - to tollow
Appendix - to tfollow

Acknowledgements - io follow

63

