
Control Strategies Used By
Expert Program Designers.

Steve Lang

Department of Human Sciences. Loughborough University

and

Tom Ormerod

Department of Psychology. Lancaster University

Paper submitted to PPIG 7, Edinburgh .January 1995.

Abstract

In this paper we report a srndy of four \!xpert Prolog programmers designing and

coding solutions to an enlarged version of the well-known 'signals' problem. Data are

provided showing that experts adopt a predominately structured rather than an

opportunistic approach to <.h!c.:omposing design problems. However. the structured

approach they appear to adopt is not on\! of the generally prescribed pure top-down

approaches of breadth-first or d\!pth-first problem decomposition. Instead. expert

Prolog programmers adopt what we have termed a ·children-first' approach to

problem decomposition. in which the relative advantages of breadth-first and depth­

first approaches are maximised whilst the disadvantages of these approaches are

minimised. We also discuss causes of the few structure-divergent activities that were

observed. as well as examining reasons why designers might switch between different

structure-congruent strategies.

,
J

�
l

J

l

1

J

,
I

l

l

1

,

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

l. Introduction.

There have been a number of studies investigating the order in which a solution is

produced for a design problem. These studies fall broadly into two categories. The

first category is where researchers have observed expert designers using a structured

approach to the construction of the solution· s hierarchy (e.g., Jeffries et al. 1981;

Adelson & Soloway. 1985: Ormerod & Ball. 1993). A problem with such studies is

that the programmers were generally presented with 'toy' problems such as the

signals problem (a program to collect statistics from vehicle survey data) that can be

solved with shallow design goal hierarchies. The second group of studies have

observed designers solving problems opportunistically (e.g. Ullman et al, 1988;

Guindon, 1990: Visser. 199()). These studies have generally focused on larger and

more realistic problems in the domain of �ngineering design (though see Davies,

1992). Researchers have generally measured opportunism as deviations from a

prescribed structured control strategy. Where the goal hierarchies were shallow. such

deviations cannot be identified easily. On the other hand. it has been argued (Ball &

Ormerod. submitted) that weaknesses in the definition of structure-congruent

strategies have led some researchers to over-estimate the predominance of

opponunism.

Whilst two distinct top-clown c.:omrol strategies. breadth-first and depth-first. have

been identified. there is another possible method. We shall call the third approach

children-first. Superficially. children-first appears to be a mixture of depth-first and

breadth-first. The children-first strategy is applied as follows. First the goal is

recognised. then the programmer proceeds to describe the goal by recognising all of

its immediate sub-goals. So far it appears identical to breadth-first. The final stage is

to select one of the sub-goals and apply the above steps until that sub-goal has been

completed. When a sub-goal has been completed. the programmer selects the next

sub-goal to complete. This continues until the programmer has completed all the sub­

goals. and thus has completed the goal itself. This is illustrnted in Figure 1 (the

designer following an alphabetical order of goal decomposition.>

�
b C

� �
� e 1 K

/\ /\!\A
: � h : � m n o

Figure l: A Children-First design decomposition strategy

57

Each of these strategies has advancages and disadvantages. A depth-first strategy

identifies the fewest potential problems in an emerging design. since each sub-goal in

a solution is recognised and completed independent of all other sub-goals. The

breadth-first can identify the most potential problems. as each sub-goal is not

described until all other sub-goals of the same generation have been recognised. This

allows for possible interaction between sub-goals to be discovered. However a

breadth-first strategy requires a large amount of cognitive resources to be applied.

since the designer must maintain a whole generation of a goal hierarchy at any one

time. A designer using a depth-first strategy only focuses on one sub-goal. thereby

minimising his/her cognitive load. The children-first strategy takes a middle ground:

a sub-goal can be described once its siblings have been recognised. It is not necessary

to wait until all the sub-goals of the same gt!nt!ration have been recognised. A

designer using a children-first strategy needs only to comprehend all the sub-goals of

the same parent.

Two important issues remain to be resolved. On the one hand. it may be that

when the goal hierarchy of a programming task is not shallow the designer will work

opportunistically. On the ocher hand. it may be that expert programmers use a

structured control strategy that was not recognised by researchers reporting large

degrees of opportunism. since it did not conform to one of their prescribed control

strategies.

2. The ObserYational Study.

This study was an invt!stigation of the control strategies used by experienced

Prolog program designers. Prolog is a modular language. Therefore the interaction

between sub-goals is limited to their siblings. We hypothesise that designers will use

a children-first strategy ,vhen there is only a negligible possibility that a sub-goal will

directly affect another sub-goal which is not its sibling. The source of a problem

which a breadth-first strategy can identify but which a children-first strategy can not.

is eliminated by using a modular language. In such a situation a solution designed

using a children-first strategy is likely to be as good as a solution obtained using a

breadth-first strategy. and a children-first strategy would be cognitively easier than a

breadth-first strategy. In addition a children-first strategy is likely to obtain a better

solution than one arrived at when using a depth-first strategy. Although a depth-first

strategy will be cogniti\'dy easier to use than a children-first strategy. this is only of

secondary importance to an t!xpert designer whose main aim is to design a good

solution.

,
/

l

1

l

1

l

l

l

1

'i
J

l

1

1

1

1

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

We collected verbal and keystroke protocols from four programmers. all of whom

had a number of years of Prolog programming experience in both commercial and

academic settings. The cask they were given was to produce a solution to an enlarged

version of the 'signals' problem lt:.g. Ratcliffe & Siddiqi, 1985; Green, Bellamy &

Parker. 1987) that \Vas developed such that any solution hierarchy would have at least

five levels (see Appendix l .i. To determine whether designers were using a children­

first strategy or any ocher strategy we examined the nature of the transitions from one

sub-goal to another. Each strategy allows for some transitions and prohibits others.

By comparing the actual transitions between goals with those allowed by the various

strategies we will be able to detem1ine which strategy best matches the observed

transitions. We also examined the nature of verbalisations at transition points. using

the coding scheme developed by Om1erod & Ball (1993). This enabled us to identify

causes for activity transitions and reasons for switches between solution

decomposition strategies.

3. Results.

3.1. Global Control Slrate�ies.

We classified whether a transition from one node to another confom1ed to each of the

three structured control smuegic:s. The cable below shows for each designer the

percentage of their transitions that rnnformed to each structure.

breadth �hildren depth breadth & breadth & children all three

children deoth & deoth

Al 47.43% 50.85':-i- 72.57o/r 53.14% 80.57<:c 80.57% 82.86%

A2 56.18% 61.80� 69.67% 62.36% 83.71% 87.08% 87.64%

A3 51.46% 53.-l-OC:f 69.90% 56.31% 83.50'k 81.55% 84.47%

A4 56.67% 59.-l-4'7r h0.56% 63.33% 79..44% 80.CX)% 83.89%

X 52.93% 56.37':-f 68.17% 58.79% 81.80% 82.30% 84.71%

Table 3: Pcn:cnla�c of lllO\'CS ,:onforming lO structured cnmrnl stratcg1cs.

From the above table it app��trs that the b�st fit with the proposed strategies is the use

of either breadth and depth-first. or children and depth-first strategies. Presupposing

59

programmers use all three strategies merely complicates the model without

significantly increasing the number of transitions that can be accounted for.

Funher analysis shows that the contribution to the breadth-firsf s score is almost

exclusively movement between siblings. This also happens to be pan of the children­

firsf s definition. However. the predictions of the two strategies deviate once all the

children of a node have been recol!nised. A designer usinl! a breadth-first stratel!v,,

would stan describing a sibling of the node (if there were any remaining non simple

siblings), while a designer using a children-first strategy would start describing one of

the children of the node (if they are not simple). Inspection of the keystroke protocols

showed that whenever there were non-simple children of a node that had just been

described and the designer was not employing a depth-first strategy, the designers

always chose to describe one of these non-simple ch ildren rather than describing a

non-simple sibling of the node. This supports the assertion that designers used

children-first and depth-first approaches rather than breadth-first and depth-first

approaches.

3.2. Structure-Divergent Activities.

On average �2% of a programmer·s activity transitions can be accounted for by

him/her using a mixture of children and depth-first strategies. The remaining 18% of

transitions are divergent from thest! two top-down structured control strategies.

These structured-divergent transitions were analysed further by examining the

verbal protocols and the goal hierarchies to determine their nature. They were found

to consist of 8 types: t I) a transition to a node whose parent has not been coded .. but

which has been recognis�d: l 2 i a transition that jumps back to return to a structured

approach after a divergence: t 3) debugging. a transition co amend an erroneous node:

(4) a transition to �ap italise on an analogy: (5) a transition to implement a pre­

requisite for the current goal: (6) selecting a goal based on its ease of implementing;

(7) bottom-up. a transition to implement a higher level goal: and (8) a transition to

implement a post-requisite for the current goal.

Parent not Coded 5.52%
Jump-Back 3.04%

Analogy 1.89%
Debu�rnin� lJB%
Easv Goal l.5 1%

Pre-requisite 1.36%
Post-requisite 1.32%

Bottom-up 1.23%

Total 17.70%

T�hl,• .l· l)i1:1rih111inn nf 1h,• l< Tvn,•.: nf c;;1nw111rrt1.l)i\11•r,,M11 Tr�n.:i1innc

�
60 - !

l

�
I
i

l

l

,

1

l

l

l

l

,,
I

,

1

l

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

3.3. Factors in Switching Between Structured St rategies.

From examination of the final goal hierarchy of each programmer's solution along

with analysis of relevant verbal and keystroke protocol sections. we determined two

factors that contribute to swi tches between depth-first and children-first strategies.

These were: (l) whether the sub-goals to be developed were disjunctives; and (2) the

difficulty of designing the sub-goals. A s a measurement of a sub-goal · s difficuity. we

calculated its complexity which i s the number of generations below the sub-goal.

Whenever the designers encountered disjunctives they employed a depth-first

strategy. In the situations where the designers were confronted with conjunctive sub­

goals their choice of strategy depended on the difficul ty of the sub-goals. Designers

were likely to use a children- firs t strategy when the sub-goals were difficult. but a

depth-first strategy when the suh-goals were easy. Using the Wilcoxon Rank Sum

test at the 99.99% kvel. we found (w;(l 5. I 5) = 1 43. 5) that the complexity of the sub-

goals according to our chosen mt:asure of goal complexity was significantly lower

when using a depth-first strategy than when using a children-first strategy.

-t Discussion.

This study has demons trated that expert Prolog programmers do adopt a

predominately structured approach to the design of programs. for both simple and

more complex progrmm11ing msks. They ,tppear to use a combination of children-first

and depth-first strategies. rather than a breadth-f irst strategy. We also have identified

the causes of struccure-d ivc!rgent behaviour. From our classification. we would argue

that the majority of stru<.:ture-d i \·crgent act ivities reflect the repair of a structured

approach in response to �• lo<.:�tl d in!rgence from the goal hiemrchy. Typically. these

reflect the later coding of design rnmponents that had been recognised earlier as pan

of a structured approach.

Why do Prolog progrnmmers not use a breadth-first strategy'! The designer seems

co choose the most economical strategy for producing a good design. The economical

cost of a strategy involves: the d i fficulty of using the strategy; and the li kelihood of

the strategy producing incompatible goals against the perceived cost of producing and

rectifying incompatible goals .

economic <.:ost = difficulty of s trategy + (chance of incompati ble goals x cost

of producing and rectify ing incompatible goals)

Exact parameters for this formuia have yet to be established. but they are probably

dependent upon task. experience. language and design environment. This formula is

61

i n some respects simi lar to the proposals offered by Visser (1 99 0) to account for

opponun istic design activi ty. However. whilst she proposes c;ogni tive cost as the

primary motivation for choosing which design goal to focus upon at any one time,

l ike Ball & Ormerod (submitted) we argue that experts also evaluate the longer term

cost-effecti veness of a design strategy in choosing a method of problem

decomposition.

I s this result general isable to experts in other programming ianguages? The

likelihood for a chi ldren-first strategy and a breadth-first strategy of producing

incompatible goals is the same if the heuristic of modularisation is adopted. A

children-first strategy is more l ikely to produce i ncompatible goals than a breadth­

first strategy if an alternative heuristic is used. Within the modular language Prolog,

a children-first strategy and a breadth-first strategy will identify the same sources of

problems. Whereas in a non modular language such as C. a breath-first strategy will

identify more sources of problems than a children-first strategy.

The cost of producing and rec: tifying incompatible goals is generally dependent on

the difficultv of the �oals. With in this studv the difficultv of a goal was measured bv . '-' - ,, -

its complexity. the depth of sub-goals be low the goal. If a goal consists of sub-goals

which are not complex . the designer may choose a depth-first strategy as the cost of

producing and recovering from a mistake is low. If a goal consists of disjunctive sub­

goals. the dependency of the sub-goals on each other is low. It i s unl ikely that a

depth-first strategy would produc:l! incompatible disjunctive sub-goals . as their

dependency on each other is low.

A lthough this observational study has highlighted factors which may influence the

designer· s choice of control strategy it remains to be seen whether this \\'i l l hold in

other circumstances. such as designers using a different programming language.

Funhennore it remains co be sc:c:n whether forcing a designer to adopt a strategy

which s/he would not have c:host!n voluntary enhances or reduces his/her abili ty to

produce a good artefact.

62 l

,

l

l

l

l

1

l

l

1

l

l

1

1

1

l

,

r

r

r

References - to follow

Appendix - to follow

Acknowledgements - m follow

63

