
r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Prolog without tears: An evaluation of the
effectiveness of a non Byrd Box model

for students

Paul Mulholland
Human Cognition Research Laboratory

Open University
Milton Keynes

:MK7 6AA

p.mulholland@open.ac.uk

Acknowledgements: This work was supported by an EPSRC postgraduate
research studentship.

1. Introduction
Prolog is a difficult language to learn (Taylor, 1988). A large number

of Prolog tracers or debuggers have been developed to aid understanding. A
central aim of these is to provide a clear and consistent account of Prolog
execution (du Boulay et al., 1981). An earlier study evaluated the efficacy of
four different tracers for Prolog novices. The study found major
differences in their performance. which was related to how well students
were able to access information from the display, develop comprehension
strategies and avoid misconceptions (Mulholland, 1994). Some
misconceptions were very difficult to avoid within the conventional Byrd
Box model of Prolog which underpinned all of the tracers.

Following on from this work a choice-point execution metaphor was
adopted to provide a less confusing model of execution. Two tracers were
developed using the model. The design aim was to provide a clear
representation of the model in a way which would facilitate access to data
flow and control flow information.

Two versions of the tracer were compared against the Prolog Trace
Package (PTP) (Eisenstadt, 1984) which had been found to be reasonably
successful in the earlier evaluation study. The comparison identified
information access from the display, an inventory of comprehension
strategies employed, and misunderstandings of the notation as well as
completion rates on the task. The findings raise issues as to how the various
representations of Prolog can best be understood by the HCI community
and what role the tracer should play within the learning environment.

2. Earlier work
This study builds on earlier work comparing the suitability of four

Prolog tracers for novice Prolog programmers (Mulholland, 1994). These
were Spy (Byrd, 1980); the Prolog Trace Package (PTP) (Eisenstadt, 1984);
the Transparent Prolog Machine (TPM) (Eisenstadt & Brayshaw, 1990;
Brayshaw & Eisenstadt, 1991) and the Textual Tree Tracer (Taylor et al.,
1991).

Spy provides a linear textual trace of execution using the Byrd Box
model of execution incorporating four status codes: call, exit, fail and redo.
The basic model of execution shown in Spy underpins the other more
complex representations of Prolog. PTP is a linear textual trace providing a
richer account of Prolog execution. PTP uses a greater range of symbols to
differentiate types of goal failure and explicitly distinguish between the

27

goals of the execution and the clauses within the program. TPM attempts to
provide the same richness of information in a more accessible form by
representing Prolog as an AND/OR tree. Fine-grained views of individual
nodes of the tree provide a detailed account of variable bindings. 1TT uses a
non-linear texrual notation to provide a hierarchical representation of
Prolog in a form closer to the source code.

TPM faired less well than the three textual tracers. This was most
likely due to the larger learning cutve of a more complex graphical
notation. As a result subjects using TPM were less able to access data flow
and control flow information and frequently failed to appreciate the
position within the execution being presented. Subjects using Spy
performed less well than those using TIT and PTP. lbis seemed largely due
to the confusing way unification is represented leading to a number of
misunderstandings of control flow, data flow and the relation between
goals in the execution and clauses in the program. Although PTP and TIT
performed similarly well the protocols highlighted important differences
in the wav the two tracers were used. The non-linear execution of TIT
allowed a greater focus on data flow though as in Spy the clause and goal
were often confused. PTP provided a clear representation of control flow
though some problems were still identified, particularly during
backtracking.

lbis work demonstrated the benefits of using a fine-grained
protocol-based account of the user rather than relying solely on timing
data in order to gain a fuller understanding of how the tracer performs and
why.

3. The choice-point model
All existing tracers adopt the Byrd Box style model of execution

which underpins the Spy tracer (Byrd, 1980). The results gained from the
previous study suggest that certain principles of Prolog execution are
difficult to represent within the Byrd box model, in particular
backtracking. In order to combat these problems a choice-point model of
execution was adopted (Dodd, 1993). The key feature of the choice-point
model is that as each clause is entered. the interpreter "looks ahead" to see
if any later clauses could match should the present route fail. If so, this is
marked as a choice-point. Backtracking can then be shown as jumping
back to the nearest choice-point.

This model was combined with promising notational techniques
found in existing tracers to develop two Prolog choice-point tracers: the
Prolog linear Tracer (Plater) and the Prolog Non-linear Tracer (Pinter).
These also shared a new textual representation of binding, loosely based on
the lozenge notation used in TPM (Eisenstadt & Brayshaw, 1990).

For example, given the query fun(What) and the program below:

fun (X) : -

car (X),

gold(X) •

fun(X) : -
bike (X),

silver (X)
car(mini).

bike (honda) •

silver(honda).

Plater would begin by showing the query:

• ? fun(What)

l

l

l

1

1

1

1

l

1

l

l

l

l

l

l

l

1

1

,

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

A further step shows entry into the first rule:

• ? fun(What)

• »l fun ({What=X})

The » symbol indicates that at least one more matching clause is available
should the present path fail. Bindings between clause and goal are shown
in braces. The current path fails on the second subgoal of the rule. The
symbol -d indicates that failure was due to the goal not being defined in
the database:

• ? fun(What)

• »l fun ({What=X})

? car(What)

+l car({What=mini})

? gold(mini)

-d gold(mini)

Backtracking is then shown as a jump to the nearest choice-point. Bindings
occurring within the failed path are lost (shown by= being replaced by*>.

• ? fun(What)

<<»l fun ({What�X})

? car(What)

+l car({What�ini})

? gold{mini)

-d gold{mini)
AAAAAAAAAAAAAAA

Toe execution then continues using the next available path:

• ? fun(What)
«l fun ({Whati:X})

? car(What)

+1 car((What�ini})

? gold(mini)

-d gold{mini)
AAAAAAAAAAAAAAA

• >2 fun ({What=X})

Pinter executes in a similar way except that goal lines are updated rather
than rewritten to preser\'e the goal hierarchy.

4. Methodology
The motivation behind the methodology is to allow the gross

performance measures to be explained in terms of the information types,
strategies and misunderstandings which occur as a result of the notation
and its navigation. The motivation behind the methodology is explained in
detail elsewhere (Mulholland, 1993) and has been employed in a similar
study (Mulholland, 1994).

The assumption underlying the analysis of information types is that
when trying to gain a detailed understanding of the code the subjects will
derive certain types of information more readily depending on how clearly
they are represented in the display. Toe information taxonomy also
classifies referrals to the source code and utterances connected with
understanding the features of the trace. The information types are outlined
in table 1.

29

Information Description
code
CFI Derive control flow information from the trace
DFI Derive data flow information from the trace
ETO Compare to an earlier trace outout
GOAL Comment on the 2oal of all or oart of the ormzram
PRED Predict future behaviour of the trace
RFAD Read the trace outout
SOURCE Refer to or reconscruct source code
TRACE Comment on navi2ation or notation of trace

Table 1: Protocol coding scheme for information types.

A number of identified comprehension strategies that subjects
develop in order to understand the information the tracer presents to them
are explained in table 2.

Strategy Description
code
REVIEW CF Review orevious execution steos
REVIEW OF Review orevious data flow
TEST CF Predict and test future steps of the trace
TEST DF Predict and test future bindimzs of variables
EXPERIENCE Compare a2ainst previous exoerience of the tracer
SOURCBvlAP Mao successive steos of the trace a2ainst the code
OVERVIPtV Comment on the overall trace outout at some point

Table 2: Strategies identified in the protocols.

The four types of misunderstanding of the trace are outlined in table
3.

Misunderstanding Description
code
CGM Confusin2 the clause and its associated 2oal
CFM Deriving an incorrect model of control flow from

the trace
DFM Deriving an incorrect model of data flow from the

trace
TM Time misunderstanding: failing to appreciate the

point in the execution currently being
reoresented

Table 3: !vlisunderstandings of the trace identified in the protocols.

5. Outline of the study
The study was carried out involving 48 Open University summer

school cognitive psychology students taking the Artificial Intelligence
project. Students taking the project are required to model a simple
cognitive theory in Prolog. F.ach summer school project lasts approximately
2.5 davs. F.ach tracer was used as the main teaching focus and sole
debugging aid for one week (i.e. two Al project groups). Prior to the
summer school the students had completed assessed work using Prolog to
model a simple Al problem. The level of exposure to the trace was
approximately treble that of the previous study.

,
!

,,
I

ii
!

1
l

l

1

,,
I

l

l

l

l
,,
I

1

1

1

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

A three level between subjects design was used with 16 subjects per
cell working in pairs. Each pair of subjects were given five minutes to
familiarise themselves with a program presented on a printed sheet. They
each retained a copy of this program throughout the experiment. The
program was an isomorphic variant of the one used by Coombs and Stell
(1985) to investigate backtracking misconceptions. They were then asked to
work through the traces of four versions of the program which had been
modified in some way. Their task was to identify the difference between the
program on the sheet and the one they were tracing. They had no access to
the source code of the modified versions. Subjects were asked whether thev
wished to move onto the next task if the end of the trace had been reached
without identifying the change. Verbal protocols were taken throughout.

Program modifications were selected which required the novice to
focus on different types of information in order to correctly identify the
change. The four problems given were a change in a relation name, a
changed atom name, a data flow change and a control flow change. The data
flow change was either passing the wrong variable from a rule or
changing a variable within a rule to an atom. The control flow change was
either a swap in the subgoal order of a rule or the fact order within the
database.

A post-test questionnaire was administered to derive feedback on the
tracer and its role within the course.

5. Results
The mean completion rates are shown in table 4. A one factor ANOV A

revealed a main effect for tracer, F{2, 21) = 3.627, p < 0.05. A paitwise
comparison revealed significant differences between Plater and Pinter (p <
0,05) and Plater and I1fP (p < 0.05).

Tracer Plater Pinter PTP
Solutions 3.875 3.000 2.875

Table 4: Mean number of problems completed.

An analvsis of the level of information access revealed no
significant differences between the three tracers. A two factor ANOV A of
the comprehension strategies identified in the protocols revealed main
effects for strategy, F(6, 126) = 23.853, p < 0.01: and tracer, F(2, 21) = 4.244, p <
0.05. A paitwise comparison revealed a significant difference between PTP
and Plater (p < 0.05). Simple effects were found for REVIEW OF (p < 0.05) and
SOURCBvIAP (p < 0.01). Table S shows the mean number of comprehension
strategies identified for each tracer.

Tracer Plater Pinter PTP
Strateev
REVIEW CF 2.00 1.13 1.00
REVIEW OF 4.38 3.00 1.50
TEST CF 4.88 4.87 3.50
TEST DF 2.38 1.00 1.50
EXPERIENCE 0.63 0.13 0.38
SOURCEivlAP 6.00 7.13 3.iS

OVERVIEW 0.00 0.00 0.00

Table 5: Mean number of comprehension strategies for each subject pair.

31

The mean number of misunderstandings of the tracer are shown in
table 6. A two-factor ANOVA revealed main effects for misunderstanding,
F(3, 63) = 3.597, p < 0.05; and tracer, F(2, 21) = 4.324, p < 0.05. A painvise
comparison revealed a significant difference between Pinter and Plater (p
<0.05).

Tracer Plater Pinter PTP
Misunderstanding
CGM 0.25 0.63 0.75
CFM 0.00 0.00 0.25
DFM 0.00 0.13 0.25
TM 0.00 0.75 0.00
Total 0.25 1.48 1.22

Table 6: �'lean number of misunderstandings of the trace per subject pair.

PTP did not perform significantly differently from the previous
study on problems completed, information access, comprehension
strategies or misunderstandings.

The post-test questionnaire revealed most Pinter subjects found the
non-linear development of the trace confusing. Subjects from each tracer
suggested an on-line symbol key would be very useful.

6. Discussion
No improvement was found in the performance of PTP though the

level of exposure to the trace had increased approximately threefold. This
suggests that once the students are relatively familiar with the tracer, an
increase in use alone will not improve their performance. This can be
contrasted with the preliminary results of an ongoing study of Prolog
experts where the subjects were able to use a new tracer competently after
only a few minutes. It therefore appears that knowledge of the
programming domain is a far more important determiner of performance
than familiarity with the software and its notation. Stasko et al. (1993)
argued the main reason an algorithm animation had not been found to
improve understanding was because the amount of useful information that
can be derived is bounded by the students' knowledge of what the features
of the animation map to in the programming domain.

These fmdings raise an important educational issue. If the ability to

comprehend a visualization of a program is related to the understanding of
the constructs found within the program then the educational role of such
software should be limited to helping the student to consolidate lessons
learnt in the classroom rather than as a direct method of teaching in itself.

No differences in information access rates were found though
differences were found in the use of comprehension strategies and tlie
number of misunderstandings. There are two likely reasons why there was
not a direct relation between information access and comprehension
strategies. Firstly, though the amount of information accessed may have
been similar, the amount of cognitive effort required to derive that
information may have varied leaving less resources for the application of
strategies. Secondly, strategies rely more heavily on the overall gestalt of
the trace rather than on a single line. These therefore draw on different
qualities of the notation including its dynamics. In particular, the textual
lozenge notation in the choice-point tracers helped students to review the
flow of data through the e..xecution. The e.xplidt representation of bindings
to variables in the code also encouraged subjects to check the mapping
between the execution and the source code.

32 l

l

l

l

l

l

l

1

l

l

1

l

1

l

l

1

1

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

The most notable finding from the analysis of misunderstandings is
the large number of timing misunderstandings in Pinter, more than were
found previously in the texrual non-linear tracer TIT. It appears that the
richness of the information found in Pinter hindered the clear gestalt
necessary for the dynamics of a non-linear tracer to be followed.

Plater was found to be a very useful tracing tool for novices both in
the encouragement of useful comprehension strategies and the minimising
of misunderstandings. An improved choice-point tracer called Theseus has
been built based closely on Plater. A supporting analogy of Prolog
execution has also been used, comparing Prolog execution to the
mythological story of Theseus finding his way through the labyrinth
(Rose, 1965). Many students reported finding the analogy useful when
comprehending the working of their own programs.

7. Conclusion
The development of a choice-point model of Prolog raises the

question as to how the various representations of Prolog can best be
understood. Pain and Bundy (1987) outlined a number of Prolog stories that
can be used to represent Prolog execution such as a linear textual notation
(e.g. Spy) or an AND/OR tree notation such as TPM. All of these stories
represented the Byrd box model of execution in different ways. The choice­
point tracers differ in a new way. The notational constructs employed are
not particularly novel though the underlying execution model is. It
therefore seems unsatisfactory to describe them simply as other stories.

I argue that a two tier description would be more appropriate where
the story referred to the underlying execution model (e.g. Byrd box,
choice-point) and the notational constructs employed provided differing
accounts of each story. Much of the work in visualization focuses on telling
the truth about a particular language, though this is only a relative truth
based on the currently accepted notion of how the language works. The aim
of research into teaching programming should not only be concerned with
how best to represent an accepted story but also to devise new stories
consistent with the behaviour of the language which may better describe
its functioning.

References
Brayshaw, M. & Eisenstadt, M. (1991). A Practical Tracer for Pro log.
Internacional Journal of itan-Jvlachine Studies, 42, 597-631.

Byrd, L (1980). Understanding the control flow of Prolog programs.
Proceedings of the Logic Programming Workshop. Debrecen, Hungary.

Coombs, M.J. and Stell, J.G. (1985). A model for debugging Prolog by
symbolic execution: the separation of specification and procedure.
Research Report MMIGR137. Department of Computer Science, University
of Strathclyde.

Dodd, T. (1993). A choice-point model of Prolog execution. ALP-Ul(

Workshop on Logic Programming Support Environments, Edinburgh.

du Boulay, B., O'Shea, T., & Monk, J. (1981). The black box inside the glass
box: presenting computing concepts to novices. Internacional Journal of
Man-Machine Studies, 14, 237-249.

Eisenstadt, M. (1984). A Powerful Prolog Trace Package. Sixth European
Conference on Artificial Intelligence, Pisa, Italy.

33

Eisenstadt, M. & Brayshaw, M. (1990). A fine grained account of Prolog
execution for teaching and debugging. Instructional Science, 19(4/ 5), 407-
436.

:Vlulholland, P. (1993). Evaluating Program Visualization Systems: An

information-based methodology. Technical Report 1 07. Human Cognition
Research Laboratory. Open University.

�v[ulholland, P. (1994). The effect of graphical and textual visualization on
the comprehension of Prolog execution by novices: an empirical analysis.
In Proceedings of the Psychology of Programming Interest Group.

Pain, H. & Bundy, A. { 1987). What stories should we tell novice PROLOG
programmers? In R. Hawley (Ed.) Artificial Intelligence Programming
Environments , pp 1 19- 130.

Rose, H.J. (1965) . A Handbook of Greek Mythology. Frame: Tanner.

Stasko, J., Badre, A., & Lewis, C. (1993). Do algorithm animations assist
learning? An empirical study and analysis. In Proceedings of INTERCHI '93.

Taylor, C., du Boulay, B., & Patel, M. (199 1). Outline proposal for a Prolog
'Textual Tree Tracer' (TI'T) . CSRP No. 1 77, University of Sussex.

Taylor, J. A. (1988). PROGRAfv/MING IN PROLOG: An In-Depth Study of the
Problems for Beginners Learning to Program in Prolog. PhD Thesis,
University of Sussex.

l

l

1

,

l

l

1

l

l

l

l

l

l

l

