An Investigation Into Strategies Employed In Solving A Programming Task
Using Prolog

] Siddiqi, Computing Research Centre, Shetficld Hallam University

B Khazaei, School of Computing and IT, University of Wolverhampton
R Osbomn, Computing Researcit Centre, Shetfield Hallam University

C Roast, Computing Research Centre, Sheffield Hallam University

Abstract

This paper highlights the carry over effects in changing from a procedural to a declarative approach.
The results of a case study into programming in Prolog for a relatively simple problem is reported.
This paper describes the different methods of solutions that these subjects used to solve the
problem and argues that thev can be explained on the bases of strategies used for problem
decomposition and the choice of data representation. [t argues that the methods of solutions used
suffer from a “"carry over effect” based on a procedural approach. In particular, that the choice of
data representation used appears to be more important than the paradigm used.

1. Introduction

Programming in a logic based paradigm makes use of predicate logic which allows one to statea
programming solution in a declarative torm, and it is argued that this is more natural than a
procedural form for a large number of problems [1]. Some cognitive scientists [2] have questioned
the issue of naturalness of declarative torms.

>From a human factors point ot view the problem of "PD-programmers” (ie

those traditionally trained and experienced in a procedural approach) learning Prolog programming
is twofold. One the one hand, they are required to express their solutions in a logic paradigm which
is a novel idea because they are used to "procedural thinking”. On the other hand, they would need
to know and consider the “control tlow” ot a logic based language which may or may not be identical
to procedural features thev are familiar with. This combination in some cases can be confusing. At
present there is some empirical evidence reporting this phenomenon.

One study reports that programmers who have been trained in and used programming principles
based on the procedural stvle have difficulties in adapting to the declarative stvle (3]. We believe
this is because these programmers seem to continue to use the principles of the former rather than
the latter style. [t is not unreasonable to expect this because it is known that people have strong
tendency to apply known methods rather than learn new methods. Therefore, we argue that for
Prolog programming the underlving execution mechanism used by PD-programmer relies heavily on
procedural/operational “thinking". This tendency produces what we call "carry over effects” which
in certain circumstances can lead to misconceptions. There is an absence of detailed published
empirical evidence which elaborates on these carry over effects. The aim of our invention is to
provide an insight into the crucial issues that need attention in order to ease the transition of PD-
programmers from a procedural stvle to a declarative style of programming. In so doing we will
highlight the dual procedural and declarative models used by PD-programmers.

-3 _3 __3

_ 3

-3 3 33 3 3 _3 _3 3 _3 _3 __13

-3 3 _3

—3 31 73

—3 3 "3 "1

65

Section 2 details the specitics of a case study and the resuits of this are presented in Section 3.
2. Case Study

32 second vear under-graduate computer science students undertook an assessment for a one
semester module on functional and logic programming.

The students for nearly two academic vears, had received training in and used a procedural
approach to programming. The exercise was to produce a Proiog program for the "Bridge Hand
Problem”. The statement of the problem is as follows;

Write a Prolog program which accepts as input a representation of a bridge hand consisting of 13
cards supplied in random order. The program is required to produce as output:

(a) the hand of cards arranged in descending order by rank within cach
(b) the points value of the hand (counting 4, 3, 2, 1, tor Ace, King, Queen and Jack resp.)

An example output is as rollows:

CLUBS K109
DIAMONDS 943
HEARTS AQ1082
SPADES 7

POINTS VALLE = 10

The Bridge Hand problem was the subject of a previous observational study into designer behaviour
involving programmers using a procedural approach [4]. The choice of problem was therefore well
suited for an initial comparative studyv between procedural and declarative paradigms.

Although the majority of the students had difficulties in providing a complete working solution to
this problem, sixteen of them succeeded in producing comprehensive working programs. The
analysis carried out were similar to that of Siddiqi (5] that is the solutions were compared to
identify distinct approaches. The classification chosen was in terms of decision made concerning
“the choice of representation”. This led to subjects attempts being classified into two solution tvpes.
One in which the subjects chose to transform the input representation to the desired output
representation (ie an ordered set of values) by means of an explicit sort routine, hereafter referred to
as transform type. The method of solutions involves splitting the hand into four newly created lists
according to suits. Each card in the hand is inserted into the appropriate list according to its value.

The other in which subjects chose to process the input representation in its original form with the
honour cards being revalued so as to facilitate the use of the in-built sort routine. This solution,
hereafter referred to as patch it tvpe, involves using a "patching” routine to convert the sorted list
into the desired output. In terms ot Siddiqgi’'s previous work (5] transform type represents a "data
driven” approach, because the primary tocus is on processing the data stream. Whilst the patch it
tvpe represents a "goal driven” approach. because the goal is to "sort” the hand using the built in sort
routine.

-

From the 32 attempted solutions 24 (75%:) were of the patch it type. The most likely explanation for
this is that subjects were attempting to use a “"do what vou can and make the rest fit around it". A
strategy reported by Siddigi in the study of subjects using a procedural approach [5]. For the Prolog
solution, subjects recognised the benefits of making use of the in-built sort routine (ie an island of
certainty) and adding “patches” to tacilitate this (fitting the rest around the island). It is
hypothesised that the students who provided the transform tvpe solution had used a data driven
approach and did not rely on the built-in sort routine.

3. Discussion

There are two important observations, based on the case study, that can be made. First, both the
decomposition strategies empioved namely data-driven and goal driven are direct carry over effects
from procedural programming, and there appears to be little evidence supporting the use of
"predicate logic” and/or declarative stvle in these approaches. [t would also appear that the
application of these strategies is not carried vut in a top-down manner. Furthermore, as was the
case for our study of procedural programming [4], the application of these strategies can be more
readilv explained in terms ot using “island driving” that is forming an “island of certainty" around
what vou can do and then extending it in multi-directional manner by taking the rest around this
island.

Second, which concurs with the results we obtained in our protocol analysis study (4] where
subjects adopted a procedural approach, the choice of data representation is a determinant factor
in shaping algorithm design. Furthermore. working in declarative stvle does not appear to
significantly reduce the strong tendency towards simplistic representations because as mentioned
previously 76% "chose” the simpler but at the same time inappropriate representation for a hand.
Further evidence of this propensity is choice ot representation of a card, a significant proportion
again chose the most obvious representation which is less appropriate tor the needs of the
processing requirements namely a nested list rather than a linear list.

[n conclusion, working in the declarative paradigm does not prevent the strongly observed tendency,
when working in a procedural paradigm (4,6] towards simplistic representations and inclinations
towards performing problem decomposition on the basis of "do what vou can and make the rest fit
around it". Therefore, it would appear that choice of data representation and decomposition
strategies appears to be more important than the programming paradigm used. Moreover, we assert
that subjects behaviour can be more readilv explained in terms of carry over effects due to
procedural approach rather than a declarative approach.

A further study was conducted which identitied common misconceptions believed to be direct
results of "carry over effects” imperative programming. These are currently being analysed, some

preliminary results relating to the most frequently observed occurrences of these misconceptions will
be presented.

References

(1] Kowalski, R., (1979), “Lugic tor Problem Solving”, North Holland Inc.

3 3 _3

—13

i)

3

1

o

-3 3 3 _3 _3

-3 3

—3 31 13

(3]

(4]

(5]

(6]

Tavlor, Josie, (1984), "\Why Novices Will Find Learning Prolog Hard?" CSRP.044, University
of Sussex.

Someren Van. M., (1984), "Misconceptions of Beginning Novice Programmer, TheAcquisition
of Expertise”, Department of Psvchology,University of Amsterdam. Memo 30.

Siddiqi, J.I.A., Khazaei, B. "Models of Programmer Behaviour: A Comparative Study.” The
Twelfth Annual International Computer Software and Applications Conferencel.E.E.E.
COMPSAC 88, 141-146.

Siddiqi, J.I.A., (1984), “"An Empirical Investigation Into Problem Decomposition Strategies
used in program design”, Ph.D Thesis, University of Aston in Birmingham.

Ratcliff, B., Siddiqi, J.I.A., (1985), "Problem Decomposition Strategies Used in Program
Design”, International Journal of Man-Machine Studies 22, 77-90.

All correspondence should be directed to:

Jawed Siddiqi

Computing Research Centre
Sheffield Hallam University
Hallamshire Business Park
100 Napier Street

Sheffield

S11 8HD

Tel: 0114 2 533781
Fax: 0114 2 533161
Email: J.I.Siddiqi@SHC..—\C.L’K

67

