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1 Overview

The objective of this paper is to critically examine several claims from the Psy-
chology of Programming literature on the mental representations and processes
involved in computer program understanding, and to suggest a reinterpretation
of these claims in light of a set of core constructs from computer science. The
claims concern whether mental simulation is a viable inference strategy as pro-
grams grow in size, that domain knowledge is crucial to the understanding of
a program, that program readers develop a two-level representation of the pro-
gram, and that program readers use a predominantly bottom-up or top-down
inference strategies. The set of core computer science constructs involve the
view of programs as a set of hierarchically arranged virtual machines, each ma-
chine having its own description. My reinterpretation centers around the claim
that program readers are able to understand a virtual machine at a single level
of description.

I will present my argument by first providing two short example programs,
inviting the reader to make a number of inferences about these programs, fore-
shadowing the claims that I subsequently propose. I will then define what I mean
by virtual machine in terms of the reduction of complexity through abstraction
and naming, and argue through reference to computer science literature that
this is a central, if not the central concept in computer science. I will then return
to each of the psychological claims in turn, citing the empirical research sup-
porting these claims, and offering a reinterpretation in light of the hierarchical
virtual machine view.

2 Two example programs

Consider the code in Figure 1 and Figure 2. The first is the main routine for a
Tic-Tac-Toe program, while the second performs a depth-first search of a graph.
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main()
{

board_type Board;
player_type Player;
move_type Move;
player_type Winner;

do // once per game
{
Initialize ( Board );
Print ( Board );
Initialize ( Player );
Winner = NO_WINNER;

do // once per move
{
Get_legal_move ( Board, Player, Move );
Make_move ( Board, Player, Move );
Print ( Board );
if ( test_for_win ( Board, Player ) )
Winner = Player;

else
Player = next_player (Player);

} while ((Winner == NO_WINNER) && !test_for_draw(Board));

if (Winner == NO_WINNER)
Draw_message();

else
Win_message(Winner);

} while ( want_to_play_again() );
}

Figure 1: Tic-Tac-Toe Program
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void dfs(int visit_num[], graph & G, int Mark[], vertex current_vertex)
{
static count = 0; // Numbers each vertex in order visited
vertex v,w;
Stack S; // Standard Stack operations are defined

Mark[current_vertex] = true;
S.Push(current_vertex);
while (! S.Is_Empty())
{
v = S.Pop();
count++;
visit_num[v] = count;
// Iterate through all nodes adjacent to v
for (G.First(v); !G.End(v); G.Next(v))
{
w = G.Current_Edge(v); // w is connected to v by an edge
if (!Mark[w])
{
Mark[w] = true;
S.Push(w);

}
}

}
}

main()
{
graph G;
int num_nodes = G.Number_of_nodes();
int * visit_num = new (int [num_nodes]); // Order in which visited
int * Mark = new (int [num_nodes]);
vertex i;

for (i = 0; i < num_nodes; i++)
{
visit_num[i] = 0;
Mark[i] = false;

}

// Do a dfs on each connected component
for (i = 0; i < num_nodes; i++)
{
if (!Mark[i]) // Node has not yet been visited
{
dfs(visit_num, G, Mark, i);

}
}

}

Figure 2: Depth-first Search of a Graph
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Although neither is a complete program at the level of C++ language primitives,
it is not difficult to develop a coherent understanding of the algorithms at the
level at which they are presented.

For example, we can easily mentally simulate the operation of each algo-
rithm. Note that this is regardless of any property, such as size or complexity,
of the underlying implementation. That is, the simulation is performed based on
beliefs about the meanings of the terms of the description language derived from
previous knowledge about similarly named objects. But this also means that
our mental representations of these programs are not constructed in a bottom-
up fashion, since, in neither case have I provided the code implementing the
bottom levels of these programs.
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Figure 3: DFS virtual machine hierarchy

Figure 3 gives a graphical view of the virtual machine hierarchy for the
complete depth-first program that I have implemented1, down to the level of
C++ language primitives and standard C and C++ libraries. My claim is that
the mental representation that a programmer would possess upon reading all of

1The C++ code for the depth-first-search can be obtained by emailing the author, or from
http://phoenix.iusb.edu/josh/code/dfs
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int bucket_chain::Find( const char * key )
{
for(Node* tmp = List_Head -> Next; // Dummy list header

tmp != NULL; tmp = tmp -> Next )
if(!strcmp(tmp -> Element, key))
{
Current_Pos = tmp;
return true;

}
return false;

}

Figure 4: Find an element of a list

the code that this figure represents would not simply be two-leveled, one for the
program and the other for the domain, but would be multi-leveled, reflecting
the hierarchical structure of the implemented abstractions.

Not only is the highest level algorithm understandable without considering
the lower level implementation, but conversely, the lower levels can be under-
stood without consideration of the higher levels. This implies that knowledge
of the domain of application of the program often has no bearing whatsoever
on understanding lower levels of description. For example, the code fragment in
Figure 4 implements the find function for the chained bucket. Understanding
how this function operates neither requires nor is aided by knowledge of the
graph program in which it is embedded.

3 Virtual machines

Dietrich [Die94, p13] defines virtual machines as follows.

General-purpose computers are programmed . . . [by being] given
a description of a computation – of another machine – and the input
for that other machine. Such a description is what a program is.
The computer then runs the described machine on its input. This
may not seem to be what’s going on when you run your word pro-
cessor, but it is. When a computer is running another described
machine, the latter is called a virtual machine with respect to the
base computer. Any time a software package executes, a virtual
machine comes into existence.

Consider again the depth-first search algorithm as presented above in Fig-
ure 2. The defined data abstractions (i.e., stack and graph) are treated as prim-
itives of the programming language at this level of description. The “virtual”
aspect of this description is that there exists an interpreter for the primitives of
this description language through one or more levels of software and hardware,
that maps descriptions of machines to executions. Although I have chosen to
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implement the stack and graph in software, nothing in principle prevents me
from implementing this interpreter directly in hardware. Likewise, nothing in
principle prevents me from building a “Pascal machine”, or a “C++ machine”;
it is for pragmatic reasons that I use layers of software to map my algorithms
to executions.

4 Virtual machine languages and programming
languages

The way that programming languages support the construction of virtual ma-
chines is in their ability to extend the language beyond what is provided by the
primitives. To put it simply, a programming language is only as useful as the
linguistic abstractions it enables a programmer to construct. Hal Abelson writes
[FWH92, Forward] “Perhaps . . . future programmers will see themselves not as
writing programs in particular, but as creating new languages for each new ap-
plication.” Every time that a programmer writes a new program, they consider
how they will represent – and name – objects and operations that implement
the desired functionality. Most high-level languages provide a facility for nam-
ing and referencing structured data types, consisting of other (primitive and
constructed) named data types, a facility for naming and referencing new pro-
cedures, constructed from other program statements possibly including other
named procedure references, and a macro-style capability. These recursively
defined syntactic constructs give rise to structures and procedures of arbitrary
complexity.

For example, we can take the following as a rough definition of a virtual
machine description for a lexically-scoped language. A virtual machine descrip-
tion consists of a possibly empty set O of variables, named and typed, and a
non-empty set F of functions, with return values and formal parameters also
named and typed. Additionally, all variable references within the functions of
F are either bound to the local variables and formal parameters, or globally
bound to the variables in O. Relating this to the depth-first search example,
the presented algorithm is itself a virtual machine description, as are the stack
and graph. However, the bucket_chain::Find function is not by itself a vir-
tual machine description, since List_Head and Current_Pos occur free (not
locally bound) within it. However, this function is part of the description for
the bucket_chain virtual machine.

Rather than thinking of programs as being constructed of virtual machines,
they can be equivalently viewed as hierarchically arranged function and data
abstractions. A more formal treatment of data abstractions can be found in
[FWH92].

Programming languages can be distinguished in terms of the kinds of object
that can be combined and named, as well as rules for determining the scope
of names. A few examples should suggest how programming languages differ
in their support for constructing new virtual machine languages. For example,
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C++ enables function definitions to be named fields of named structured data
types, whereas Pascal and C do not. C permits arrays to be returned from
functions, whereas Pascal does not. Scheme permits functions to be returned
from functions, whereas neither Pascal nor C does. More detailed descriptions
of language-extensions and scope can be found in most programming language
books, such as [FWH92].

To the extent that two programming languages permit the same kinds of de-
scription languages for a particular virtual machine, they will differ little to the
programmer at the level of that description language. For instance, given that
the requisite stack and graph data abstractions and procedures have been de-
fined, the depth-first search program above would look much the same whether
in C, Pascal, Modula, Mesa, Ada, or any of a number of block-structured imper-
ative languages, save for trivial syntactic variations. Thus, languages that look
different at the primitive level may look nearly identical at the highest levels of
virtual machine description.

5 The virtual machine model in Computer Sci-
ence

The virtual machine view that I have described is considered by many to be the
very cornerstone of Computer Science. Guy Steele describes the importance of
abstraction and language extension [SF89, ppxv-xvi].

The most important concept in all of computer science is abstrac-
tion. Computer science deals with information and with complexity.
We make complexity manageable by judiciously reducing it when
and where possible. . . . Abstraction consists in treating something
complex as if it were simpler, throwing away detail. In the extreme
case, one treats the complex quantity as atomic, unanalyzed, prim-
itive. . . . Naming is perhaps the most powerful abstraction notion
we have, in any language, for it allows any complex to be reduced
for linguistic purposes to a primitive atom.

Hal Abelson focuses on the language issue, particularly the virtual aspect of
interpreters and the manner in which languages can be hierarchically defined
[FWH92, Forward].

the most fundamental idea in computer programming: [is] The
interpreter for a computer language is just another program. . . .
But that program is written in some language, whose interpreter is
itself just a program written in some language whose interpreter is
itself . . . Perhaps . . . future programmers will see themselves not as
writing programs in particular, but as creating new languages for
each new application.
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Goodman and Miller focus on the hierarchical aspect of constructing ab-
stractions, and relate this to reducing complexity (emphasis in original) [GM93,
p4,5].

Perhaps the most important contribution to come out of Com-
puter Science to date is a better understanding of complexity. The
use of abstractions is one of the keys to understanding. . . . A series
of abstract models has been developed to help with this problem
[of complexity]. . . . The models are hierarchical, that is, models are
built upon lower-level models. . . . a procedure or function allows
the programmer to create an operation of arbitrary complexity. . . .
Of course, a procedure may invoke another procedure, which may
in turn invoke yet another, and at each level the function is defined,
but the implementation of the function is obscured.

Finally, Tanenbaum discusses the relationship between virtual machines and
virtual machine languages [Tan90, pp3,4].

There is an important relation between a language and a virtual
machine. Each machine has some machine language, consisting of all
the instructions that the machine can execute. In effect, a machine
defines a language. Similarly, a language defines a machine – namely,
the machine that can execute all programs written in the language.
. . . A computer with n levels can be regarded as n different virtual
machines, each with a different machine language. . . . A person
whose job it is to write programs for the level n virtual machine
need not be aware of the underlying interpreters and translators.
The machine structure ensures that these programs will somehow
be executed. It is of little interest whether they are carried out
step by step by an interpreter which, in turn, is also carried out by
another interpreter, or whether they are carried out directly by the
electronics. The same result appears in both cases: the programs
are executed.

The key issues for computer scientists have thus concerned the ability to
construct new machines and languages, each subsequent machine described in
terms of previously defined languages. For those studying psychology of pro-
gramming, the key issue involves how people construct the meanings of the
terms of each of the virtual machine languages.

6 Implications of the virtual machine model

All programs can be viewed as descriptions of virtual machines. Of crucial
importance is which subsets, if any, of the description can also be viewed as
virtual machines. For example, I could have described the depth-first search
program (including all of the abstractions pictured in Figure 3), as a single
main program of several thousand lines of C++ code, i.e., without any function
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or data abstractions, defining only a single virtual machine. The programmer
therefore has considerable choice concerning the abstractions and description
languages of the programs that they write.

The question in terms of program understanding is how the choice of ab-
stractions and language affect the representations and processes of a program
reader? I make the following hypotheses. First, program readers are able to in-
terpret and understand programs at a single level of virtual machine description
without respect to any of the other virtual machine descriptions. As a corollary,
program simulation of a virtual machine is an inference strategy that effectively
scales as programs grow in size. An additional corollary is that knowledge of
the application domain of the program is often irrelevant to understanding lower
level virtual machine descriptions. Second, a program understander constructs
a multi-level representation of a program that reflects the virtual machine hi-
erarchy of the program. This representation thus relates the different virtual
machine levels to one another. Third, programmers are not constrained to
build this representation in either a bottom-up or top-down fashion. Instead,
programmers appear to choose the strategy that maximizes cognitive efficiency
relative to their knowledge, the task, and their estimates of the relative costs
and benefits of their strategic choices.

7 Understanding at a single level

In order to understand a description at a single virtual machine level, it is
necessary for the understander to be able to accurately interpret the expressions
of the description language. That is, the understander needs to possess some
form of interpreter for this language in their mind. One way in which the
semantics of an expression can be constructed is in terms of its implementation
at lower levels of description. For example, the stack Pop operation can be
understood by looking at the actual code that implements this at the next lower
level. Of course, this may require looking at deeper levels of implementation,
continuing until we reach primitives that we feel reasonably certain we know
how to interpret.

But there are other ways to develop beliefs about linguistic expressions. If
not, then what justifies stopping the process of looking at lower levels when we
reach the level of C++ (or Ada or Lisp, etc.) primitives? Most experienced
programmers have become so used to programming a virtual C++ (or Ada or
Lisp) machine, that the primitives of these high-level languages feel like “the
bottom”, something solid and known. But how did we develop our interpreta-
tions of these primitive expressions? Most of us did not learn by reading the
object code generated by the C++ compiler! And if we did, how much further
down would we have to go in order to feel absolutely certain that we understood
the terms of the description language of the object code – machine language,
microcode, . . . electrons?

We are able to learn the primitives of programming languages in a number
of non-reductionist ways – reading informal, natural language descriptions of
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the semantics, running short programs on different inputs, transferring meaning
from other domains that share similar linguistic expressions, e.g., read, write,
until, +, =. In an even more sophisticated fashion, we are sometimes able to
discern the meaning of a term by recognizing its role in a referenced plan, such
as the Make_move procedure from the Tic-Tac-Toe program.

But, if learning the primitives of a programming language does not require
this reductionist process, then why should learning the primitives of any other
virtual machine language? It might be that the primitives of current program-
ming languages just happen to be precisely those kinds of virtual machine lan-
guages that are learnable without recourse to reductionistic reasoning, and that
almost all other virtual machines require reduction to lower level primitives.
But this is such an unlikely possibility as to be completely absurd.

I am not claiming that all ways of discerning meaning are equally accu-
rate. For example, people make mistakes in transferring meaning from simi-
larly named expressions from other domains, empirically demonstrated in [BS83,
p10], and [New79, p21]. But I am claiming that we have several non-reductionist
strategies that we use to understand, with varying degrees of confidence, the
expressions of virtual machine languages.

7.1 Mental simulation as an inference strategy

In [Cur90], Curtis describes the extensive use of mental simulation as an infer-
ence strategy during the design phase of programming, i.e., before the imple-
mentation details of the code have been fully specified. In experiments involving
protocol analysis on maintenance tasks of short programs, Pennington [Pen87a]
and Littman, et al. [LPLS86] both report simulation being used extensively as an
inference strategy. Ironically, they also both consider simulation as non-scalable
to larger programs (although this is only implied in Littman’s paper (p.97), but
explicitly stated by Pennington (p.112)).

But the fallacy that simulation is non-scalable stems from the fact that
effective simulation is not a function of the aggregate size of programs. The
simulation of a virtual machine can be done at the level of that machine, without
respect to how the machine is implemented. For example, mentally simulating
the code required to completely implement the depth-first search program at
the level of the C++ virtual machine is a daunting task. But simulating the
50 lines of C++ code in the algorithm presented above is quite simple, since
neither the graph nor the stack implementations need to be simulated in terms of
their implementation details. By analogy, consider a program that simulates the
movements of the hands of a clock – one can, in fact, buy watches with virtual
hands. The mechanical hands can be simulated without likewise simulating
the mechanical devices, the ratcheting gears and posts, the jeweled pivots and
pendula, that cause the hands to move as they do.
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7.2 The importance of application domain knowledge

Ultimately, programs must pertain to the real world – programs that sort em-
ployee records, calculate compound interest for bank accounts, control the move-
ments of a robot arm. In a Darwinian sense, programs that do not enable people
leverage on problems in task domains become extinct.

There is empirical research supporting claims about the importance of real-
world domain knowledge in designing and understanding programs for problems
within that domain. Pennington [Pen87a] describes how programmers at high
skill levels alternate judiciously between real-world and programming knowledge
in understanding programs. In [Cur90, pxxxix], Curtis concludes from a number
of his experiments that “Dominant designers were characterized by an unusu-
ally deep understanding of the application domain coupled with the ability to
translate application behavior into computational structures.”

However, if people are able to understand programs at one level without
recourse to lower levels of implementation, it must likewise be the case that the
lower levels are implemented without regard to how the expressions that they
define are to be used at higher levels. For example the implementation of the
stack used by the depth-first search program can be done without regard to its
use in the depth-first problem.

This implies that knowledge of the application domain represented at the
highest virtual machine level need only be of use in understanding the high-
est level virtual machine. In some sense, the application domain of the stack
implementation is the stack functionality that it implements. Each level of
description screens lower levels from the terms, and hence the referents, of
higher level description languages. For constructing programs, this modular-
ity property is extremely useful, for it permits different parts of programs to be
constructed by different people at different times, places, and locations, using
different languages, with only the functional requirements of each part needing
to be communicated. By the same token, the knowledge required to understand
virtual machines is modularized.

This does not contradict the cited empirical evidence concerning the impor-
tance of domain knowledge. For example, Pennington’s experiments [Pen87b]
are on short programs (30 to 200 lines), where it is unlikely that there is more
than one virtual machine level. Likewise, Curtis [Cur90] is describing various as-
pects of the software development lifecycle, particularly the design phase, where
the designer is making choices about how to decompose the problem into a vir-
tual machine and language hierarchy. But nowhere does this research suggest
that during all phases and for all people involved in constructing (or reconstruct-
ing the meaning of) a large programming project is knowledge of the application
domain required in order to function effectively. Were it the case that domain
knowledge is required in order to understand any of the lower level details of a
program, this would render completely useless any of the complexity-reducing
advantages of abstraction.
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8 Multiple levels versus two levels

In [Pen87b, Pen87a], Pennington proposes that at least the following two dif-
ferent mental representations of the program are built:

a representation that highlights procedural program relations in the
language of programs, that we will refer to as the program model
. . . and a representation that highlights functional relations between
program parts that is expressed in the language of the domain world
objects, that we will refer to as the domain model. . . . Effective
comprehension also requires that the two (mental) representations
be cross-referenced in a way that connects program parts to domain
functions.

Pennington cites the two-level model developed by van Dijk and Kintsch [VDK83]
for natural language understanding as the basis for her model. Bergantz and
Haskell [BH91] argue in support of this two level model.

The strength of this two-level theory is that it is incontrovertible – but
not because of Pennington’s empirical validation. The two-level theory, at its
essence, states simply that programs are representations, i.e., they have syntax
and they denote. To deny this would be to deny that people reason about
both the expressions of the programming language and the denotations of these
expressions in terms of application domains. The billions of dollars of economic
activity generated by the production and use of software argue otherwise.

The weakness with this theory is that “the language of programs” may not be
one language, but a number of levels of description, each of which is associated
with a virtual machine. What is viewed as a functional object at one level is a
program object at the level above. For example, the language of stacks (e.g.,
push, pop, top, empty) is part of the domain model when considered from the
point of view of the stack implementation. However, these same stack operations
are part of the program model when considered from the point of view of the
depth-first search algorithm. The same terms (push, pop, top, empty) thus
serve both as program and domain elements, depending upon the level at which
reasoning occurs.

As another case, consider a Scheme interpreter written in Scheme, where the
program and domain languages are both Scheme.

But then it is only the context and intent of an utterance by a person about a
program, and not the language of the utterance itself that determines whether
a piece of program syntax is being reasoned about at the program level, the
domain level, or both, for that particular utterance. It is thus impossible to
classify statements by programmers during verbal protocols as to whether they
are at the function or the program level. For example, according to Pennington’s
classification [Pen87a, p105], what makes “read in the cable file” procedural, i.e.,
at the program level and “computing area for cable accesses” functional, i.e.,
at the domain level? Both name operations on data objects. And both can be
viewed as primarily syntactic, as a procedural statement, and as referential, as
denoting an implemented function. The level of description language alone is
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not sufficient to warrant different classifications for these nor many, if not most,
other utterances.

We can trace the history of this multi-level view in the psychology of pro-
gramming literature at least to Brooks, who clearly articulates that program-
mers construct multiple-level representations of programs [Bro83, p544]:

The programming process is one of constructing mappings from
a problem domain, possibly through several intermediate domains,
into the programming domain. . . . Comprehending a program in-
volves reconstructing part or all of these mappings.

My elaboration is that several of these levels of mapping are encoded in the
language of the program itself, and that the representation of a program reader
reflects the explicit hierarchical program structure.

In artificial intelligence, these ideas go back further, best articulated in
Amarel’s elegant description of the relationship between the level of problem
description and the ability to find solutions to the encoded problem, providing
a detailed example using different encodings of the Missionaries and Canni-
bals problem [Ama68]. Amarel’s description has inspired a number of subse-
quent efforts by researchers in artificial intelligence to automate the process of
change of representation through several levels of abstraction [Sac74, Ben90,
EKM90, Kno90, Kno89, GW89] including efforts by the author of this paper
[YTW96, AKPT91, YT90, KTY90, Ten90, Ten89, Ten87, Ten86].

One can even trace these ideas of multi-leveled representations through the
history of mathematics to the work of Galileo and Descartes, as Haugeland
does in [Hau85], by demonstrating that Galileo’s use of line segments to repre-
sent elapsed times, and Descartes’s use of algebraic symbols to represent spatial
features, facilitates efficient inferences that preserve truth with respect to the
original domain without manipulating symbols that directly denote domain ob-
jects.

My argument against a simplistic two-level view is virtually identical to
the argument leveled against the two-level structure/function split that char-
acterized the early Machine Functionalists in philosophy. Lycan [Lyc90, p60]
summarizes2:

Machine Functionalism’s two-leveled picture of human psychobiol-
ogy is unbiological in the extreme. Neither living things nor even
computers themselves are split into a purely “structural” level of
biological/physiochemical description and any one “abstract” com-
putational level of machine/psychological description. Rather, they
are all hierarchically organized at many levels, each level “abstract”
with respect to those beneath it but “structural” or concrete as
it realizes those levels above it. The “functional”/“structural” or
“software”/“hardware” distinction is entirely relative to one’s cho-
sen level of organization.

2Thanks to Lyle Zynda, Professor of Philosophy at Indiana University South Bend, for
seeing this connection to functionalism in philosophy, and for providing the reference.
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To view either the program or the domain level as being described by a mono-
lithic language is to oversimplify the power of programming languages to repre-
sent, and to miss the subtlety and craft of programming as it has evolved.

9 Top-down versus bottom-up inference

Given the hierarchical nature of programs, the question arises as to the order
in which programmers read, understand, and construct their representations of
the different levels of program description. For simplicity, I conflate these three
activities (and other similar ones, such as hypothesizing, recognizing, predicting)
under the rubric “inference”, with the assumption that the order in which,
for instance, a program is read will also be the order in which the program
is represented and understood. I will use the phrase “inference strategy” to
denote the order in which different parts of the program are read (understood,
represented, etc.).

Since programmers are able to understand programs at a single level, there
is in principle no constraint precluding any particular inference strategy. The
two ends of the inference strategy spectrum that are discussed in the psychology
of programming literature are termed bottom-up and top-down. The bottom-up
view, as argued by Schneiderman and Mayer [SM79], Pennington [Pen87a], and
Basili and Mills [BM82] is that programmers infer increasingly higher levels of
program functionality by reasoning about lower level program chunks, starting
at the lowest level of source code. This process is painstakingly detailed by
Basili and Mills [BM82] for a short Fortran program, and presumably “this
bottom-up process is typical in maintaining programs” (p282).

The top-down view, as argued by Brooks [Bro83], Littman et al, [LPLS86],
Gellenbeck and Cook [GC91], and Wiedenbeck [Wie91], is that programmers
reason using plan-like prior knowledge to guide the understanding process start-
ing at the highest levels of description and moving through increasingly lower
levels.

Another way to conceptualize this distinction, is to view the bottom-up ap-
proaches as being primarily data-driven, where the data driving the inferences
is the actual code observed. Alternatively, the top-down approaches are pri-
marily model-driven, where the models are knowledge structures retrieved from
memory.

In this section, I argue that rather than looking for which inference strategy
predominates, that we instead seek a theory, and associated empirical support,
that describes the factors influencing the choice of inference strategy made by
a program reader. Such a theory should be sufficiently detailed to enable us
to manipulate these factors in specific ways, from which we should be able to
observe predicted inference strategies, and account for differences in inference
strategy already reported in the literature. Our claims about inference strat-
egy should thus be relativized to the factors that are present and measurable.
I additionally argue that one important such factor is the set of hierarchical
abstractions and associated description languages that the original programmer
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int test_for_win (board_type Board, player_type Player)
{
int rw, riw, cw, ciw, dw;

rw = 0;
for ( int i = 0; i < SIZE && rw == 0; i++ )
{
riw = 1;
for ( int j = 0; j < SIZE && riw == 1; j++ )
if ( Board [ i ] [ j ] != Player )
riw = 0;

rw = rw || riw;
}

.

.

.

return( rw || cw || dw );

}

Figure 5: Flat-structured code for testing a win in tic-tac-toe

has chosen to structure their program.
I will again illustrate these points with an example. Consider the code frag-

ments in Figure 5 and Figure 6, that show different ways of testing for a win in
a tic-tac-toe game, one flat, and with identifiers that do not easily suggest the
function of the different program statements, and the other hierarchical, with
semantically rich identifier names. The main point is not which one of these
is easiest to understand; rather, it concerns what is the reading and inference
strategy that a reader employs in trying to understand each of these code frag-
ments. My claim is that the flat-structured code is considerably more difficult
to read top-down, that is, in a model-driven, predictive fashion, because I have
not provided much linguistic structure for doing so. In this case, a reader is
virtually forced to inspect each bit of code in order to try to infer what func-
tionality is associated with these lines of code, and to try to match this with
their internal model of what is required in order to win at tic-tac-toe. Alter-
natively, the hierarchical code enables a top-down inference strategy, since the
functionality of code sequences can be encoded using a single identifier, such as
row_win or column_win.

Empirical research that attempts only to establish the predominant infer-
ence strategy without also searching for the conditions that give rise to these
strategies – including conditions lying outside the reader’s mind – can easily
lead to endless skirmishing back and forth, when all parties may be correct
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int test_for_win (board_type Board, player_type Player)
{
return ( row_win ( Board, Player ) ||

column_win ( Board, Player ) ||
diagonal_win ( Board, Player ) );

}

int row_win ( board_type Board, player_type Player )
{
for ( int i = 0; i < SIZE; i++ )
if ( row_i_win ( Board, Player, i ) )
return ( 1 );

return ( 0 );
}

int row_i_win ( board_type Board, player_type Player, int i)
{
for ( int j = 0; j < SIZE; j++ )
if ( Board [ i ] [ j ] != Player )
return ( 0 );

return ( 1 );
}

Figure 6: Hierarchically-structured code for testing a win in tic-tac-toe
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(and at the same time incorrect) due to factors that neither was aware of nor
controlled for. For example, unconditional statements made by Pennington:
“Our evidence to date suggests that the program model is constructed prior to
the domain model” [Pen87a, p102], and by Koenemann and Robertson: “Pro-
grammers . . . use bottom-up comprehension only for directly relevant code and
in cases of missing, insufficient, or failing hypotheses” [KR91, p125] contradict
one another without pointing to the reason for this discrepancy. But these
unqualified statements are as much about the relative frequencies with which
certain kinds of strategy-influencing factors exist in the code that is being read
as it is about the cognitive strategies themselves. That is, Pennington is also
implicitly stating that programs tend to be of the sort such that constructing a
mental program model prior to constructing a domain model is an economical
inference strategy; for if this were not the case, then why would programmers
in general, tend to employ such a strategy? Similarly for the claim by Koen-
emann and Robertson. However, the lab-based testing methodologies used in
both studies are insufficient for making claims about the relative frequency with
which certain kinds of code exist in the world.

An adequate theory of directionality of inference and the construction of
the meaning of programs must therefore account for why we observe a range
of strategic behaviors. Such a theory should specify those factors influencing
strategic choices that lead to cognitive efficiencies. At a coarse level, there
is considerable evidence that these factors include the presence of domain and
programming plans in the reader’s mind [SAE88], as well as the reader’s specific
task [KR91]. At a more fine-grained level, they likely include: the agent’s
confidence in the match between a plan and a program fragment, the expected
gain from using a plan for prediction, the expected cost of using an inappropriate
plan and the associated costs of hypothesis revision, and the expected costs and
benefits of hypothesizing about program function based on reading individual
lines of code.

Clearly, many of these specific facotrs relate to objects outside the reader’s
mind, namely, the code itself. For example, top-down reasoning is facilitated in
the hierarchical tic-tac-toe fragment presented above through its decomposition
of functionality, captured through the use of semantically denoting names.

Even with the identification of only a few of these factors, it is possible
to make conjectures about the observation of different strategies in research
to date. For example, the small, flat-structured programs used in Pennington
[Pen87b, Pen87a] and Basili and Mills [BM82] likely do not provide sufficient
knowledge for model-driven reasoning to occur.

Conversely, it is likely that the top-down, as-needed reading behavior ob-
served by Koenemann and Robertson [KR91] is only possible given hierarchi-
cally structured code such as that observed by the subjects of this study. These
top-down strategies appear to offer such significant efficiencies on the speci-
fied tasks that these authors report their universal employment: “Subjects uni-
formly exhibited a focussed top-down process” [KR91, p127]. Similarly, it is
likely that the difference in performance observed by Littman, et al [LPLS86]
between subjects using systematic reading strategies as opposed to those using
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as-needed strategies may actually have more to do with the directionality of
inference that subjects from each group employed. That is, based on the pro-
tocol fragments provided for two contrasting inference strategies, only the more
accurate, systematic reasoner also employed a top-down inference strategy.

The possible economies of using top-down processes are plausible if one con-
siders the relative sizes of the immense space of possible plan/model hypotheses
that might be associated with a fragment of code – the mental task faced by a
bottom-up reasoner, versus the smaller (although still combinatorial) space of
possible code fragments in the observable code that might be associated with an
already referenced plan – the mental task faced by a top-down reasoner. Basili
and Mills suggest the magnitude of this difference when they admit of their
bottom-up efforts: “The authors would guess that it would take several weeks
for a maintenance programmer versed in these concepts to develop and docu-
ment an understanding of this program”. Even recognizing that these authors
were seeking a deep, formal understanding of the code, the example program
contains only 61 non-comment lines of FORTRAN statements. In addition,
as observed by Koeneamm and Robertson [KR91, p126-127], top-down strate-
gies enable programmers to completely ignore parts of the program that they
deem irrelevant to their given task. These authors state the following about the
reading behavior of their 12 subjects performing a modification task on a well-
structured PASCAL program containing 636 lines organized in 39 functions:

We also found that a quarter of all procedures and functions
were not looked at by any subject. Most of these were low level
procedures like max, min, or isdigit, suggesting that subjects had
common knowledge about the functionality of these procedures and,
thus, saw no necessity to look at the code in detail or judged them
as irrelevant. However, some of these code segments were indeed
complex and important domain-specific produres.

As indicated by these authors, linguistic abstraction enables this ignoring. The
function name matches a commonly used abstraction to an extent that the
programmer views it as cost-ineffective to look at the lower levels of code imple-
menting this abstraction. This suggests that our technological and pedagogical
efforts might be fruitfully directed toward supporting the development of code
that can be correctly maintained through the use of top-down, as-needed strate-
gies.

What emerges is a view that programs encode expertise about the struc-
ture of a problem and its solution obtained through mental effort expended by
the original programmer. By externalizing this expertise using shared linguistic
patterns, the original programmer makes it possible for subsequent program-
mers to understand the structure of the problem and its solution at only a
fraction of the mental cost originally expended. To focus only on the cognitive
aspects of programs within the mind of a single individual and to ignore the
linguistic, communicative aspects of programming will yield only incomplete,
unsatisfactory theories of meaning construction.
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It is hoped that further empirical research will elaborate the theory of mean-
ing construction so as to more fully account for:

• different programmers employing different strategies when reading the
same program,

• a single programmer employing different strategies at different times in
the same understanding episode,

• a single programmer employing different strategies when reading different
programs that compute the same function.

10 Summary

My primary objective in writing this paper has been to discuss the implications
of the use of hierarchical abstraction for program understanding, particularly
as a means for interpreting experimental results. Computer scientists view the
construction of abstractions and associated languages as a central task. By
decomposing a program into encapsulated levels, the cognitive complexity of
both the writing and reading of programs is reduced. Since programs can be
understood at one level of description without regard to other levels, simulation
remains a viable, scalable inference strategy, regardless of the aggregate size
of a program. In addition, the higher levels of a program screen a program
reader from having to consider the application domain in understanding the
lower program levels. A multiple level mental representation of the program
is hypothesized for the program reader, mirroring the hierarchical structure of
the program itself; a two-level representation is simply a special case. Finally,
the hierarchical, linguistic structure of a program is claimed to be an important
influencing factor in the inference strategy that programmers use to read and
understand programs.
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