
Developing an experiment workbench

to study software reuse

from a cognitive perspective

Fabrice Retkowsky

November 2, 1998

Abstract

Soft·ware reuse, as a promising programming technique, has led to
many technological developments. But it also involves programmers' cog
nition, and different theories compete as to how code reuse should be
assisted by a computer tool. We decided to develop a reuse workbench,
made of a reuse tool and an experiment toolkit, to simplify the evaluation
of these various theories. We describe how we complemented the initial
pen and paper design of the reuse tool by a simple experiment.

1 Introduction

Software reuse is an increasingly popular aspect of programming. In the face
of the demand for an ever increasing volume of code, reusing code components
to build new programs seems to be a good solution (?). Besides, reusing code
brings the promise of improvement from a qualitative point of view. New tech
nologies have been developed to support software reuse, such as object-oriented
programming, database repositories, component distribution systems, etc.

Yet code reuse (like programming in general) raises another kind of issue.
·when a programmer wants to reuse an existing piece of code, he has to express
his requirements, to identify a suitable component, and then to understand it,
modify it, and integrate it in a new program. All these processes strongly involve
the programmer's cognition: his memory, his understanding, his mental models,
and so on.

Hence ? (?) consider that "the psycho-ergonomical approach can help sup
porting the design of help techniques for the search, selection and specialization
of reusable assets", techniques which will be "as compatible as possible with the
activity and the thought process of software engineers" .

In this paper. we will explain why we decided to develop a workbench for
conducting experiments on the cognitive aspects of software reuse, and how we
supported its design with a simple experiment.

1

2 AN EXPERIMENT WORKBENCH FOR S0FT1VARE REUSE 2

2 An experiment workbench for software reuse

2.1 Why a workbench ?

Many aspects of cognition are involved in software reuse, and many different
theories or exist for each one of them. For example, data-flow charts, control
flow charts, and textual descriptions can be used to represent programs. But
which one of i,hem is Lhe mosL suiLable, ohe mosi, efficient,? And do t,heir effi
ciencies vary depending on the type of software components they are applied
to?

As a consequence, we are developing a tool which is aimed at running ex
periments in software reuse. This workbench will be made of two parts: a
module-based software reuse tool, and an experimental tool-kit. In this paper
we describe the development of the reuse tool.

? (?) used a similar approach to evaluate four software visualisation tools.
He embedded the four visualisation techniques into one single environment, the
Prolog Program Visualisation Laboratory (PPVL), hence unifying the user in
terfaces, and then conducted some experiments to test the techniques' efficiency.

2.2 Initial design of the reuse tool

The idea behind the software reuse tool is to give access to a database of reusable
.Java components. To allow simple experimentation, it will be based on different
sets of exchangeable modules. For example, the search technique, the database
and the documentation techniques will all be different slots, into which alterna
tive modules can be fitted.

The tool is based on a four-stage reuse model. First, the user will look for
a component in a database by browsing or using a search engine. Then, he
will seek more detailed information about the chosen component and try to
understand it. Finally, he will try to specialize it, and then integrate it into his
own program.

We decided to focus on the .Java language for four reasons. First, .Java
databases of components are freely available on the Internet. Second, it is
object-oriented. Third, it is very popular and there is a large pool of program
mers as potential experiment subjects. Finally, the tool itself will be developed
in .Java.

2.3 Supporting the design by a simple experiment

To assist the design process, we decided to conduct a simple experiment that
would highlight the most important issues that a reuse tool should tackle. This
meant having programmers perform a simple reuse activity with a simplistic
reuse system, observe their performance, and tell us what their problems were
and what they thought of reuse tools. By using novice programmers, who did
not have any real experience with reuse, we mainly looked at the initial problems
that programmers encounter when trying to reuse.

This experiment was designed to demonstrate how well novice programmers
could perform with a rudimentary reuse tool. It will serve later as a benchmark
against which we can compare more advanced reuse tools. Using beginners in

3 THE EXPERINfENT 3

� Net.scape: Cla:-is jaua.lHfla:.LOOlt

H� file Edit Apps Options Buffers Tools J,!11"" Help

ill� • '3 � � '"' Q � ii Ill -2]_:j�.!J��.!J.eJ.!J.lJ�jJl.J��-��· s� r!J location Jfile:/local/jdJ<l.1. 6/doc,/api/jav". lang.Long.t / 0

�=��=

Class java.lang.Long

j ava 1 ;mg Obi ect
I
+----java I :mg Number

I
+----java. lang. Long

public final class Long
extendstlu..tnl2e.r.

I he Long class wraps a value o! the primitive type long in an object An
object of type Long contains a single field 'Mlose type is long

In addition, this class provides several methods for converting a long to a
String and a String to a long, as well as other constants and methods
useful'Mlen dealingwith a long

• MM..l!Al.llE
The largest value of type long

.

·M!li..Ylll.l!E
The smallest value of type long

·=
The Class object representing ttie primitive type long

publi.c fin,!111
Lona;

public st,itic final lona; MHLVALUE = Ox8000000000000000L;

p\.lblic st.!ltic final lona; MAX_VALUE : Ox7fFHfHfHFHFFL;

public static final Class TYPE = Class:.a;etPrimitiveClass("lona;"l;

public St,!ltic Strina; toStrina;(lonil Lint radix) {
(radix < Character.HHCRADIX 11 radix > Character,MAX_RADIX)

radix=10;
Strina;Buf"fer buf = Strin&Buffer(radix >= 8? 23 : 65);
boolean nea:ative: {i <OJ;

}

(t�a:��1"")
(i <= -r.!ldix) {

buf,append(Character.forDia;it((int) (-(i X radix)), radix));
i = i / radix;

buf.append<Character.forDia:it<<intl(-i), ,-,,dixl);
(nea;ati�e)

buf,append('-');
buf, re�erseO, toStrina; ();

public static Strina; toHexStrina;{lona; i) (
toUnsia:nedStrina;(i, 4);

public static Strina; toOctalStrina:<lona: il (
toUnsia;nedStrina;(i, 3);

public static Strina; toBinar�Strina;<lona; i) (
toUnsia;nedStrina;(i, ll;

____ J XLJl'l�Long. ja�a<2> <Ja�" F�l----Top------------------------�
11
1

Fontif�ina; Lona;.jna<2>

,l.oll9:{loog) I
I::;;:;=::;:::=::::::===============-:;;

Constructs a ne-.i.ty allo

.

cated Long obj
.
ect ttiat represents tt,e

I
� Console

Ifill

primitive long argument fabricer-(91)> D
�L2.n.9.(String)

Constructs a ne-.i.ty allocated Long obJect mat represents me value
represented by the stnng

.

Figure 1: Experimental setup

reuse, and doing later on the same kind of experiment with expert programmers,
will also help us understand how programmers improve their reuse skills.

? (?) conducted a similar experiment, where novice systems analysts had
to perform a requirements analysis task. The authors used protocol analysis,
where oral information was used to understand the reasoning behaviour of the
subjects. In this study we focus much more on the interaction between the
subjects and the computer system, and try to see which factors can influence
both this interaction and the performance of the subjects.

? (?) conducted two experiments about novice programmers and code reuse.
Though the first one was focused on program understanding during reuse, the
second studied how confidence in software reuse can influence the whole act of
reusing some code. Here we are interested in how some technical and cognitive
(rather than sociological) aspects influence code reuse.

3 The experiment

3.1 Design and materials

The experiment consisted in asking 12 Java beginners to program a simple class
by reusing a class from the Java API packages.

The Java API packages are standard packages of classes, written by Sun
(the creators of Java). Though they were particularly aimed at being reused by

3 THE EXPERIMENT 4

traditional object-oriented programming techniques (inheritance, class compo
sition, method calls), the source code of these classes is available as well, so that
code reuse is possible. We only had to remove from the classes the .JavaDoc
commands which were making the code longer and more cryptic. Furthermore,
there is freely accessible documentation on the Web, in HTML. Hence, by sup
plying an Internet browser (Netscape Navigator in our case), the source code,
and a text editor, we had a simple, rudimentary software reuse system (Figure
1).

Each subject had to perform two tasks amongst the 4 tasks available (Table
1). These four tasks are two different programming problems (programming a
PhoneNumber class or a PhoneNumberFormat class). Each one of these prob
lems (A or B) existed in two versions. In the first version (1), the problems
were described without any kind of context, and reuse was, as much as possible,
forced. In the second version (2), reuse was only suggested, and the class to
program had a context: the subjects had to complete a large program in which
a class was missing. Each subject either performed Al and B2 or A2 and Bl,
in balanced order. The tasks descriptions can be found in Section 7.

PhoneNumber PhoneN umber Format
A B

Forced reuse,
Al Bl

without context
Suggested reuse,

A2 B2
with context

Table 1: The four tasks

The PhoneNumber (A) and PhoneNumberFormat (B) tasks were designed
to be different from both a programming and a reuse point of view, so that the
results would be less task-dependent. The PhoneNumber problem is a classic
datatype problem, fairly easy to solve, and for which many reusable components
exist in the API packages. By comparison, the PhoneNumberFormat class is
a very short, but more original problem, probably more difficult to understand
for beginners. There are some perfectly suitable components to reuse for this
problem, but they are quite well 'hidden' in the API documentation, so that
they are difficult to find out. Thus we predicted that A would be slightly longer
to perform, though much simpler, and that it would lead to more and better
reuse.

3.2 Subjects

The subjects were first-year undergraduates from the School of Cognitive and
Computive Science (COGS) at Sussex University. They were either studying
Computing Science or Artificial Intelligence and Computing Science, and had
attended two courses of Java programming. We had 12 subjects, each one
performing 2 tasks. Hence we had 24 tasks performed, i.e. 6 tasks of each type.

4 RESULTS 5

3.3 Protocol

First of all, the subjects were introduced to the idea of reuse and told what the
experiment was about.

For each one of the two tasks, the subjects were given the requirements of
the class they had to write. They had no more than 20 minutes to complete
each task. They only had access to a text editor and to a local copy of the API
on-line documenLaLion. They didn't have Lo acLually wrHe a compleLe, working
class: we didn't ask them to compile their programs. While the subjects were
performing the tasks, the experimenter took notes on all their interactions with
the API documentation, and on the subject's comments (they were asked to
think aloud).

Once the two tasks were finished, they were asked three open-ended questions
about software reuse and the rudimentary reuse system they had used. If the
subject reused a component in their program, the suitability of this component
was then evaluated, as well as the quantity of code that was actually reused
(both by mark out of 5).

When all the tests had been done, the quality of the resulting pieces of code
was evaluated, by a mark out of 5. For each task, we first gave to the six
programs an initial mark which took into account (from the least to the most
important): the syntax errors, the shortness/clarity of the code, the program
ming mistakes, and the conceptual errors. We then ordered the programs and
checked that the marking was consistent for this task. Finally, we compared the
consistency of the marking between the four different tasks, by verifying that
the best and worst programs were of the same quality in each case.

4 Results

4.1 General remarks

The subjects all followed the same pattern of programming. First, they read
and tried to understand the problem description (it took 1 minute on average).
Then, they looked for a component to reuse (3 minutes on average, though some
subjects didn't search at all), and finally did the programming. Only two tests
(out of 24) required more than 20 minutes.

The 'Index of Classes' and 'Class Hierarchy' (cf 4.2) in the documentation
pages were not used at all. There might be three possible explanations: either
these pages are useless, or they are nearly 'hidden', or users need more experience
to use them.

4.2 API use

The .Java API documentation is based on a tree hierarchy. There are basically
four levels of description: the Index of Packages, the List of Classes (for each
package), the Class Description (for each class of each package) which includes
a list of the class' methods, and the Method Description (for each method of
each class).

When searching, subjects only used the first three levels of description (Fig
ure 2). The Method level was hardly used. When programming, they used
all the four levels, including the Method level. Comparing the searching and

4 RESULTS

3.0

2.5

"'
QJ

2.0

0)

QJ

1.5 "'

0

cii 1.0

.5

0.0
Searching Programming

• Index of packages

• Package content

D Class description

• Method description

Figure 2: Use of the API documentation when searching and programming

6

the programming stages, the first two levels were less used for programming
(t = -2.53,d/ = 23,p < 0.02 and t = -2.08, df = 23,p < 0.5), the third one
(Class level) was used the same, and the Method level was much more used for
programming (t = 2.94,df = 23,p < 0.01). The statistical results mentioned
here are by default 2-tail t-tests.

This suggests that the Method Description level is too precise for the Search
stage. A proper search tool doesn't have to display such information: it will
only be necessary for the Programming stage.

4.3 PhoneNumber - PhoneNumberFormat

Variable PhoneNumber PhoneNumberFormat
Total time 15m 56s 16m 55s
No. of pages when searching 6.08 pages 6.00 pages
No. of pages when programming 4.33 pages 3.25 pages
Quality of the code 3.29 /5 3.29 /5
Percentage of reusers 42 % 42 %
Suitability of the components 2.80 /5 1.60 /5
Quantity of reuse 2.50 /5 0.90 /5

Table 2: Results for the PhoneNumber and the PhoneNumberFormat tasks

The PhoneNumber problem (A) was predicted to be simpler, if longer, but
proved to be slightly shorter to perform (no sig.). Subjects looked at the same
number of API pages for searching, but they used more API pages while pro
gramming (probably because the programming was longer). The quality of the
resulting code is the same for both tasks, though the evaluation was suggestive.

\Ve forecast that A would lead to more and better reuse. In fact as many
subjects reused for both tasks. Yet, they indeed reused better for A: the com-

4 RESULTS 7

ponents they reused were more suitable (not sig.), and they reused more lines
of code (t = 2.5, df = 8, 1-tail p < 0.02).

As a whole we can say that there were enough differences between the two
tasks from a reuse point of view to give more credibility to the other results.

4.4 Forced reuse, without context (1) -
Suggested reuse, with context (2)

Variable Forced/NoContext
Understanding time lm 4s
Searching time 5m 32s
Programming time 11m 35s
No. of pages when searching 9.92 pages
No. of pages when programming 3.17 pages
Qua.lity of the code 3.00 /5
Percentage of reusers 67 %
Suitability of the components 2.50 /5
Quantity of reuse 1.87 /5

Suggested/Context
lm 35s
Om 53s

12m 11s
2.17 pages
4.42 pages

3.58 /5
17 %

1.00 /5
1.00 /5

Table 3: Results for the 'Forced reuse/Without context' and the 'Suggested
reuse/With context' situations

Logically, in the forced reuse/no context situation, subjects spent less time
understanding and more time searching, and they looked at more API pages
while searching. They spent the same amount of time on programming for both
cases. This is because the programs were too small for reuse to have any effect
on programming time. The subjects also looked at about the same number
of pages while programming, though they looked at fewer methods and more
classes for 1. The difference of one page (3.17 compared to 4.42) comes from a
technical aspect of the API pages and from the fact that most of the subjects
in the situation (2) skipped the Searching stage.

With forced reuse, as forecast, more subjects decided to reuse (t = 2.76, df =
22, 1-tail p < 0.006). They also reused better, largely because the only two
subjects who reused in the suggested reused condition did reuse poorly.

Finally, the situation (2) produced better programs, mainly because (2) led
to less reuse, and programs based on reuse were judged of lesser quality (see
4.5).

4.5 Expertise

Though the subjects were all beginners, there were initially two measurements
of their expertise in .Java: the number of programming languages they knew
(including .Java), and the amount of time they had spent programming (the
sum for all languages, where one year was counted as three terms). Though,
the quality of the resulting programs turned out to be constant. This suggests
that past programming experience did not help in performing this task.

We also used as a third estimate wether the subjects had used the API
pages while learning .Java ('No', 'A little bit' or 'A lot'), which denotes wether

4 RESULTS 8

5.0

,e 4.0

"

"

£
3.0

b

-�
2.0

1.0

0.0

None A little bit A lot

Experience with the API pages

Figure 3: Expertise with the API pages has a negative effect

they were serious and/or curious about learning .Java. Surprisingly, the API
pages experience seems to have a negative effect on performance (Figure 3). 'A
lot' of experience led to lower quality code than 'A little bit' (t = -2.11,d/ =
14,p < 0.06) and than 'Not at all' (t = -2.67,d/ = 14,p < 0.2). There are two
explanations for that:

• Firstly, subjects with 'A lot' of experience with the API pages reused
more often: 65% of them reused, instead of 37% for 'No' experience and
25% for 'A little bit' (not sig.). Besides, programs based on reuse were
evaluated as of lesser quality than normal programs (average of 2.80/5
compared to 3.64/5, t = 2.44, df = 22,p < 0.03). In fact, comparing the
quality of reuse-based programs and normal programs, for these simple
tasks, is fairly subjective. But looking at the reuse-based programs shows
that reusing led to many minor errors such as forgetting to rename the
class, including the new class in a package, inheriting from a class without
implementing some abstract methods, and leaving 'as-is' many useless
methods. These errors are characteristic of programmers who never did
any code reuse before.

• Secondly, Figure 4 suggests that 'experts' are under-performing whether
they reuse or not. This is even more surprising. It might be explained by
'experts' trying to perform very well under experimental conditions, thus
focusing on secondary details and not solving the main problems first.

Finally, subjects who used the API pages 'A lot' in the past looked at less
pages per unit of time while searching than others, and more pages per unit of
time while programming. This means that they probably read the descriptions
more thoroughly when searching (as opposed to 'beginners' who just browse),
and that they knew how to use the API pages as a programming help.

5 CONSEQUENCES FOR THE DESIGN

"'

"lJ
0
u
"'

i= 3.0
0

-�

5- 2.0

C
"'
"'

1.0

0.0
No

Did the subject reuse ?

Yes

Exp. with API pages

.None

.A littl e bit

- -� DA lot

Figure 4: Experts under-perform whether they reuse or not

5 Consequences for the Design

9

Once the subjects completed their two tasks, they were asked three open-ended
questions about software reuse:

• What are, in your opinion, the good aspects of the API pages as a reuse
tool?

• What are, in your opinion, the bad aspects of the API pages as a software
reuse tool?

• What should a perfect reuse tool look like?

The answers we collected can be found in Section 8. From these answers, and
from the points we made in the numerical analysis, we can draw some guidelines
for the design of the reuse tool. Some of these guidelines are already met by the
initial design, some led to a few modifications.

Component description As we saw before, the reuse tool will be based
on a set of modules. One of the most important modules is the component
description. What appeared from the experiment's feedback is that the API
documentation style is a good basis to start with, since:

• it includes a list of all the methods;

• the class hierarchy at the top of each class is a good thing;

• it is well structured and uniform;

• there are lots of links between classes;

• it shows the correct syntax via an example.

6 THE NEXT STEPS IN THE DEVELOPMENT OF THE TOOL 10

Therefore we will base the first version of the component description module
on the API documentation. Yet the subjects suggested a few modifications:

• the class and package names should also be self-explanatory for beginners;

• it should have less technical terminology;

• it should also describe the code itself, and make it easily accessible (or
even include it in the description?), particularly for the 'Understanding'
stage;

• it should include some examples;

• the packages should have a description as well;

• it should be less complicated, and shorter. This is easily feasible for the
search stage: the experiment proved subjects don't use the 'Methods' level.

Navigation Since navigation is an important issue, we initially designed a
complete and efficient set of navigation tools. The subjects reminded us that
the navigation should be very simple (i.e. like the API, in HTML), and that:

• it should provide something so that users don't get lost;

• the Search stage should actually have a search tool;

• it should always suggest alternative possibilities, so that the user does not
get trapped in one not-so-good solution;

• it should assist but not be intrusive.

As a consequence, it was decided to keep the navigation tools to a minimum,
that is, a bar menu and a small wizard that allows quick navigation between
the four stages of reuse.

Structure Finally, the system should include some editing tools (to specialize
and integrate the components) and a built-in compiler (which was lacking from
the experiment's rudimentary reuse setup). These were not planned at first, but
will be included in the Specializaton and Integration stages.

6 The next steps in the development of the tool

Since this experiment was completed, we have developed a mock-up of the user
interface, and have had it tested by a few possible users. The next step consists
in designing the experiment toolkit, and then programming the whole reuse
workbench for real.

Once the system is completed, we will perform the experiment described in
this paper again, but using our tool instead of the rudimentary reuse system
used here. This will have two aims:

• to test wether there are any major flaws in the design of the tool, or
whether subjects have any problem in using this kind of integrated tool
that guides and assists them,

7 APPENDIX 1: THE FOUR TASKS 11

• and to know wether, in a simple configuration based on the API docu
mentation, our system a.lready brings some kind of benefits.

Finally we will develop and compare some new sets of modules, for example
to evaluate alternative search techniques or documentation styles.

7 Appendix 1 : The four tasks

7.1 Task Al

Write a PhoneNumber (PN) class by reusing a ,Java API class.

• A PN object will contain a telephone number, such as 1273275779

• It will be initialized using a String parameter, i.e. "1273275779"

• It will have a toString() method which will give back a String such
as " (1273) 275779"

You HAVE to reuse a Java API class to write this class.

7.2 Task A2

Here is the PhoneList class, which is used in an 'Organizer' program.

• It is basically a Vector of PhoneNumber objects

• The 'Organizer' program creates such PhoneLists, adds
PhoneNumbers to them, remove PhoneNumbers, and print
the PhoneList on screen

• PhoneNumbers are created using strings, such as "1273275779"

• When the PhoneList is printed on screen, the PhoneNumbers
should be displayed as " (1273) 275779"

Write the PhoneN umber class.

You can reuse an existing class file from the Java API
if you ·want.

7 APPENDIX 1: THE FOUR TASKS

public class PhoneList
{

int MaxSize = 3 ;
PhoneNumber[] PhoneArray = nev PhoneNumber [MaxSize] ;
int NbNumbers = O ;

II position 1 for PhoneArray[O]

PhoneListO

{
II creates tvo default numbers

}

PhoneNumber OneNumber = nev PhoneNumber ("1111111111") ;
PhoneNumber NineNumber = nev PhoneNumber("9999999999") ;

this. addNumber(OneNumber) ;
this. addNumber(NineNumber) ;
this. printNumbers () ;

public boolean addNumber(PhoneNumber aNumber)
{

if (NbNumbers == MaxSize)
return false;

}

PhoneArray[NbNumbers] = aNumber;
NbNumbers++ ;
return true ;

public boolean removeNumber(int position)
{

int i ;

if (position > NbNumbers)
return false;

{

}

if (position == NbNumbers)

PhoneArray [position] = null;
NbNumbers--;
return true ;

for (i=position; i<NbNumbers ; i++)
PhoneArray[i-1] = PhoneArray[i] ;

NbNumbers--;
return true ;

}

public void printNumbers()
{

int i ;

if (NbNumbers == 0)
System . out. println("Empty List") ;

else
for (i=O; i<NbNumbers ; i++)

12

System. out . println("Phone n. "+i+" : "+PhoneArray[i] . toStringO) ;

}
}

7 APPENDIX 1: THE FOUR TASKS

7.3 Task Bl

Write a PhoneNumberFormat (PNF) class by reusing a .Java API class.

• A PNF object will be able to format some strings

• It will for example format "1273275779" into "Brighton 275.779"

You HAVE to reuse a Java API class to write this class.

7.4 Task B2

import java. awt . * ;
import java. applet . * ;

public class PhoneWidget extends Applet

{

II The interface attributes
TextField input = nev TextField() ;
Button OK = nev Button("OK") ;
Label output = nev Label("") ;

I I The format
PhoneNumberFormat theformat = new PhoneNumberFormat () ;

II The result
String result;

}

public void init ()

{

}

setLayout (nev GridLayout (3 , 1)) ;
add (input) ;
add (OK) ;
add (output) ;

public boolean action(Event evt , Object arg)

{

{

}

}

if ("OK" . equals (arg))

result = theformat .format (input . getText ()) ;
input . setText (" ") ;
output . setText(result) ;

return true ;

13

8 APPENDIX 2: OPEN-ENDED QUESTIONS ON REUSE

Here is a PhoneWidget applet, which will be used
in an 'Organizer' program.

• A Phone Widget object allows the user to type in a telephone
number, such as 1273275779

• This number is then formatted using a PhoneNumberFormat object

• The result, in this case "Brighton 275.779", is displayed on screen

Write the PhoneNumberFormat class.

You can reuse an existing class file from the Java API
if you "-<Ult.

14

8 Appendix 2: Open-ended questions on reuse

At the end of the experiment, we asked three open-ended questions about soft
ware reuse to the subjects. Here is a summary of their answers. Each piece
of answer has been included, and answers that occurred twice or more are pre
sented as such (x 2, x 3, etc.).

What are, in your opinion, the good aspects of the API pages as a
reuse tool?

General remarks

• The source code is free, easily available and frequently updated.

• It's useful for reusing large quantity of code, it gets programmers interested
in reusing code.

• It's a good reference book, but nothing more.

Remarks to take into account for the design of the tool

• It's easy to use (x 3), easy to navigate (x 3).

• It's a good documentation (x 3), definitive, comprehensive list, all the
methods are in (x 2), it is well structured (x 2), the descriptions are
uniform, i.e. they all have the same layout. The class hierarchy at the top
of each class description is a good thing. There are lots of links between
classes.

• lots of the names are self-explanatory. It shows correct syntax.

What are, in your opinion, the bad aspects of the API pages as a
software reuse tool?

8 APPENDIX 2: OPEN-ENDED QUESTIONS ON REUSE

Education is necessary for good software reuse

15

• It's difficult to use for 1st time programmers or users (x 2). It lacks some
explanation of how the whole documentation works.

• It's difficult to use general code for specific purposes. It's quicker to write
short new classes than long general/ abstract class where you have to delete
huge parts. It's only available on the Internet.

Remarks to take into account for the design of the tool

• It's easy to get lost, and difficult to find something you don't know exist .
It lacks of search facility (x 3).

• The documentation is too complicated sometimes, too long. There is
some heavy, technical terminology (x 2). There's no description of what
packages are associated with. It lacks examples (x 4). The descriptions
don't say anything about code, it's only for functions calls.

What should a perfect reuse tool look like?

General remarks

• It should be easy to navigate through (like a browser, but not necessarily
using HTML), and to find something that suits you (x 2).

• It should have a GUI for today's level of programming, icons , images you
can relate to (x 2), similar to Win95, point and click.

• It should make some provisions for first time users, be off-line, and be free

• It should support a whole range of languages, not just .Java, have some
links to other software reuse sites, and be cross-platform (x 2). It should
be possible to add new (documented) classes.

• It must create templates for the most frequently used code.

Remarks to take into account for the design

• It should have some easily understandable descriptions, with the complete
list of all the methods and variables, and the methods should point at
other methods which could be of use. The descriptions must use plain
English, which is quicker to understand (this has been proved wrong in
some studies). It should include the actual code as well as the description.

• There should be an (intelligent) search engine which would suggest compo
nents (x 4). Something like dBASE IV. It should always propose different
solutions, so that the user does not get trapped in one not-so-good solu
tion. It should assist but not be intrusive.

• It should include some editing tools (i.e. a simple way of taking the code
of a component and modify it), and a built-in compiler.

