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Abstract 

Many software development tools and environments are considered useful because they beneficially 
reengineer developer cognition. Consequently, to design useful computer tools in cognitive work 
domains such as software development, one needs to be able to appreciate the possibilities for 
improving cognition. We argue that to do this, designers need more appropriate cognitive theories and 
models. In particular, they need models designed to highlight cognitive reengineering possibilities and 
issues. To address this need, we propose a lightweight modeling framework called HASTI. The intent 
of HASTI is to support “quick and dirty” cognitive reengineering analysis during the early stages of 
design. We illustrate HASTI’s applicability in analyzing cognitive support in software development 
tools. 
Introduction 

Software development is a work domain in which human cognition plays a critical role. Computer 
tools in such a domain are normally considered “good” if they can improve the cognitive ergonomics 
of the users.  Since some sort of cognitive work environment almost invariably exists before design 
begins, tool design is, in a sense, cognition re-design. It may be worrisome, therefore, that relatively 
little in the way of psychological theory is used in everyday software development practice (Bellotti et 
al., 1995), or even by typical computing science researchers (Green, 1989). After all, even if 
psychological theory is not used, design is still psychological in nature—software designers merely 
fill the theoretical vacuum with folk psychology (Kirlik, 1995). 
Cognitive science has been turned to in hopes of delivering theories to tool designers, but this has 
proven harder than was perhaps first expected (Carroll, 1991; Card, 1989). Many proposals have been 
advanced for putting more effective cognitive theories into the hands of designers. These include 
proposals for simplified, quantitative engineering models (e.g., GOMS (Newell and Card, 1985), ICS 
(Barnard and May, 2000)), programmable models that embed psychological knowledge in a 
computational model (e.g., PUMs (Young et al., 1989)), simplified cognitive models to “walk 
through” for design guidance (e.g., Norman’s model (Carroll and Rosson, 1992)), and carefully-
selected collections of concepts and terms for highlighting cognition-related design issues (e.g., 
Cognitive Dimensions (Green, 1989), Resources Model (Wright et al., 2000)). Success, so far, has 
been mixed. 
We propose to add to a different line of exploration. The point of departure begins with a realization 
about the role of cognitive modeling in HCI activities.  The realization is that the main reason for 
modeling cognition during design is to expose ways of modifying it to make it better.  This is a 
critical realization, but one whose implications for HCI do not seem to be fully realized yet.  
Most commonly, the purpose for cognitive modeling in HCI is assumed to be to predict or explain 
facets of human performance and behaviour.  Frequently the aim of such work is to expose usability 
problems.  These are goals suitable for tool evaluation, or for requirements analysis. Designers desire 
a different capability:  they want to go beyond merely being able to identify usability problems in 
existing tools—they want to use cognitive models to determine how to design new tools which 
improve cognition. Kirlik insightfully argued this point in terms of a contrast in problem spaces: 

A standard modeling approach in cognitive psychology is to hold a task environment relatively fixed and to create a 
description of the cognitive activities underlying a person’s behavior in that environment. The designer, on the other 
hand, is faced with the reverse challenge of creating an environment to elicit a desired behavior ... In problem 
solving terms, the solution space for the scientist is a set of plausible cognitive theories, whereas the solution space 
for the designer is a set of technologically feasible environments. We can thus characterize the scientist’s problem 
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as a search among possible cognitive “solutions” to a given task and the designer’s problem as a search among 
possible environments to obtain a given cognitive solution. (Kirlik, 1995, pg. 385-6) 

Designers indirectly reengineer cognition by engineering technological environments.   The main 
purpose of a cognitive model in this context is to say what should be reengineered, and how.  It must 
be able to suggest cognitive improvements without first having a design in hand. 
Once this role of cognitive models is realized, the question becomes:  what sort of modeling 
framework is appropriate for the job?  Our suggestion comes in two parts.  First, we suggest that 
primary content of the framework is a principled decomposition of design-relevant aspects of 
cognition.  More specifically, the decomposition should highlight how these aspects can be 
reengineered. With the framework, a designer can create an inventory of things to reengineer, and 
then reason about how to go about doing so. Second, we propose that the structure of the model 
should match the way that the cognitive aspects were decomposed.  This ensures that computational 
reengineering possibilities are made apparent. 
We propose HASTI as a modeling framework built according to the above recipe. HASTI is intended 
for “quick and dirty” cognitive reengineering analysis. The key proposal in HASTI is a five-fold 
decomposition of cognitive issues. These five “dimensions” of cognition are expected to help the 
designer catalog aspects of cognition to reengineer, realize reengineering possibilities, and trace the 
implications thereof. 
The following sections describe HASTI and its construction, and then outline how HASTI may be 
used in analyzing cognitive reengineering.  We show a scenario of applying this sort of analysis to 
software development tools. 
HASTI  

Plato is commonly cited as having said that science must “carve nature at its joints” so that the 
different parts can be modeled independently. Kirlik appreciated the implications in terms of carving 
up cognitive models useful for design: 

... the central problem that needs to be overcome to make the products of cognitive science more relevant to design 
is identifying a more productive set of dimensions along which modeling efforts can be decomposed. To support 
cognitive engineering, the decomposition must be derived from an overall framework capable of ensuring that the 
resulting research products can be reassembled into a coherent theory useful for design. (Kirlik, 1995, pg. 69) 

If Kirlik is correct, then the main outstanding problem to solve in cognitive modeling for design is not 
the classic concerns of model veridicality, completeness, or simplicity.  Rather it is finding a model 
decomposition structure that exposes design issues. To date, it has been hard to find good solutions to 
this problem (Green, 1990; Kirlik, 1995). 
HASTI is a cognitive model decomposition-and-integration framework.  HASTI identifies five 
different “dimensions” or “aspects” of cognition.  “HASTI” is an acronym created from the names of 
the model structures associated with the five aspects: (1) a Hardware model, (2) an Agent model, (3) a 
Specialization layering, (4) a Task or problem partitioning, and (5) an Interaction abstraction 
hierarchy.  These five modeling methods are summarized in Table 1.  They are briefly overviewed in 
the following subsections.  The description highlights the way each aspect is decomposed, and the 
modeling techniques used.  Further details appear in (Walenstein, 2002a). Since HASTI is meant for 
lightweight analysis, the emphasis will be on simplifying and idealizing the existing science base.  
Links to the underlying science base are made afterwards. 
 

 Cognition Aspect / Dimension Decomposition Model technique 

H invariant capabilities/constraints memory, processors Hardware model 

A goal-related behaviour agents, resources Agent model 

S specialization (adaptation) SRK taxonomy layering 

T task/problem 4-fold taxonomy partitioning 

I interaction virtual architectures layering 
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Table 1—Five dimensions of cognition, and the way they are modeled 

Hardware Model:  Invariant Cognitive Capabilities and Constraints 

Dimension & Decomposition. Humans uniformly possess cognitive capabilities and constraints 
which are independent of tasks, training, and environment. These are thus suitable candidates for 
modeling in a fixed model.  The universal cognitive capacities include processing and memory 
capacities.  Memory can be divided into long- and short-term memory.  Short-term memory is small 
and transient; long-term memory is capacious and permanent.  Processing is divided into high-level, 
low-level, and memory-based processing. High-level processing can be equated to deliberate 
reasoning. It is serial, effortful, and slow. Low-level processing corresponds to low-level perceptual 
abilities and learned skills. There are independent processors for each ability or skill.  They run in 
parallel, and are automatic and fast. Memory-based processing is also automatic. It relies heavily on 
pattern recognition and expertise to be able to recall and reuse solutions to problems. Thus it differs 
from both low-level cognition (largely independent of deep expertise) and high-level cognition (uses 
reasoning to deliver solutions). 
Model. The implementation is as a simple, labeled cognitive architecture diagram shown in Figure 1. 
Processing and memory types are implemented as computing elements, and their capacities and 
limitations are denoted. COGP is associated with cognitive processing, LLP with perceptual and skill 
processing, and MEMP with memory-based processing. STM and LTM indicate short-term and long-
term stores respectively. 
Agent Model: Behaviour Decomposition 

Aspect & Decomposition. Human cognition does not flit from moment to moment: it is characterized 
by episodes of coherent, purposive, goal-driven, semi-organized activity. This cognitive behaviour 
may be decomposed into locally-coherent goal-directed activities. This could be done at a relatively 
large granularity (reading, typing, writing, etc.) or at finer granularities (proposing an hypothesis, 
defining a variable, entering a command, looking up a function name, etc.).  Although these activities 
are often decomposable in this manner, the particular activities depend upon the user, task, and 
environment, so they cannot be specified in advance. The modeler must take a hand in defining these 
activities. 

Regardless of the decomposition of behaviour chosen, several situation-independent resources can 
be identified and categorized. These resources and their associated data values are summarized in 
Table 2.  The first resource is a problem definition. Human behaviour is commonly modeled as 
motion within a problem space. The structure of this space must be known in order to how to move 
within it. One needs to track ends (desired outcomes), operations (possible moves) and constraints 
(restrictions on moves). Agenda management is a way of juggling multiple goals during the search. 
Control management is a way of organizing action by making and following plans, i.e., action 
ordering structures. In addition, progress in the problem solving needs to be tracked, both the current 
solution state, and history of previous states (for backtracking, avoiding repetition, etc.). 

STM 
 

small,
fades 

COGP 

MEMP 

LLP 

slow, effortful, serial

fast, automatic 

fast, automatic, parallel 

LTM 

LLP LLP

Figure 1—Hardware model of invariant capabilities

Resource  Description of Role Resource Data Types 

Problem track problem/task and how to solve it ends, operations, constraints 

Agenda track goals to achieve goals 

Control structure action sequencing plans 

Progress track problem solving status current state history
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Model & Mapping. A schematic model is shown in Figure 2. The overall model borrows from the 
blackboard and agent modeling literature (e.g., (Craig, 1997)). Distinguishable coherent behaviours 
are identified with individual agents generating that behaviour. These agents are presumed to 
coordinate through the shared blackboard, and to interleave processing opportunistically. The various 
resources identified above are stored on distinct panels in the blackboard. The Agent model is mapped 
onto the Hardware model, that is, the Hardware model is seen to “run” the “software” of the Agent 
model. Agents map down onto COGP, LLP, and MEMP, and blackboard panels map down onto STM 
and LTM. This mapping is shown in Figure 3.  When multiple agents map onto the COGP, they are 
interleaved (i.e., the user seems to opportunistically switch between activities).  The Hardware model 
in this diagram has been simplified to the point of only naming the relevant architectural modules. 

The analyst is allowed considerable leeway in interpreting cognition in Agent terms. For instance it 
is relatively easy to view the software comprehension model of (von Mayrhauser and Vans, 1995) as a 
variant of such an agent model. Their model integrates three prior models of program comprehension 
by proposing that three different comprehension processes (top-down, bottom-up, bottom-
up/systematic) take turns building knowledge in a shared knowledge base.  This can be cast into the 
Agent model by portraying the three processing components as separate agents, and modeling the 
knowledge base as being stored in the problem state panel. 

Specialization Hierarchy and Its Stratification 

Aspect & Decomposition. Human cognition is frequently specialized or adapted to particular tasks 
and environments. Rasmussen proposed the “SRK” taxonomy to distinguish three categories of 
behaviour resulting from these differences in adaptation levels (Rasmussen, 1983). The three 
behaviour categories are called “skill-based”, “rule-based” and “knowledge-based”. Skill-based 
behaviour is automatic, quick, and subjectively easy. It involves the use of highly-adapted perception 
and action skills. Rule-based behaviour is also automatic, fast, and easy. It involves deep expertise 
and can be done without deep reasoning. Knowledge-based behaviour is slow and serial and normally 
requires conscious mental effort.  
Mapping. The SRK taxonomy can be mapped by imposing structure on the Agent model and its 
mapping to the Hardware model. First, the S, R, and K, behaviours can be seen to impose layers or 
strata on the agents of the Agent model. Agents are modeled as existing on one specific layer. For 
instance, recognizing familiar programming idioms (Brooks, 1983) might reasonably be said to exist 
solely on the R level (the recognition act is fluid and not introspectable). The SRK decomposition 
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agent agent agent agent 

Figure 2—The Agent model.
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Figure 3—Agent model mapping, stratification and partitioning 
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refines the mapping of the Agent model to the Hardware model. Specifically, the S, R, and K agents 
are mapped down onto LLP, MEMP, and COGP processors respectively. This mapping is illustrated 
in Figure 3. The mapping allows one to trace the agent level to the properties of processing on that 
level.  So, for instance, if an idiom-matching agent is modeled on the R level, it implies the user calls 
on deep expertise to rapidly recognize the idiom and its implications.  
Task Taxonomy and Its Partitioning 

Aspect & Decomposition. The notion of a problem space is powerful, but it is often worthwhile 
decomposing this into independent sub-spaces. The trick is to derive a suitable typology of sub-
problems, or task types. Currently four task types are considered by HASTI: 

• Domain: related directly to work activities 
• Device: related to operating the device (i.e., computer) 
• Coping: work done to avoid limitations/contingencies 
• Cooperation:  work done to coordinate in shared work 

The aim of this task taxonomy is to allow the analyst to slice up the overall problem space into these 
subspaces so that they can be associated with design issues. For instance, an analyst might model 
writing code as a domain task, invoking actions in a programmer’s editor as a device task, writing 
down a reminder to implement a function as a coping task, and checking in code to a repository as a 
cooperation task. Each of these classifications brings a host of related design issues to the fore. 
Mapping. Because agents in the Agent model are responsible for performing various tasks, they can 
be typed or stratified accordingly. Since the SRK taxonomy decomposes behaviour in an orthogonal 
way, this can be implemented as orthogonal layering on the agents. For instance a skilled agent that 
can define a program function in a text editor can be assigned to the intersection of the S and device 
layers; the idiom recognizer could be classified as existing on the domain layer. This stratification is 
illustrated in Figure 3.  The two agent orthogonalities generate a grid to classify the agents.  An 
agent’s classification can thus be referred to in their coordinate position (e.g., the idiom recognizer 
would exist in (knowledge, domain)). 
Interaction Abstractions and Virtual Architectures 

Aspect & Decomposition. Interactions between human and computer can be analyzed at various 
levels (e.g., see (Moran, 1981)). One might, for example, differentiate between low-level device 
interactions and higher-level device actions. For instance, interactions with a notepad may be 
analyzed in terms of keystrokes and mouse motions, in terms of device actions such as loading and 
saving, or at a cognitive level in terms of saving and recalling knowledge from an external memory 
(see e.g., (Flor and Hutchins, 1991) for such an analysis in programming). Activities on the cognitive 
level are implemented or simulated at the device interaction level. This induces a simulation hierarchy 
on the interactions.   HASTI currently defines two simulation levels:  simulating a virtual memory and 
simulating a shared-memory computer.  These are described below. 
Model & Mapping. Cognitive level interactions can be modeled using a standard trick in computing 
science: a virtual architecture. A virtual architecture is much like a regular cognitive architecture, but 
it is simulated by other hardware. Using this concept allows the cognitive models to encapsulate 
device-level interactions by mapping the Agent model onto a virtual architecture instead of directly 
onto the Hardware model.  A virtual memory architecture (Card et. al., 1986) can be used to 
encapsulate external memory use.  Then, memory actions like load and store are simulated by the 
user.  Such a model allows analysts to consider the Agent’s blackboard as residing partially on the 
shared memory.  A simple extension is a shared memory parallel processing architecture which 
allows the analyst to consider the agents in the Agent model as being located either in the human’s 
head or on a computer. 
Reasoning about Reengineering Cognition with HASTI 

HASTI is proposed as a lightweight modeling framework that highlights possibilities for 
reengineering cognition.  This ability relies on the framework’s computational model structure.  If we 
follow Plato’s carving metaphor, then a good decomposition framework should identify joints. Joints 
correspond to degrees of freedom, that is, places where motion or rotation can occur. 
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This metaphor leads us to the crux of HASTI:  providing an articulated model to “play with” during 
design reasoning.  The metaphor is that design reasoning corresponds to exploring ways of “rotating” 
a HASTI model along one of its joints.  Each such rotation identifies a class of design moves.  An 
analogy might be made to playing a Rubik’s cube game:  the cube can be rotated to explore the 
solution space. In an analogous way, the would-be cognitive engineer would seek to explore changes 
to a HASTI model in order to discover or reason about potential cognitive arrangements.  This is 
precisely what Kirlik suggests that designers do—search the solution space of cognitive arrangements. 
What are the “joints” of HASTI? Since HASTI is a computational model, cognitive reengineering 
corresponds precisely to computational reengineering.  Computational reengineering may be defined 
as reorganizing the structure of a computational system without changing its essential function 
(Chikofsky and Cross, 1990). Thus the ways of improving cognition can be identified with different 
computational reengineerings of HASTI.  With a HASTI model and a list of computational 
reengineerings, the designer may explore various reengineerings of cognition. 
In conjunction with HASTI, we have been developing a list of orthogonal reengineerings called 
RODS (Walenstein, 2002a).  The full details are outside the scope of this paper.  However, two 
relevant cognitive reengineering principles identified by RODS can be briefly described: (1) 
distributing cognition onto artifacts (e.g., Zhang and Norman, 1994), and (2) designing 
representations that allow more specialized processing (skill, rule) to substitute for less specialized 
processing (rule, knowledge) (e.g., Rasmussen, 1983; Casner, 1991).  We call these “distribution” and 
“specialization” transformations. Both transformations identify potential improvements to cognition. 
To apply RODS to HASTI, the analyst first defines an Agent model of how users perform their tasks. 
Then the model can be inspected for opportunities for distribution and specialization transformations.  
Distribution moves agents or resources onto tools.  The list of generic resource data types provide a 
list of common distributions (e.g., goal offloading, plan offloading, etc.).  The agents direct attention 
to potential task-specific processing distributions.  The agents also can highlight possibilities for 
specializing the processing.  Any of these transformations can add or move agents between the four 
task types (domain, device, etc.). 
We have performed several such analyses of software development environments, and have found the 
analyses to be useful.  We have reconstructed key design rationales for two reverse engineering tools 
(Walenstein, 2002b), and have analyzed program error tracking support in a commercial software 
development environment (Walenstein, 2002a). Although these have been relatively complicated, a 
simple imaginary design scenario can be used to convey the essential nature of the analysis. 
Scenario.  Lorena is trying to support the task of fixing a syntactically invalid program.  She models 
the fixing process using two agents, “search” (look for a syntax error), and “repair” (fix the error). She 
plots these in (knowledge, domain) since the user must deliberately reason about the errors. She 
decides to model the human and computer as agents sharing a blackboard (i.e., the computer display).  
She then considers distributing “search” onto the tool (e.g., a compiler).  She then reasons that 
“search” needs to communicate the results to “repair”.  Lorena reasons that this can be as a plan of 
repairs (i.e., an error list).  Now “repair” must coordinate by following the plan.  She draws a “current 
plan item” in the Progress panel, a “get next” agent in (knowledge, coordination), and renames 
“repair” to “repair current plan item”.  She then realizes that “current plan item” could be forgotten 
because it is stored in STM, so she reasons about how to externalize it (e.g., keeping a “current error” 
pointer in the interface).  Once externalized, the “get next” can be moved into (skill, coordination) if a 
simple “next error” action is made available.  Next, she turns attention to “repair current plan item”.  
She cannot figure out a way to distribute it, but she tries to figure out a way of moving it onto a lower 
specialization level.  She decides that at least the sub-task of realizing what the current plan item is 
might be lowered.  She reasons this could be done by coding the “current error” item in a different 
colour.  This would allow visual search to replace effortful search. 
The resulting analysis aligns with sequential error tracking features common to modern compilation 
environments.  The point here, though, is not the result, but the account of how various design options 
can be cued by examining the evolving cognitive model for distribution and specialization 
opportunities. HASTI helps by relating tasks and cognitive resources to reengineering issues.  For 
instance, once Lorena decides to plot a “repair” agent, issues of coordination, adaptation level, 
distribution and specialization possibilities are brought up by the way the model is structured.  The 
analysis in the scenario above borrows from analysis frameworks such as the Resources model 
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(Wright et al., 2000) and Casner’s perceptual substitution analysis (Casner, 1991).  HASTI’s model 
integration, however it permits smooth transition between reasoning about the various reengineerings. 
Relating HASTI to Other Resources 

For many types of design, a HASTI analysis may not be enough. However HASTI was built as 
simplifications of other theories and resources. These or other resources could be used to iteratively 
deepen a HASTI analysis. Table 4 shows a list of some of the theoretical resources that HASTI was 
built from. Future work involves expanding this list, and making it easier to transition to the more 
detailed techniques. 

Table 4 also identifies some of the prior work closely related to the various parts of HASTI. 
Besides these specific points of contact, many works have tried to integrate cognitive theories (e.g., 
(Newell, 1990). Most of these, however, are not aimed at broad-brush, design-oriented theories 
(although see (Green, 1990)). Several researchers have also pursued the issue of decomposition of 
cognitive issues (e.g., (Rasmussen, 1983), (Green, 1989), (Green, 1990), (Kirlik, 1995)), however to 
the best of our knowledge, comprehensive integrations like HASTI are absent. In addition there are 
various other attempts at making designer-oriented theory representations (e.g., (Barnard and May, 
2000), (Blackwell et al., 2001)), however we know of none that effectively help highlight how 
cognition may be helpfully rearranged. 

 

Hardware (Kieras and Meyer, 1997), (Newell, 1990) 

Agent (Wright et al., 2000), (Howes, 1995), (Craig, 1997) 

Specialization (Rasmussen, 1983), (Casner, 1991) 

Task (Moran, 1981), (Freed and Shafto, 1997), (Baecker et al., 1993)  

Interaction (Card and Moran, 1986), (Flor and Hutchins, 1991)  

Table 4 — major building blocks of HASTI 

Conclusions 

Computer tools are designed daily with little help from the thousands of cognitive science results that 
lie waiting. As Vicente laments: 

There are many theories and models that are potentially relevant to systems design ... [but] it is not at all obvious how 
to identify the knowledge relevant to any one design problem and then package this knowledge into a form that makes 
the practical implications for systems design more obvious. (Vicente, 1999) 

We have proposed HASTI as a simplified integration framework for many existing models. Vicente’s 
concern for making “practical implications for system design more obvious” resonates with HASTI’s 
construction philosophy. HASTI provides a model structure that can be inspected for cognitive 
rearrangements, thereby generating design implications. 
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