In M. Petre & D. Budgen (Eds) Proc. Joint Conf. EASE & PPIG 2003

Pages 319-324

Little Languages for Little Robots

Matthew C. Jadud, Brooke N. Chenoweth, Jacob Schleter

ABSTRACT

With serendipity as our muse, we have created tools that
allow students to author languages of their own design for
robots of their own construction. In developing a Scheme
compiler for the LEGO Mindstorm we realized that there
is great educational potential in the design and creation
of new languages for small robotics kits. As a side effect
of bringing Scheme and the Mindstorm together in a cre-
ative context, we have begun an exploration of teaching
language design that is fundamentally different from the
treatment of the subject in traditional literature.

1. INTRODUCTION

Jacob Schleter, a rising senior at Gibson, Fort Branch, In-
diana, took part in the Indiana University College of Arts
and Sciences Summer Research Experience for six weeks
during the summer of 2002. He was interested in program-
ming and robotics, and ended up joining the continuing
effort in working with Scorth, our Scheme compiler for the
LEGO Mindstorm. Jacob’s efforts resulted in the creation
of Jackll, a new programming language for the Mindstorm
intended to be suitable for beginner programmers.!

This summer experience is particularly interesting to us,
as we applied Scheme in an educational context where
it was used to create languages as opposed to analyzing
them. Typical applications of Scheme build up to using
it as a tool for exploring the interpretation and compi-
lation of programming languages.[1] In moving from an
analytical to a synthetic task—from language interpreta-
tion to language creation—we have opened a whole new
realm of possibilities. We believe there is great value in
exploring the application of our Scheme compiler to the
LEGO Mindstorm in constructionist contexts—contexts
where students learn by building personally meaningful
artifacts in the world.

1JACKLL: Jacob’s Killer Little Language

15th Workshop of the Psychology of Programming Interest Group, Keele UK, April 2003

2. JACKLL: A NEW LANGUAGE

In building up to the evolution of Jackll and the philoso-
phies its creation embodies, we feel it is appropriate to
first introduce the LEGO Mindstorm, the target for our
Scheme compiler, and situate Jackll with respect to other
languages intended for beginner programmers.

2.1 Whatis the LEGO Mindstorm?

The LEGO Mindstorm Robotics Invention System is a
commercial product from the LEGO Group that provides
an inexpensive, reconfigurable platform for exploring robotics.
It comes standard with two motors, two touch sensors, one
light sensor, and hundreds of pieces for assembling all sorts
of creations. The Mindstorm is currently programmable
in a variety of languages, although in most cases these are
incomplete languages limited in power and expressivity.
A notable exception to this rule is pbForth, a complete
ANSI Forth for the LEGO Mindstorm, which we used as
the target for our Scheme implementation.

2.2 Whatis Scorth?

The continuing evolution of Introduction to LEGO Robotics,
a non-majors course in the Computer Science Department
at Indiana University, led us to develop Scorth, a Scheme
compiler for the LEGO Mindstorm.? Scorth’s creation was
intended to support the use of How to Design Programs
in the classroom; instead, our first serious application of
Scorth was to the task of creating Jackll.

Brooke Chenoweth is responsible for large parts of Scorth,
which handles a subset of the Scheme programming lan-
gauge. While Scorth does not (currently) compile di-
rectly to hardware, it does cross-compile to Forth, and
produces code executable by pbForth, an excellent Forth
implementation for the Mindstorm by Ralph Hempel.[9]
Currently, we are extending the compiler to provide sup-
port for call/cc (continuations) and garbage collection;
when complete, Scorth will provide a reasonably complete
Scheme for the LEGO Mindstorm.

2Scorth: Scheme—Forth

WWW.ppig.org



2.3 A Language Suitable for Beginners?
Being relatively new to programming, Jacob wanted Jackll
to be easy for beginners to use. To this end, we decided
that every Jackll program should have a visual represen-
tation as well as a textual representation. The visual rep-
resentation allows programmers to sketch pictures of the
program when discussing it with others (or perhaps some-
day build a visual programming tool), while the textual
representation provides a concise way of writing programs
in Jackll for the Mindstorm. Our visual representation
ended up being based largely on state machines.

Our discussions regarding beginner languages were in keep-
ing with the literature, despite “what makes a language
suitable for beginners?” being a live and open question
for more than 25 years. Lecarme discussed the considera-
tions employed in choosing to use Pascal in a first course
in 1973; reasons for the use of Pascal in the classroom
included the facts that:

A good, fast compiler (written in Pascal) was avail-
able, both short and maintainable on-site,

The language is clean and consistent,

Pascal naturally avoided the use of gotos, and

The language “does not assume its users to be stupid.”

Reasons against choosing Pascal included:

e [t is not broadly used,
e “It is not (yet) broadly known,”

e [t does not provide many “powerful tools” in other
languages, and

e It does not allow for dynamic allocation of mem-
ory.[14]

These considerations can be categorized (roughly) as in-
volving tools, consistency, acceptance, expressivity,
and power. Kolling, et al. expressed many of the same
sentiments 23 years later in building up a series of ar-
guments for the BlueJ programming environment, now a
widely used tool for introducing Java in a relatively con-
sistent, objects-first approach.[11] After discussing these
sorts of issues, we opted to keep Jackll simple, sacrificing
expressive power at times in favor of consistency of syntax
and execution.

Visual representations of code show up in the literature as
well; Cunniff, Taylor, and Black developed a flowchart-like
representation of Pascal running on terminals connected
to a VAX 780. They provided an environment that al-
lowed students to create compilable flowcharts, making
explicit the control-flow structure of students’ code and
effectively eliminating syntax errors.[4] ROBOLAB, a pro-
gramming environment available for the Mindstorm, simi-
larly provides an iconographic, flowchart interface for pro-
gramming.[5] BlueJ takes visual representation of code a

Sensors
+
®

1

Polarity

~o —~ao =

Figure 1: A simple Braitenberg vehicle.

step further, and provides students with multiple repre-
sentations of their code. They provide a visual formal-
ism (UML) at the object level, and also the full source fo
their program; both remain in sync regardless of which is
edited.[12] While we were not able to write a visual editor
for our language in the short few weeks available, we were
able to compile our code to dot, and produce graphical
representations of our code from the same source that pro-
duced an executable.®> This allowed us to go from sketch
to code to image, comparing the initial drawings with the
automatically generated diagrams for consistency.

2.4 The Evolution of Jackll

Jackll’s visual notation is based on the common directed
graph notation of state machines; we use circles for states,

and arrows to indicate the transitions between states. Jackll’s

design began with a discussion of string-accepting finite-
state automata; we then expanded on the notion of what
an FSA could do by exploring behaviors common to pro-
grams for the LEGO Mindstorm: controlling motors, read-
ing sensor values, etc.

To provide “test cases” for our new language, we explored
the work of Valentino Braitenberg, and used his Vehicles
as the motivation for our first programs.[3] We believed
that if we could draw simple state machines (machines
with a small number of nodes) that expressed the behavior
of Braitenberg’s first few vehicles, then we would accept
that as a step towards having a language suitable for the
LEGO Mindstorm. Our goal was to keep the language
simple, and hence we began with what we believed to be a
small, core functionality set that could grow as necessary.

Braitenberg Vehicles are characterized by a simple sensor
and motor configuration (Figure 1). Each sensor is wired
either with a positive influence on a given motor (an in-
crease of stuff sensed increases the speed of the motor),
or a negative influence (less stuff means less speed). Each
Braitenberg Vehicle has an anthropomorphic name based

3Part of the AT&T Research Labs Graphviz library;
http://www.research.att.com/sw/tools/graphviz/




start-with
ALWAYS

set LH

mator spd

ALWAYS

Figure 2: The Coward in Jackll’s visual syntax.

on the emotion it exemplifies; we thought the Coward was
an interesting Vehicle, and used it as the basis for many
of our test cases. Cowards are afraid of stuff, which in
our case is light. Our Cowards had two light sensors, each
wired to its respective motor with a positive influence; if
more light is detected on one side, the Coward should ac-
celerate on that side, thus steering away from the light
source.

Jacob’s first state machines for the Coward were, in hind-
sight, huge. With more than twenty states in the machine,
it was difficult to tell what the program would actually do
when executed. We agreed that this first program was
not simple, but liked what we had so far: the nodes con-
tained things the robot should do (like changing motor
speed), and the arrows had conditions for moving between
nodes (by checking light levels reported by the sensors).
We discussed ways that we could improve this in general
terms; eventually we solved the problem in two nodes,
which seemed appropriate for the complexity of the Cow-
ard (Figure 2).

This was an exciting process; we worked as a language
design team, and it was fun to try and find ways to sim-
plify the language. Some truly excellent discussion came
from attempting to develop a textual representation of the
diagrams. Jacob took the lead and made a first attempt
at representing the state diagrams in a ‘Schemely’ way
(meaning an s-expression based prefix notation), because
none of us really knew how the final language would look.
Jacob’s first syntax deviated somewhat from the notion
of a prefix language, and depended heavily on naming; so
much so, that we discovered it broke horribly with simple
code omissions on the part of the programmer.

Despite the different backgrounds and levels of ability in
our group, we had some excellent debates on the nam-
ing, structure, and the dynamics of Jackll. The collab-
orative evolution that led to a final textual syntax for
Jackll (Figure 3) took place with the understanding that
no idea could be challenged without justification, and no
feature kept without defense. This dialogue was unlike
most anything any of us had encountered in educational
contexts before—the “student” had transitioned from be-
ing a learner to head language designer and peer.

(start-with LEFT)

(state LEFT
(do (set-LH-motor-speed)
(then-look-for
[ALWAYS RGHT])))

(state RGHT
(do (set-RH-motor-speed)
(then-look-for
[ALWAYS LEFT])))

Figure 3: The Coward in Jackll’s textual syntax.

3. DUELING PHILOSOPHIES

Jackll provided an example of the kinds of interactions
that are possible when students have high expectations
placed upon them with the support and freedom to meet
and exceed those expectations. Scheme was particularly
appropriate for the task of creating languages for little
robots, but the beliefs and attitudes typically brought into
the introductory classroom when teaching with Scheme
are not. This is not immediately obvious; the following
sections expose some of the more subtle tensions at work
in combining Scheme and the LEGO Mindstorm.

3.1 Where we are coming from

We feel there is much to be learned from the construction-
istic pedagogies and theories employed in the design and
construction of the Mindstorm, a toy to think with.[18]
Papert, Resnick, Martin, et. al. have long made the
point that manipulatives like the LEGO do not force a
particular style of learning on the student, but instead
provide the student with the opportunity to play and ex-
plore dynamic systems in ways natural to them as individ-
uals. We believe that constructionism—the theory that
we construct new knowledge best by building personally
significant artifacts—exemplifies the kinds of learning that
took place in the design and creation of Jackll.[15]

The creation of Scorth grew out of a perceived need in In-
troduction to LEGO Robotics (ItLR) to tie Scheme more
tightly to the LEGO Mindstorm. Matthew had been de-
veloping this course over the previous two years, in con-
junction with the TeamStorms theory of instruction.[19].*
TeamStorms provided a theoretical framework for devel-
oping introductory computing instruction using manipu-
latives like the LEGO Mindstorm. In keeping with the
methodologies promoted by this theory of instruction, in-
structional values critical to the course were shared and
discussed with the students in ItLR:

4A theory of instruction provides a philosophical ground-
ing for instructors, indicating the values that must be im-
plicit and explicit in a given classroom setting, as well as
defining methods for dealing with instructional situations
likely to arise in the classroom.[17]



Active responsibility for learning on the part of par-
ticipants

e Focus on process as well as product

Exploration and discovery in learning

e Peer—peer interactions in learning

Authentic, or real-world, learning situations
e Fun

Reflective discussion at the end of the spring 2002 term
indicated that students felt a conflict between the notion
of having fun in class and getting real work done. This
was evident in attempting to integrate How to Design
Programs into Introduction to LEGO Robotics. Over the
course of several semesters, the dialogue invariably went
like this:

Matthew: We’ll be discussing design principles and prob-
lem solving while working with LEGO and Scheme
this semester!

Student: Can we program the LEGO in Scheme?
Matthew: Erm...no.
Student: Oh. Why bother then?

An instructor’s first instinct may be to dismiss this kind
of response, but students are often more perceptive than
we give them credit for. Sometimes, when moaning about
how awful lecture is, students really mean the lecture is
awful. Because of our experience in developing Jackll, we
came to realize that the students in I[tLR were not com-
plaining about Scheme per se, but instead they were com-
plaining about the philosophical conflict inherent in the
approach used by How to Design Programs and the ways
they worked most naturally with the LEGO.

3.2 LEGO and Scheme in the Wild
3.2.1 The Mindstorm in the Wild

In extreme contrast to our work we might situate the ef-
forts of Barry Fagin et. al. at the Air Force Academy.[6, 7]
Fagin’s work is direct, almost drill-and-practice in its ap-
plication of the Mindstorm to the computer science class-
room. Attempting to apply TeamStorms in this setting
might be exciting or (more likely) disastrous for instructor
and student alike; the students at the Air Force Academy
“do not suffer fools.”® There is no judgment implied
here—Fagin is addressing the fact that students at the
Air Force Academy have so much to do, in so little time
(and on so little sleep) that having an hour where they are
asked to “just be creative” might represent a serious mis-
match of student expectations and instructional values.

Much of the computer science education literature de-
scribes applications of the Mindstorm to learning contexts
that fall somewhere between Fagin’s highly constrained

SBarry Fagin, personal conversation, 2000

usage and our own. Typically, the LEGO is employed
in an attempt to teach students a particular language or
content area. Barnes discusses the suitablility of using
the LEGO in an introductory Java curriculum; his work
is less a discussion of the suitability of LEGO robotics
in CS1, and more a discussion of the expressivity of the
Java-esque languages available for the Mindstorm.[2] Ku-
mar and Meeden (at Bryn Mawr and Swarthmore, re-
spectively) as well as Klassner (Villanova) have all exam-
ined bringing robots into the Artificial Intelligence curricu-
lum.[13, 10] Our work will likely be of interest to Klass-
ner, as his efforts would be aided by the existence of a
full LISP for the Mindstorm. The spirit of our work is
probably most like that of Turbak and Berg at Wellesley
College, where the LEGO Mindstorm is being applied in
a liberal arts context in an attempt to broaden introduc-
tory students’ horizons regarding the fundamental nature
of engineering.[20]

3.2.2 Scheme in the Wild

Scorth grew from the desire to bring Scheme to the Mind-
storm, easing the integration of the new text How to De-
sign Programs into the Introduction to LEGO Robotics
classroom.[8] The most striking feature of this text is its
pedagogic focus on the use of design recipes. These ‘design
recipes’ define both how students should structure their
code and (more importantly for our discussion) how stu-
dents should structure their thinking about programming.
Quoting from their preface,

... We have ... developed design guidelines that
lead students from a problem statement to a
computational solution in step-by-step fashion
with well-defined intermediate products.

In contrast, Papert and Turkle found that creative stu-
dents at MIT and Harvard who could not conform to sim-
ilar rigid problem solving methodologies in programming
classrooms typically became disenfranchised and discour-
aged from the educational process.[21] Students in [tLR
expressed their displeasure with using Scheme in contrast
to their writing about, building with, and programming
the LEGO Mindstorm. We feel this is an example of the
same kind of discouragement that Papert and Turkle dis-
cussed more than a decade ago—which is fitting, as the
How to Design Programs design recipe is largely a restate-
ment of pedagogical assertions that have been around for
over twenty years.[16] While it does provide structure for
students and instructors to lean on, the How to Design
Programs approach does not address the motivational, cre-
ative, humanistic, and affective aspects of the classroom
setting.

4. FUTURE WORK

Why does the creation of little languages for little robots
interest us? Consider a small piece of the whiteboard
we captured on film from this summer (Figure 4). We
had been working hard at developing a textual syntax for
Jackll, and had recently discovered a large problem with
one of Jacob’s early attempts. After a brief respite from



Figure 4: The last word on Jackll.

debate and a few days to think, Jacob devised a new syn-
tax based (roughly) on earlier attempts, taking into con-
sideration recent discussion. This note on the whiteboard
accompanied his final design.

We cannot understate the pride felt by all in the process of
designing a new language for the Mindstorm—and we can
safely say that Jacob had every right to put his name on
Jackll. By engaging in the creative process, the student—
mentor relationship faded away, and we were all debating
our ideas based on their merit, nothing more. We intend
to continue this work in several ways: first, to create ad-
ditional tools to aid students in implementing their own
languages; second, to research the nature of the learn-
ing taking place when engaging in the creative process
with such tools; and last, to continue working at integrat-
ing constructivist and exploratory ideals into introductory
computing contexts.

5. REFERENCES

[1] H. Abelson and G. Sussman. Structure and
Interpretation of Computer Programs. MIT Press,
Cambridge, Mass., USA, 1985.

[2] David J. Barnes. Teaching introductory java
through lego mindstorms models. In Proceedings of
the 83rd SIGCSE technical symposium on Computer
science education, pages 147-151. ACM Press, 2002.

[3] Valentino Braitenberg. Vehicles: Experiments in
Synthetic Psychology. MIT Press, 1984.

[4] N. Cunniff, R. P. Taylor, and J. B. Black. Does
programming language affect the type of conceptual
bugs in beginners’ programs? a comparison of fpl
and pascal. In Conference proceedings on Human
factors in computing systems, pages 175-182. ACM
Press, 1986.

[5] Martha N. Cyr. ROBOLAB: Teacher’s Guide for
ROBOLAB Software. Tufts University, 1998.

[6] Barry Fagin. Using ada-based robotics to teach
computer science. In Proceedings of the 5th annual
SIGCSE/SIGCUE ITiCSEconference on Innovation
and technology in computer science education, pages
148-151. ACM Press, 2000.

[7] Barry S. Fagin, Laurence D. Merkle, and

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

Thomas W. Eggers. Teaching computer science with
robotics using ada/mindstorms 2.0. In Proceedings
of the annual conference on ACM SIGAda annual
international conference (SIGAda 2001), pages
73-78. ACM Press, 2001.

Matthias Felleisen, Robert Findler, Matthew Flatt,
and Shriram Krishnamurthi. How to Design
Programs: an introduction to programming and
computing. MIT Press, 2001.

Ralph Hempel. pbforth. Available from

http://www.hempeldesigngroup.com/lego/pbFORTH/,

November 2002.

Frank Klassner. A case study of lego mindstorms’
suitability for artificial intelligence and robotics
courses at the college level. In Proceedings of the
83rd SIGCSE technical symposium on Computer
science education, pages 8-12. ACM Press, 2002.
Michael Kolling and John Rosenberg. Blue: a
language for teaching object-oriented programming.
In Proceedings of the twenty-seventh SIGCSE
technical symposium on Computer science education,
pages 190-194. ACM Press, 1996.

Michael Kolling and John Rosenberg. Guidelines for
teaching object orientation with java. In Proceedings
of the 6th annual conference on Innovation and
technology in computer science education, pages
33-36. ACM Press, 2001.

Deepak Kumar and Lisa Meeden. A robot
laboratory for teaching artificial intelligence. In
Proceedings of the twenty-ninth SIGCSE technical
symposium on Computer science education, pages
341-344. ACM Press, 1998.

O. Lecarme. What programming language should we
use for teaching programming. In W.M. Turski,
editor, Programming Teaching Techniques, pages
61-74. North-Holland Publishing Company, 1973.

S. Papert. The Children’s Machine: Rethinking
School in the Age of the Computer. Basic Books,
New York, NY, 1993.

Bryan Ratcliff. Algol 68 and structured
programming for learner-programmers. In
Proceedings of the Strathclyde ALGOL 68
conference, pages 157-160, 1977.

Charles M. Reigeluth, editor. Instructional-Design
Theories and Models, volume 2. Lawrence Erlbaum
Associates, Inc., Mahwah, NJ, 1999.

Mitchel Resnick. Behavior construction kits.
Communications of the ACM, 36(7):64-71, 1993.
Tan C. Schwab. All Things LEGO as a theory of
instruction. In Anonymizing Bibliographies Even!
IEEE, 1812.

Franklyn Turbak and Robert Berg. Robotic design
studio: Exploring the big ideas of engineering in a
liberal arts environment (extended abstract). In
Proc. of the AAAI Spring Symposium on Robotics in
FEducation, 2001.

S. Turkle and S. Papert. Epistemological pluralism
and the revaluation of the concrete. In I. Harel and
S. Papert, editors, Constructionism, pages 161-192.
Ablex, Norwood, NJ, 1991.





