In M. Petre & D. Budgen (Eds) Proc. Joint Conf. EASE & PPIG 2003 Pages 436-452

Does the Empirical Evidence Support
Software Visualisation ?

Pamela O’Shea
Chris Exten

Seftware Visualisatien and Cegnitien Research Greup
Department of Cemputer Science and Infermatien Systems,
University of Limerick,

Ireland

pamela.eshea®ul.ie
chris.exten®ul.ie

15th Workshop of the Psychology of Programming Interest Group, Keele UK. April 2003 WWW.ppig.org

Abstract

Previeus experiments and empirical studies in the seftware cem-
prehensien field have been criticised by skeptics, fer example [Sheil
1981]. Altheugh it has seen twenty-twe years since his publicatien,
many issues still need te e addressed te this day. We are left with
ne definitive catalegue of preef that either cenfirms or denies the use-
fulness of Seftware Visualisatien in the field ef seftware engineering.
This paper will discuss seme empirical studies and experiments frem
the past, in erder te present future researchers and evaluaters of Seft-
ware Visualisatien teels with a guideline as te hew we can learn frem
beth the geed and bad traits ef past experiences.

1 Introduction

In the foreword of 'Stasko, Domingue, Brown, Price 1998], a common goal
for all tymes of visualisations is identificd as “trensforming informaeiion inio
¢ meeningful, useful visual representation from which ¢ humen observer cen
gein understending.” It is this understanding that must sc proven through
cmpirical studics. Many means for testing understanding and comprehension
have seen developed in the software comprehension ficld and examples of
these can e seen in the surveyed cxperiments.

Understanding stems from onc’s own personal meniel model The pro-
grammers’ meniel model is defincd by "Von Mayrhauser 1995] as & currend
internel (working) represeniation of the softwere under consideretion. Von
Mayrhauser discusses Both the static and dynamic clements of a mental
model. A mental model can even be gencrated from text bascd debugging
tools, for cxample, as a programmer ecomes more familiar with the code
and segins to chunk groups of code together '‘Bochm-Davis et al 1987] etc.
SV tools should provide many views to support its wide audicnce of users,
these views can be defined through the olscrvations of software engineering
practices in empirical studics.

According to 'Stasko, Domingue, Brown, Price 1998], this understanding
can bc aidcd oy SV, where Softwere Visusalisaiion is defined as “the use
of the crefis of typogrephy, srephic design, enimeiion, end cinemelogrephy
with modern humen-compuier inierection end compuler grephics technology
to fecilitaic oth the humen undersiending and cffective use of computer soft-
were”.

It is then reasonable to state that any research (in this case SV), which
aims to reduce this cognitive load and reduce time spent understanding code
during softwarc maintenance, is a worthwhile cndcavour. Many studics al-
rcady suggest and some even conclude that SV is helping in such a way.
However, there is still a greater necd for more studics to ®e carried out on
larger groups of programmers in industry. This and many other issues will
B¢ discussed throughout the paper.

Programmers in industry nced to B¢ given scrious input into the require-
ments phase of these SV tools, afterall they are going to ke the people using
these tools in an effort to reduce their cognitive load. It will se their mental
models that must e taken into account as well as their schaviours, such
data cannot rcalistically se gathered in the lak, it must ke obscrved “in the
weld” as it were. It should e noted that no matter how unoktrusive an ex-
perimenter trics to make the experiment, it will always e a deviation from
their normal working environment and this must ke taken into consideration.
While it might e an excellent idea to have the participant ask questions of
the experimenter in order to gain an understanding of the system, as they
would with work colleagues, it is not usual for ones’ collcegue to e a stranger
or even take notes!

Having said this, the idcal is not always rcadily realised in the real-world.
For example, it is quite owvious that there is a greater need for experiments

to incorporate greater sample sizes, wut this is a difficult recommendation to
realise. Firstly there is the problem of recruiting susy professional program-
mers, and sccondly, there is so much data to analyse, cspecially using Telk-
Aloud protocols as was done in [Pennington 1987] and [Storey et al 1998].

Softwere Visuelisaiion in terms of this paper is discusscd in Section 2
since it tends to e a broad category and requires further refinement for the
remaining discussion.

Section 3, presents a short sclection of some cmpirical studics. Each
study is discusscd in comparison to the others, oth good and sad traits arc
highlighted. The main theme is what we can learn from previous research
in order to cmpirically evaluate future Software Visualisation tools. Some
very noteworthy moints have seen recorded in previous studics and should
bc kept in mind for the future. The studics were chosen to cover a range of
participant cxperience. For example in "Pennington 1987), forthy professional
programmers were uscd, this differs from the mixed study carricd out sy
'‘Bochm-Davis ¢t al 1987], where the participants were cighteen professional
and cighteen novice programmers.

Section 4, deals with future issucs and discusses the factors that have
bcen learnt through the survey of cxperiments. Issues such as sample sizes,
training time, measurcment of spatial aptitude arc discussed as well as other
features.

2 Software Visualisation Overview

SV depends upon the rescarch carricd out in the Software Comprehension
ficld. Both these categorics are quite wide, so further refincment and defini-
tion is required to clarify the meaning in the context of this paper.

According to 'Bochm-Davis ¢t al 1996] Sofiwere Comprehension consists
of reconstructing the logic, structure, and goels thei were used to write «
compuier progrem. Each experiment measures software comprchension in
some form to varying degrees, if that is its goal. What is mecant sy this is
that cach cmpirical study will have different requircments and as a result
will have different interpretations of when a participant has achicved cnough
comprehenston to satisfy the task at hand. For example, there may not e a
nced to understand cvery single line of code in the system, instcad, it might
bc desirable to narrow the focus to a certain number of classes/methods or
functions. Littman spcaks akout the programmer being able "to localize
parts of the program to which changes can ¢ madc”, this is referred to as
the As-Necded Sireicgy Littman et al 1986).

Softwere Visuelisetion also nceds to ke defined in terms of this paper.
SV tends to mecome a parent category for all tympes of visualisations and
encompasses such categorics as Algorithm Animedion, Progrem Visuelisetion,
Visual Progremming ctc.

Algorithm Animeiion is “the process of edsireciing ¢ progrem’s deie, op-
cretions, end scmeniics, end crceting dynemic grephicel vicws of those e-

strections ” 'Stasko 1990].

Visual programming refers to eny system thet ellows the user to specify
¢ progrem in e two [(or more) dimensionel feshion, "Myers 1986].

Progrem visuelizetion, is where the progrem is specificd in the conven-
tionel, textuel manner, end the grephics is used to tllusireic some aspects of
the progrem or its run-time execution.”, "Myers 1986).

In relation to the software engineering ficld, Softwere Visuelization (SV)
should have the goal of making the professional software engincers’ cognitive
tasks easier {usually using Progrem Visuelisetion). However, it was found
that there is more need for studics focusing on Progrem Visuelisetion tools
using profcssional programmers. For cxample, in the past, the majority
of empirical studies were performed on academic participants rather than
professional programmers in industry. Thus limiting the type of conclusions
that could ¢ drawn as well as running the risk of missing schaviour’s that
arc particular only to professional programmers. As a result, the examination
of cmpirical studics in this paper incorporates many of these studics run on
student programmers duc to lack of industrial run studies. It is hoped that
such studics may help to provide a reference point, that can e uscd oy other
rescarchers to devise their own empirical study.

3 A Short Selection of Empirical Studies

3.1 Pennington’s Study : Comprehension Strategies
in Programmaing

Of all the studies surveyed, 'Pennington 1987] had the largest number of
participants with a total of forty professional programmers. An allocation of
two and a half hours to the experiment also makes it the longest. Although
'Cunniffe and Taylor 1987] only uscd program segments, Pennington’s two
hundred line program can ¢ considercd to e quite small in comparison to
the seventeen-hundred line program used in ‘Storey et al 1998).

The strength of this study can ke scen through the quality of participants,
forthy professional programmers from industry werc observed in order to find
any differences in comprehension strategics between programmers with high
and low levels of comprehension. Half of these programmers were asked to
Think-Aloud.

Experimental data was gathered using a controlling program which recorded
all of the programmers’ responses, cxplanations and response times, as well
as recording which line of the program was in the center of the screen. Com-
plimenting this, programmers were allowed to take notes or draw diagrams
while studying the program.

Program comprchension was studicd using the following categories: Op-
eretions, Conirol Flow, Dele Flow, Stete, and Function.

Van Dijk and Kintsch’s texibese and situeiton model arc referred to as the
progrem model and domein model in this paper. Progrem Model is defined as,

" & representedion thet highlights procedurel progrem releiions in the langueage
of progrems”. Domaein Model is defined as, 7 & represeniedion thet highlighis
functionel reletions between progrem paris thet is expressed in the languege
of the domein world objects”. Pennington suggests from her previous results,
that the program model is constructcd before the domain model.

In contrast to the other experiments, the two hundred line program was
a rcal-world C@B@L program uscd in production, which was also ported to
FORTAN for the experiment. Adopting a Botium-Up approach, the partic-
ipants were asked to summarise the program in text form after a forty-five
minute study of the program. Four levels of detail were recorded: 1. Detailed
statements, 2. Program level statements, 3. Domain level statements and
4. Vague statecments. Twenty questions were presented in a quiz format on
screen to examine comprehension (cloze-test). Thirty minutes was allocated
to the modification tasks, in which all participants were unfamiliar with the
modification task.

Being the only experiment surveyed that examined comprehension strate-
gies, the results were categorised into comprehension groups. It was obscrved
that the programmers who achicved est comprehension levels had uscd a
cross-reference summary strategy (i.c. particiants who summarised using
program, domain and opcration statements cvenly). While programmers
with low comprehension levels, had uscd cither a program level summary or
a domain level summary.

Pennington states that ” In our rescerch, comprehension wes sirongly re-
leicd to perticipants’ siraicgics in constructing ¢ model of the domein”. In-
terestingly, Pennington goes on to say that ”we must de prepercd for ¢ mul-
tiplicity of meniel represeniaiions, ecven within one head”.

In conclusion, the program uscd was not cxtremely complex when com-
parcd to the seventeen-hundred line program used in 'Storey ct al 1998,
which was dcsigned to have complex control flow. However, there are quite a
number of strong points when comparcd to the other surveyed cxperiments.
Most, importantly, all the programmers were professional software engineers
and the code used was a rcal-world program. This is suite significant, when
comparcd to 'Cunniffc and Taylor 1987] for cxample, where only program
segments were used. In gencral, programmers do not try and recall parts of
a program without reference to the source code. This is the one issue that
stands out from this experiment, as it is not an cveryday programmers task.
From an SV tool point of view, support is given for tools that usc hypelink
styled layouts ¢.g. PUI 'Chan and Munro 1997], as the sest comprehenders
uscd a cross-reference summary strategy and this would allow them to navi-
gatc more freely. SV tool designers can look to this ecxperiment as cvidence
for supporting multisle vicws Wut it must also ¢ kept in mind that recalling
is not an cveryday programmer task.

3.2 Cunniffe and Taylor’s Study : Graphical vs. Tex-
tual Representation: An Empirical Study of Novices’
Program Comprehension

As with a large number of experiments to date, 'Cunniffe and Taylor 1987
was performed using twenty-three student novice programmers. The group
was divided in two, where group onc had learncd to program textually using
Pascal. In contrast, group two had lcarned to program graphically using FPL
(First Programming Language which was developed at Columbia University).
The authors sct out to discover, 1. Is onc representation setter only for
certain stages of learning 7, 2. @nly for certain aspects of programming ?,
or 3. only for certain learners ?

Differing from Pennington’s five comprehension categorics, participants’
comprchension was judged oy how quickly and accurately the questions were
answered. @f all the surveyed studics that used source code, Cunniffe and
Taylor had the shortest, using only program scgments and not full programs.
Each scgment had threc euestions, sascd on cach of the following tymes
"Atwood and Ramsey 1978] Type I recognition of specific simple structures.
Type ITI. recognition of flow of control and input /output. Zype I1I: evaluation
of flow of control, output, or variaklec valucs.

An important issuc to note here, and one that is not often seen in experi-
ments is that training was provided to the students well in advance since they
learncd FPL in class. This difference can ®e scen when compared to studics
such as ‘Bochm-Davis ¢t al 1987], where the participants only received a half
hour training.

Both the visual and verbal aptitudes were measured for all participants
'Ekstrom et al 1976). The Peper Folding Test { VZ-2) measured visual apti-
tude, while The Advenced Vocebulary Test IT (V 5) measured verbal aptitude.
Amongst not only the surveycd experiments but others, it is quite rare to see
the spatial aptitude measurcdl.

Eight Different program segments were designed and unlike Pennington’s
experiment, the participants were familiar with the task. Each segment was
coded twice, once in Pascal and once in FPL. Both versions were similar
except for variakle names in order to reduce training cffects and repetition.
All of the questions could e answered from the current display and did not
require a larger context.

An online system recorded the reaction times and gave detailed instruc-
tions. Similar to Pennington, participants were instructed to answer squickly
and accurately. The mean reaction time for FPL was approximately five
scconds faster than the Pascal reaction time. The largest difference setween
FPL and Pascal was scen in answers to the TY PE 111 questions. Cunniffe and
Taylor did not find this surprising since these questions requircd cvaluation
of input and determination of output.

A positive corrclation Between accuracy and spatial aptitude was found,
no matter which representation was usced! Regardless of the participants’ vi-
sual aptitude, the graphical representation of the program was comprehended

more quickly. @n the downside, it should ¢ noted that the authors men-
tioncd the fact that they placed caphasis on the reaction times as a measure
of comprchension and thercfore devised questions that they knew could e
answered. As a result, constrained the conclusions that could e made about
the cffect of the graphical representation on comprehension accuracy.

In conclusion, the strongest point akout this cxperiment was the fact that
the participants’ spatial aptitude was mecasurcd. Interesting findings were
made where accuracy was linked to spatial aptitude. @f all the surveyed
experiments, Cunniffe and Taylor emphasised training the most. Training
is an important issue, especially when it comes to cvaluating complex SV
tools. The lesson here is that training should ¢ cmphasiscd more in or-
der to increasce confidence in the results. Two options are available to the
SV cvaluator here, cither training can e provided prior to the experiment
(c.g. a couple of weeks) to allow the participant to ®ecome familiar with
the tool over a longer period, or the SV tool can ke integrated into a well
known cnvironment that is alrcady familiar to the developer. The program
segments uscd arce not rcal programs and no coding was asked of the par-
ticipants. This is somewhat disappointing when comparcd to studics like
'‘Bochm-Davis et al 1987] where three different design types were employed
or in 'Storey ct al 1998) where a seventeen-hundred line program was used.

3.3 Boehm-Davis et al Study : Mental Representa-
tions of Programs for Student and Professional
Programmers

The value of this study comes from its not often found mix of participants’
qualifications. Thirty-six programmers (cighteen professional and cighteen
students) were asked to make cither simple (make a change in 1 location) or
complex (many locations) modifications to three different mrograms. Each
program usce a different design i.¢. in-line code, funcrional decomposition
or okject-orientated.

'‘Bochm-Davis et al 1987] set out to cxamine programmers’ cognitive rep-
resentations of software. The only surveyed experiment to supply cach partic-
ipant with supplementary materials: a program overvicw, a data dictionary,
a program listing and listings of soth current and cxpected output from the
program. Modifications to ¢ performed were supplicd at the start of the
experiment and not as required, which is something to always consider when
giving maintenance tasks during an experiment.

Little training time was given, a half an hour training was allocated where
cach participant was given a sample problem to solve. The three programs
were then presented to the programmer in a random order (using a different
problem for cach program type).

Similar to Pennington and Cunniffe & Taylor, a computer was uscd to
record responses (i.¢. cach call for an editor command cte.). In contrast
to the other means of judging programmers’ comprehension, the experiment

assistant heclped to gather the contents and structure of the programmers’
mental model for all three programs (related to Buschke’s 2D grid procedure
'‘Buschke 1977]). The programmer had to recall as many components of the
program as possible, cach component was then written on a separate large in-
dex card. The relationships between these components were then specifice oy
wiring the relationships on small index cards, which could then e arranged to
show the programmers’ mental model. Five variables were used to reflect the
programmers mental model: Number of program segments/chunks, Number
of rclationships, Depth of structure, Width of structure, and Connectedness
of structure.

The differences between student and professional programmer were fewer
than onc would have thought, ®ut as suggested in the paper, these students
tended to e very good. The main difference was seen in debugging time,
where students took 6.9 minutes longer on average. It was obscrved that
there are two criteria for case of maintainability: 1. Ease of finding specificd
information and 2. Ease of recognising relevant program structures. Both
the mental model and the information gathering process are critical aspects
of the maintecnance performace task.

In conclusion, the three design types used in the programs as well as
the mix of Woth professional and novice programs makes a solid founda-
tion for these experimental results. This tympe of study would be interesting
to replicate in order to cxplore the differences Between novice and profes-
sional programmers more clearly. From an SV tool point of view, the lessons
learncd is that navigation must ¢ fluid, (c.g. the SHriMP tool) allowing
the developer to find that information required, this is the first criteria for
casc of maintenance ” case of finding specificd informedion”. The chunks of
code that the developer Wuilds in their mental model should e allowed to
bc reflected on screen as well, this is second criteria for case of maintenance
" case of recognising relecveni progrem structures”.

3.4 Petre and Blackwell : A Glimpse of Expert Pro-
grammers’ Mental I'magery

The most unusual of the surveyed studics Petre and Blackwell 1997, with
an aim to find out how closely the mental images of experts correspond to ex-
ternal representations. Interestingly, there is a reference to 'Hitch et al 1995,
where it was concluded that ” verbelizeiion overshedows insight”. Petre and
Blackwell explain that requiring people to talk can inhibit insights through
imagery. Perhaps this can ¢ secen as a disadvantage with talk aloud pro-
tocols in certain test conditions. Although it should k¢ kept in mind that
'Chi et al 1989] showed that sclf-cxplainers perform better in proklem solv-
ing.

In contrast to all the other studics, this was not a controlled lakoratory
experiment wut consisted of observational studies and interviews. Although
using ten participants makes this the smallest sample sized experiment sur-
veyed, the participants are the most expericnced all being experts from soth

industry and acadcmia with ten or more years programming cxperience.

Unlike the participants of Bochm-Davis ¢t al, participants here could de-
sign a solution to onc of four proklems or to take a problem of their choice.
Programmers were told to imagine themselves free of coding restrictions and
it should B¢ noted that they did not have to implement any solutions whatso-
ever. The four types of programs were: 1. Noughts and crosses, 2. Academic
timetabler, 3. Lexicon for sub-anagram solver, 4. Pinkall path predictor.

Differing from the other means of gathering comprehension information,
participants here were prompted with questions during the programming
tasks whenever the participant showed signs of deep thought. These ques-
tions focuscd on what the participant was using as their mental image, and
what it looked like, in order to solve the problem. For example, ” Whet colour
ts 9" and ” Whei’s there thet you cen’t see?”. Further examples of ques-
tions can ¢ scen on page 114. Similar to Pennington’s experiment, notes
were allowed to se made and later examined.

With no other surveyed cxperiment having such data, the imagery de-
scribcd By the cxpert programmers was dctailed, for example, ”iext with
entmeiton”. Significantly, all cxperts described sound as part of their im-
agery. @ther images were greater than four dimensions, and all descrilbed
interaction. @ne said 7 [i’s like descriving ¢ll the dimensions of & proslem in
2D, end the third dimension you're puliing closeness to « solution”. There
was also very strong spatial imagery (c.g. landscapes). ”..4t°s on the hori-
zon, so I cen keep an eye on ¢, sut I don’t reelly need to know...”. All of
the descrilbed images were dynamic, sut participant to control so that the
ratc could e varicd, or the image could bc frozen and some cven permittes
the events to e reversed. The authors detail that the ” experis chose where
to put thetr etteniion et any given moment, end different regions of the im-
egery were described es comming in end out of focus”. All of the imagery
could accommodate incompleteness. It is interesting that all of the experts
reported using more than 4 dimensions, the extra dimensions were additional
information such as overlaid data flows, or links to external representations.
Also the experts talked albout lakelling entities in the imagery.

It is improtant to note that the imagery described here is for construction
and not dcbugging. Two descriptive comments were @ ”..the possibelities of
debugeging et botiom level from here ere zero” and 7 In debugeing, you only
do it menially for the difficull ones: iniermilient, tncompleie ceplure of the
stimulus...”. Petre and Blackwell note that programmers, like designers,
bclicve that much of design in non-verbal.

In summary, the common clements were: 1. multiplicity of modalities,
2. stoppable dynamism, 3. variakle sclection, 4. provisionality and incom-
pleteness, 5. adjustable granularity, 8. cxtra dimensions, 7. simultancous
multiple images. Petre and Blackwell go on to say that ” expertis heve « ien-
dency to creeie ¢ visualisetion for & periiculer prodlem (c.g. & specific deie
structure) even if it will never de useful for enother prodlem” ic. a custom
visualisation.

To conclude, this paper is a goldmine for designers of SV tools. It is

striking to notc that all of the cxperts described sound as part of their vi-
sualisation, which were often dynamic and greater than four dimensions.
Also, evidence is provided for the ability to lakel clements of a visualisa-
tion. Support is found here for the repetition of the spatial tests used in
'Cunniffe and Taylor 1987) for future experiments, as many cxperts describes
spatial imagery. However much of the data helps in the designing of SV tools,
it is important to keep in mind that no code was written and that these de-
scriptions were only designs of how the developer would go alkout solving the
problcm and not how the developer would go akout debugging. There is a
lot, of room here for future study.

3.5 Storey et al : How Do Program Understanding
Tools Affect How Programmers Understand Pro-
grams ?

Thirty university student programmers (five graduate students and twenty-
five senior undergraduate students) were the participants used here [Storey et al 1998).
The aims were to study, 1. the factors affecting the students choice of compre-
hension strategy, 2. to okserve if the three tested tools aid in the comprehen-
sion (Rigi, SHriMP, SNiFF+), 3. to devise a means to characterise the more
cffective tools, 4. and to provide fecdwack for developers of comprehension
tools.

Taking the same length of time as 'Bochm-Davis ¢t al 1987), the two hour
experiment consisted of the following time limited phases: 1. @ricntation 5
mins, 2. Training Tasks 20 mins, 3. Practice Tasks 20 mins, 4. Formal Tasks
50 mins, 5. Post-Study Questionnaire 15 min and 6. Post-Study Interview
and Dchricfing 10 min.

Emphasis was placcd on training in three of the stages. Firstly, during the
@ricntation, where wasic features of the tool were taught. Sccondly during
the Training, where a limited set of tool features were demonstrated. Finally,
during the Practice Sessions, where the participant completed some tasks in
order to Become familiar with the tool. This training Hengmen program
written in C was larger than Penningtons’ program, consisting of twelve files
and three hundred lines.

As part of the Formal tasks, the participant was vidcotapcd, and asked
to Think-Aloud, as was done in Pennington’s experiment. Worth noting, was
the fact that two programs were caployed, one for the training and the other
for testing which was a Monopoly program (1700 loc, 17 files, with complex
control flow).

The task questions are listed in the paper and can e referred to as necded.
As with so many of the reviewed experiments, the tasks did not have to e
implemented.

The Questionnaire had fifteen randomly ordercd questions (five sets of
three). A popular questionnaire design was adopted where the questions in
a set were subtle rewordings of cach other to prevent the chance of misinter-

pretation or an erroncous answer. The Interview and Dclbricfing, asked the
opinions of the participant in order to gather information that the question-
naire could not.

The Questionnaire answers were rated on a scale of 1 to 5, from strongly
disagree, agree, disagree, ncutral, agree, to strongly agree. It was found
that for " pleaseniness of use end confidence in resulis” the results were not
statistically significant. For the ” ability to genereie results”, Rigi was rated
worse that SHriMP and SNiFF+. For the ” abelily to find dependencies”, Rigi
was rated Better than SHriMP and SNiFF4-. Also, no significant differences
were found eetween the SHriMP and SNiFF+ tools.

Storey ¢t al note two main ®iases in the experiment, firstly, it was found
that the experimenter forgot to show an essential feature of a tool and this
significantly affectcd the comprchension strategics uscd. Secondly, the ex-
perimenters were also designers of Rigi and SHriMP.

In conclusion, the ®iascs arc strong enough to affect the results. However
three tools arc comparcd and some usceful information can ke learncd for
future comparative studics. For cxample, the issuc of training that was
mentioned in the conclusion of Section 3.2 has re-ecmerged here. Evidence
such as this supports the argument for a greater emphasis to sc placed on
training during the cvaluation of SV tools. Again, whilec the programs usce
were appropriate, a study which requires the participants to write or modify
codc would also sc valuable, cspecially when it comes to cvaluating future
tools.

4 Conclusion and Future Issues to Address

In conclusion, there is mixed evidence for the effectiveness of Softwere Visu-
elisetion and not all of this cvidence is in directly rclated ficlds of study i.c.
much cvidence can e gathered from the software comprehension ficld. This
points to the fact that many more experiments focuscd on Program Visuel-
tsetton need to e run. Many issucs nced to e addressed in future studics
and these will se discussed in turn.

The training issue was highlighted in Cunniffe and Taylor's study and
again in the study ®y Storey ct al. SV tools can ¢ quite complex to master,
the decision to spend time learning a new tool can pay off in the future when
the user mecomes proficient with all the features. This must be kept in mind
during the evaluation of such tools. As stated in Section 3.2 there are two
choices. The training can e provided prior to the experiment (e.g. a couple
of weeks) to allow the participant to ecome familiar with the tool over a
longer meriod, or the tool can ke integrated into a well known environment
that is alrcady familiar to the developer.

Sample size is quite a controversal issue, while it is obvious that larger
sizes arc nceded, it is not so straightforward in practice. Busy software
professionals arc soth difficult to find and recruit in large numbers. As
well as this, the data from 7elk-Aloud protocols is extremely voluminous

to manage, gencrating huge amounts of post cxperimental work for cach
participant. @nc possible avenue of light here, is to rescarch the possibilitics
of experimental replication. Since replication is a large area in its own right,
reference may e made to Daly's thesis [Daly 1996) for further examination.

Of all the surveyed experiments, '‘Cunniffe and Taylor 1987] was the only
study to mcasurc spatial aptitude. This could prove to e a factor in Progrem
Visuelisaiion cxperiments. Especially considering the results from Cunniffe
and Taylor’s study where accuracy was linked to spatial aptitude, making
this is an area for future resecarch.

A nced for futurc experiments to include all their details is also evi-
dent, for example, the amount of time spent on the cxperiment is unknown
in 'Cunniffe and Taylor 1987]. This helps future rescarchers to design their
own cmpirical stuedy bascd on current and previous rescarch, but this is made
somewhat harder when details are missing, especially if a replication cxperi-
ment neecds to ke run.

Learning affects were addressed oy ‘Cunniffe and Taylor 1987] where woth
versions of the source code were similar except for variakle names in order
to reduce training cffects and repetition. These affects are also addresscd oy
'Storey et al 1998] where the questionnaire was constructed of groupings with
questions of different rewordings. These learning affects are an important
point to take into consideration during the design of future experiments and
should B¢ minimised as well as possible.

The design of the test programs arc also important to examine, for ex-
ample, the Bochm-Davis ¢t al study uscd three design types i.c. in-line code,
functional decomposition and osject orientation. The difference is clear when
comparcd to Cunniffc and Taylor’s program segments. Future experiments
to cvaluate Progrem Visueliseiion tools nced to consider using programs
that arc representational of current practices, for example, a test program
containing design patterns may ke considercd during the evaluation of such
tools.

Basili speaks about the tell-tale signs that show a field is maturing [Basili 2002].
Maturity of a ficld is scen when the " level of sophesiiceiion of the goels of en
experiment tncrease”, when " undersianding inieresiing things edout the dis-
cipline decomes epperent”, and when a " petiern of knowledge” can ke built
from a serics of experiments. Since this paper cannot ke an exhaustive ref-
erence of the experiments performed to date, a number of varying examples
were selected. Future experiments can suild upon past cxpericnces and use
the current empirical body of knowledge to cvaluate tools with the aid of
professional software engineers.

References

"Atwood and Ramscy 1978] Atwood, M. E., Ramsey, H. R., Cognitive Siruc-
tures on the Comprehension end Memory of Computer Progreams: An
Investigeiion of Compuler Progrem Deceugging. Tech. Rep. TR-78-A21.
Alexandria, VA: U.S. Army Rescarch Institute, 1978.

'Basili 2002 Basili, V., Ezperimenteiion in softwere engineering. talk given
at 5th Workshop on NSF-CNPeg Recaders Project, Salvador, Brazil,
January 2002.

'Bochm-Davis ¢t al 1996] Bochm-Davis, D. A., Fox, J., and Philips, B.,
Techniques for cxploring softwere comprehension, Empirical studics of
programmers: Sixth Workshop, pages 3-37, 1996.

'Bochm-Davis ¢t al 1987] Holt, R. W., Bochm-Davis, D.A., Schultz, A.C.,
Meniel Representeiions of Progrems for Student end Professionel Pro-

sremmers, Empirical Studics of Programmers: Sccond Workshop,
pages 33-46, 1987.

'‘Buschke 1977) Buschke, H., Two-dimensionel recell: Immediaic ideniifice-
tion of clusters in episodic and semeniic memory.. Journal of Verkal
Learning and Verbal Behaviour, 12, 201-206, 1977.

'Chan and Munro 1997] Chan, P., Munro, M., PUI: A Tool to Support Pro-
grem Undersianding Proccedings of the fifth International Workshop
on Program Comprchension (IWPC '97), pages 192-198, IEEE Com-
puter Socicty, 1997.

'Chi et al 1989] Chi, M.T.H., Bassok, M., Lewis, M.W., Recimann, P.,
Glaser, R., Self cxpleneiions: how studenis study end use creamples
tn leerning to solve prodlems. Cognitive Science, 13, 145-182, 1989.

'Cunniffe and Taylor 1987] Cunniffe, N., Taylor, R., P., Grephicel vs. Tez-
tuel Representation: An Empiricel Study of Novices’ Progrem Compre-
hension. Empirical Studics of Programmers: Sccond Workshop, pages
114-131, 1987.

Daly 1996] Daly, J. W., Repliceiion eand o Mulii-Method Ap-
proech o Empiricel Softwere Engincering, PhD Thesis,
www.cis.strath.ac.uk /rescarch/cfocs/abstracts. htmljd, heszs, 1996.

'Ekstrom ¢t al 1976] Ekstrom, R. B., French, J. W., Harman, H. H., Menuel
for Kt of Fector-Referenced Cognitive Tests. Princeton, NJ: Educa-
tional Testing Services, 1976.

'Hitch et al 1995] Hitch, G.J., Brandimonte, M.A., Walker, P., Two types of
representetion in visuel memory: cvidence from the cffects of stimulus
conirast on imege coméineiion. Memory and Cognition, 23, 147-154,
1995.

'Littman ct al 1986] Littman, D.C., Pinto, J., Letovsky, S., Soloway, E.,
Meniel Models end Softwere Meinienance, Empirical Studics @f Pro-
grammers: First Workshop, pages 80-98, 1986.

'Myecrs 1986) Myers, B. A., Visuel programming, progremming by cremple
end progrem visuelizelion: ¢ texonomy. Proceedings of the 1988 IEEE
Workshop on Visual Languages, pages 192-198, 1986.

'Pennington 1987) Pennington, N., Comprehension Sireicgics in Progrem-
ming. Empirical Studics of Programmers: Sccond Workshop, pages
100-113, 1987.

Petre and Blackwell 1997) Petre, M., Blackwell, A. F., A Glimpse of Er-
pert Progremmers’ Meniel Imegery. Empirical Studics of Programmers:
Seventh Workshop, pages 109-123, 1997.

'Sheil 1981] Sheil, B.A., The Psychologicel Siudy of Progremming, ACM
Computing Surveys, Vol 13, Numiser 1, pages 101-120, 1981.

'Stasko, Domingue, Brown, Price 1998] Stasko, J., Domingue, J., Brown,
M.H., and Price, B.A., Softwere Visuelizeiion: Programming es ¢ Mul-
timedie Erperience, ISBN 0-2€2-19395-7, MIT Press, 1998.

'Stasko 1990] Stasko, J.T., Tengo: A Framework and Sysiem for Algorithm
Ansmeiion IEEE Computer 23, pages 27-39, 1990.

'Storey et al 1998] Storey, M. AD., Wong K., Muller H. A., How Do Progrem
Understending Tools Affect How Progremmers Undersiend Programs ?.
Science of Computer Programming Journal, Vol 36, Issucs 2-3, pages
183-207, 2000 (paper from 1998)

'Von Mayrhauser 1995] Von Mayrhauserm, A., and Vans, A.M., Progrem
Understanding: Models end Experiments, Advances in Computers, Vol
40, Academic Press, 1995.

