
In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Metaphors we program by

Christopher Douce
Feedback Instruments, UK.

chrisd@fdbk.co.uk

Keywords: POP-V.A Metaphor,

Abstract

Due to the inherent abstract nature of certain types of software development, programmers and software
engineers use metaphoric language throughout many areas of their work. This paper examines some of the
many metaphors found within software development and engineering. A simplistic taxonomy is used to present
the metaphors that have been found. The use and importance of metaphor and programming are discussed and
some consideration is given towards the origins of metaphor. Intersections with other disciplines interested in
this topic are also presented. It is concluded that software developers should ideally possess the ability to both
understand and to generate new metaphors to successfully develop usable and successful software.

Introduction

Simplistically, a computer program can be considered to be a linguistic representation of a problem
designed for two wildly different audiences. The first is the computer, the raw physical hardware that
interprets instructions. The second is the human software developer or programmer. To the
computer, the world is mathematical. For the software developer confronted with a world of numbers,
useful support is required to aid in understanding what others may have written before. This paper
explores the concept of metaphor in software, a topic that has been explored by other presenters at
PPIG (Blackwell, 1996).

Lakoff and Johnson (1980) write, 'the essence of metaphor is understanding and experiencing one
kind of thing in terms of another. Metaphor, it is argued, is prevalent throughout software
development, and for a very good reason. Since software is something that is intrinsically abstract,
software developers describe requirements and operations on data in terms of the world in which they
are familiar. Developers, it is argued, use all their modalities to both write and comprehend software
systems. Developers do not only touch the software systems they develop, they can, to a lesser
degree, both hear and smell them. In doing so, they draw upon a rich vocabulary of representations
which can then, in turn, be comprehended by others.

Metaphor in this paper is defined as 'a figure of speech or expression literally denoting one form of
object is used in place of other to suggest similarity, likeness or analogy'. With this definition, we also
consider words and phrases that are analogies, and in some cases similes. Just as some of the
expressions used may be considered poetic, the author asks the reader for a degree of poetic licence.

The following section presents a brief survey of software metaphors that software developers should
be familiar with. No real attempt to rigourously categorise the metaphors that has been made other
than placing them is loosely related groups. Any number of sensible taxonomies can be constructed
based on principles of similarity, usage or modality. Theorising about metaphor is also limited. This
is left until the discussion section where one theory of the cognitive neuropsychological origins of
metaphor is presented and then briefly explored. This is followed by a final conclusion that states that
the understanding, appreciation and generation of metaphorical language within the area of software
development and comprehension is a key, if not essential skill for the development of successful
software systems.

In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

2. Software development metaphors

Within moments of opening a text book on a programming language, you will be presented with a
number of interesting metaphorical concepts. If the textbook is about Java, you will be presented with
the ever present object. Moving onwards, you will be presented with an example of how to
manipulate text. Text, you are told, is represented using strings. Imagine a set of paper cut-out letters,
we may be told. If we have a needle and some thread, then we can push the needle through the centre
of each cut-out character to form a string. Moving onwards, we find more beguiling ideas. Not long
after considering the string, we are told to consider the loop. Is this really metaphorical? This is a
loop that we cannot touch or feel. It is merely representative. Moving beyond our chosen
programming language, we are gradually presented with a plethora of concepts, some of which are
presented and roughly categorised in this section.

1 Traditional software metaphors

If we reach down, towards the bare metal of a computer, close to the machine code, we find assembly
language. Here we find flags. We find registers. To look at our raw binary numbers we apparently
can use masks. Flags indicate states, registers temporarily hold data and store results and interrupts
indicate the need to respond to actions. It will not be long until you come across the jump instruction.

Moving a little higher, we find that we need store data in data structures so that we can get work done.
We open another text book, this time on data structures and algorithms. Again, moments after
opening the text, we find ideas expressed through metaphor. We see a stack, a heap and a queue.
Strangely, since this is software, we find words that allude to physical actions. Data is pushed on to a
top stack and something pops out of the top when we later want it back again. The stack, heap, queue
and even bucket are all metaphorical containers (and all of them may potentially be prone to leaks,
especially the bucket). Turning to the next page we find reference to trees. A forest is a data
structure or store that contains many trees. Reading the section on trees had lead us to the part of the
books regarding algorithms. Trees, as we all know, can be pruned and have roots.

Metaphoric language is used vigorously to describe algorithms. Sorting techniques is a particularly
telling topic. Their names are deliciously evocative (flavour and programming will be mentioned
later). We have the bubblesort and shell sort. Examining searching algorithms provides us the painful
sounding binary chop.

Actions are not confined to pushing and popping, but are also extended to movement. Walking is a
metaphor that is sometimes used with program debugging or tree traversal. Programmers use heap
walkers to examine the state of variables. Dependency walkers are used to view function prototypes
for dynamic link libraries. When processing goes astray, a system may halt or even end up in a race
condition.

When reviewing another developers work, we may begin a structured walk through. On our journey,
we may be presented with the most relevant and interesting landmarks, where we may ask relevant
questions. If the going gets tough and we need to go slower, rather than walking, we may use a
debugger to step through, into and out of particular lines of code. Finally, when we are sure about
what we expect to happen, we may click on a traffic light icon and run our program.

The success of journeys from one place to another depends heavily on the weather. A system is said
to be not functioning if it is frozen. The X.25 cloud has given way to an internet cloud in networking
diagrams. A broadcast storm can arise on local networksegments. Shades of weather are do not
appear to be particularly common, although a network administrator observing bandwidth usage may
be tempted to explain that his network is drizzling or spitting packets. When organisation beyond the
packet is required, packets are inserted into frames before being delivered.

A particular processor architecture has become commonly known as a platform. Alternatively, the
term environment is commonly used, meaning a place where software can reside. Environments can
be permissive, as well as restrictive (but not totalitarian).

In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

The term environment is sometimes used in association with a host. A benevolent host is one which is
generous to a process. Hosts can be kind, but only if you play by their rules. If something
unexpected occurs, this is something exceptional. Exceptions must be caught. Programmers familiar
with Java and C++ will be familiar with trying blocks of code. Processes can consume and have forks
(food metaphors will follow). Threads are components of execution within a process. Other
developers have taken this metaphor further, proposing an element of execution called a fibre can
exist within a thread1. These terms may conjure up images of comfortable bed linen, allowing us to
recall another useful metaphor - the concept of a wrapper. Software, like human relationships,
sometimes work using hierarchy. Wrapping up software into different levels of abstraction is an
approach that should be understood by all good engineers.

For those with exotic hardware, processes can have affinity with a particular CPUs. Such a term is
considered to be apt, since affinity can be defined as 'having a harmonious relationship'. A simpler
term may have be association. Amity could have been a similar candidate. Conversely (and
interestingly), computing contains a degree of morbidity. Some metaphors are redolent of doom and
gloom: administrators sometimes talk of death of processes. Processes not performing can be killed
or terminated. If they cannot be killed, they become zombies, half alive, half dead. Daemons perform
mystical operations such as printing and handling internet requests. Processes can also panic.
Collisions can occur on both on virtual memory pages and on a network. A processor can be hijacked
by a higher priority task. Execution and hanging in software, however, are not synonymous.

One of the most common metaphors in operating system use is the pervasive wildcard, the joker in the
pack, allowing a command prompt user to specify which character should be ignored, or replaced as
something different.

Zoological and biological metaphors

Zoological metaphors are present in software development. In colloquial language, dogs have a very
hard life. Just as one can be "dog tired" at the end of a day, leading a "dog's life", trying to understand
a "dog's dinner" of an installation, the resulting software that you patch together may "run like a dog".
Dogs are also virtual. Watchdogs observe certain types of actions or processes to ensure that
everything functions successfully, not unlike our tireless worker thread. If processes misbehave, the
watchdog pounces, trying to remove a troublesome misnomer.

Spiders, of course, traverse world-wide-webs, collecting information. Design patterns make reference
to flies, referring to their weight, rather than their ability to spread disease or to be incessantly
annoying. Those who studied operating systems will remember the mythical round robin. There is,
of course, the most famous zoological artefact in computing - the ubiquitous mouse. It is also possible
to hypothesise that software developments that have been badly managed correctly or fail due to
changing market conditions may become white elephants.

Within large installations, machines become animals within server farms, each machine performing a
similar and requiring similar treatment. Having many different types of systems in your computer
room may potentially be called a server zoo. Some environmental metaphors do not work. One term
that has is considered to be silly is that of a web garden (heard at a conference held by a popular
operating system vendor), evidently a mixed metaphor. This metaphor was used in a marketing
context to distinguish one vendors solution to another vendors web farm. Farms are often dirty,
smelly places, filled with animals and trouble. Farms require a significant amount of hard work to
ensure that they remain serviceable. Gardens, by contrast, require less work. Following this line of
reasoning, gardens may be considered to be a folly, a fertile patch of earth used primarily for pleasure.
A garden may be aesthetically pleasing, but it may not yield very much. Farming, by contrast, is
gardening on an industrial scale. Farming is an activity that can only be performed by professionals,
whereas gardening is an activity that can be performed by amateurs.

1 Any Prolog programmer worth their salt will know that the smallest element of a Prolog program is called an atom.

In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Parts of the body are also used: a thumbnail is a representation of a larger graphic. Handshaking
occurs when we use our networking protocols. We are, of course, aware of the ever-present window.
Some of us may be less aware that they can have skins.

Food, smell and taste

At some time or another, professional programmers will stumble across a portion of spaghetti code
that inevitably drives them nuts. Food stuffs and computing are not closely associated since eating or
drinking at the same time as using a PC is likely to cause human-computer interfacing difficulties.
Coffee cups do figure, but we can surmise that this is due to a language designer potentially hoping to
kick start its usage. Coffee beans considered as reusable components may, to some, be distasteful.

Food and actions surrounding food makes its appearance in other ways. Software developers can use
numerical recipes to rustle up solutions to problems. In doing so, the authors may have to stir in an
element of syntactic sugar to ensure that elements of their software bind well together. End users are
continually presented with menus. Stressed system administrators are sometimes faced with the
difficult problem of process starvation. Following continual development and addition of more items
to menus, some software packages can, in contrast, become bloated. Data can be harvested and results
even stored in a warehouse.

Operating systems can have vanilla installations, which require modification so that they can be
locked-down against intruders. There is also little doubt that some software products leave both users
and developers with a bitter taste in their mouths. When discussing refactoring Fowler (1999) refers
to bad smells, elements of source code that are considered to be less than sweet. Developers are
encouraged to excise malodorous fragments of code (and even data) whenever possible using a
various array of simple techniques.

Machine or industrial metaphors

One much loved metaphor in computing is the engine. The word engine conveys a mechanism that
provides power. An engine is also a mechanism that is potentially noisy, dirty and dangerous if not
controlled or maintained properly or handled by appropriately trained individuals. Engines do not run
without assistance. They require tuning.

In computing, the most common engines are search engines and database engines. Other forms of
engine include graphic engines for three-dimensional rendering of landscapes, and physics engines,
used to co-ordinate collisions in modern interactive games.

Historically, wheel has been used to refer to users with high privileges. For everything to function, for
wheels to do work, to make sure that the engines are effectively used, we need some form of driver.
Device drivers are commonplace within all modern operating systems, protecting the system from
crashes. Like every good mechanic, a software engineer has a wide set of tools at his or her disposal.
Rather than buying a sprocket set, a software engineer may build an adapter set. Repetitive data
gathering and watching activities are performed by worker threads which may run forever, never tire, and very
rarely go to sleep();

Compiling is also a metaphor, as is an interpreter. Optimisation can be aggressive (and software can,
of course, be used in anger). All programmers will be familiar with the term library. Others will have
heard of the notion of a data dictionary. Page and book metaphors are common. Virtual memory is
divided into pages (an older technology was termed an overlay).

Within computer hardware, we have a number of interesting, simple and very comprehensible
metaphors. A bus is a vehicle that shares a common route that takes many people to many different
destinations. A bus is also a bunch of wires that shares a common route and takes many bits and bytes
of data to many different destinations. Bytes have to wait, just as people do (when it is idling), so it
can be used successfully. Continuing this exploration, we also apply real world attributes to a
software (or hardware) interrupt, and the concept of a memory bank.

In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

All these terms almost causes us to hear the loud sounds of industry and manufacturing; grinding,
crashing and banging. Software, however, is mostly silent. Sound enters the programmers and
administrators vocabulary when our computing machines are faced with increasing stress. Whilst
servers may not roar with work whilst under pressure, we still like to attribute sound to them, saying
that they are creaking and may even crash.

Software can be developed in a clean room environment, no doubt a crossover from integrated circuit
manufacture. A number of papers have also discussed the development of software factories,
although many practitioners would take issue with software being something that can be easily mass
produced. Conversely, the metaphor of a software design studio is becoming increasingly popular.
The word studio naturally inspires associations with creativity and innovation.

Service metaphors
Within network systems and on desktop systems daemons provide a plethora of services. Perhaps this is an
example of language evolution or metaphor adoption and selection amongst computing practioners. The term
service is very well used. It can refer to a printing service, or it can refer to a 'web service', an innovation that
has only just been recently popularised. Services, as we know, are closely associated to servers.

Changes in technology has resulted in changes in vocabulary. We live in a world populated by thin
clients, fat clients, smart client and rich clients (but, tellingly, not dumb clients or poor clients).
Interesting, the world of the computing metaphor has been subject to forces of political correctness.
In some circles, the term 'master/slave relationship' is considered to be an appropriate way to describe
the operation of a software system, to the lay listener such expressions may suggest images that are
less that palatable.

In many cases, the implementation and development of software systems is mediated through the
establishment of formal contracts between the organisation that requires the software and the
organisation that is to provide the services. Agreements are formed regarding cost, terms of delivery
and sets of mutually acceptable terms and conditions are proposed. The idea of a contract has also
found its way in the sphere of software design, specifically object-oriented programming.

Design by contract (DBC) is a programming technique which aims to increase software quality and
reliability. In object-oriented programming a class and all its clients establish a 'contract' with each
other. For a client to use a class the client must guarantee certain preconditions must be met before
services are requested from that class. In the real world, the client must be an acceptable risk, having
sufficient financial resources to satisfy the transaction. The reciprocal part of the contract being that
the class will then guarantee that particular actions will be performed, namely, the contract will
describe a set of postconditions. If both the preconditions and the postconditions can be represented
in a form that can be checked easily by a language compiler, any potential violation of the contract,
and therefore potential failings of a software system, errors can be detected, providing that the
description of the contract is correct.

Whilst not strictly being a service metaphor, the use of DBC has some parallels with the notion of
assertions, used in languages such as C, C++ and Java. With assertions, the programmer includes
what can be described as a statement of fact within a program, essentially saying 'this must be true,
before the following code is executed'. Assertions cause an error message to be raised, often in a
rather dramatic fashion, drawing the programmer immediately to the problem in question. Usually,
however, assertions are included during debugging, and are often removed automatically when
production builds are created.

Development metaphors

Software development activities can be understood in terms of a number of different metaphors (see
McConnell, 1993). We have the 'writing' metaphor, a single developer toiling over program prose.
This metaphor is often not apt, since large software projects are team rather than individual efforts.

Again, we come across our farming metaphor. Software, it is said, can grow. There are limits to how
far we can extend this idea before it becomes nonsensical. Crops need feeding and nurturing, land,

In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

unlike memory space, should be left fallow to recover. One of the most suitable metaphor is the
building metaphor. We now see software developers who are called software 'architects'. Architects
build 'foundations' and use pre-existing, pre-fabricated frameworks on which to base their
developments on (the .NET and J2EE frameworks are prime examples). The larger the project, the
greater the number of specialisms there are: masons, carpenters, electricians, or DBAs, Java
developers, graphical designers. Similarly, more care has to be taken to merge different components
from other manufactures together.

Scientific developments are understood through the application of different models and metaphors to
make sense of observed phenomena. As more is discovered, a different model may be found to be
more apt. As McConnell writes, 'wrong' metaphors are not replaced by the 'right' metaphors, 'worse'
metaphors are replaced by 'better' ones. As computing and software engineering develops we will
continue to see different ideas being proposed, explored and examined, all through metaphor. Some
ideas (such as relational databases) will be successful, other ideas (such as hierarchical databases) will
be put aside.

User metaphors

The most obvious end-user metaphor is that of the desktop. In most cases, this metaphor is
enormously successful. Documents are placed on top of the desktop, and moved to the wastepaper
basket if no longer required. Desktop metaphors, if pushed too far become famously fragile. With
early Macintosh systems, to have your disk returned to the user, the user must drag the disk to the
same wastepaper basket – the same operation as to delete a page of text. A replacement with a the
technical term 'eject' would have been equally bewildering to the novice user.

Not only do programmers work on their desktops with documents, sometimes they use workbenches.
On other occasions, these may be called workspaces. To work successfully, they may need access to
toolkits, accessible from toolbars. Recent innovations in HCI has produced the wizard, a faceless
wonder which presents you with a series of dialog boxes. It is interesting to consider for a moment
why the word 'wizard' was chosen in preference to the word 'witch'.

Some programming systems reply on a single comprehensible metaphor. Hypercard, a programming
system used on the Macintosh platform uses at its heart a conception of a simple card, on which
information can be filed and kept. Macromedia director uses an interesting theatric metaphor. Events
(another popular programming abstraction) takes place on a stage, where the director can assign
actions to individual components, which could be termed an actor. Directors have the ability to
decide what happens, writers have to ability to write scripts.

Modern integrated development environments have taken inspiration from the arts. Instead of writing
'code', a programmer will paint a design, using a palette of reusable components. The metaphor is a
useful albeit weak one, since a painter can mix together colours on a palette, but in modern IDEs a
programmer cannot easily 'merge' components together to form a new component without resorting to
a mechanism like inheritance. Every programmer will use the editors cut/copy/paste trio.

Domain specific languages such as LabView from National Instruments and Simulink from The
Mathworks Inc. adopt a metaphor that has been derived from the environment in which they are
applied. Rather than programming in the traditional sense of the word involving source code and
compilers, parallels to electrical circuits are constructed, potentially making it easier for domain
experts to adopt to the programming environment with relative ease.

Security metaphors

The longer one contemplates the different metaphors that are used within computing, the more
examples one can find. Security metaphors are particularly enlightening since forms of security
breaches are can be notably difficult to understand. In fact, the arena of computer security, a
wondrous vocabulary has emerged.

Taking a leaf out of a physical security text book, IT security firms have developed tripwire software
to facilitate intrusion detection. Developers check in source control in a similar way to how a traveller

In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

may check in at an airport. Debuggers and security or error logs help to prevent software developers
being lead up the garden path on a wild goose chase.

Most computer users will be aware of the potential of their systems being infected by a virus - a term
that is an analog, rather than a metaphor, or by a more benign but potentially equally destructive
worm. Systems are protected by firewalls (should these be 'fire breaks?'), to keep your own system
safe from the dangerous mysterious world of the net, where rogue instructions and dangerous trojans
are waiting to pounce if you ever let your guard down.

In an environment where viruses can replicate with rapidity and virtual holes can be exploited, the
issue of control is one that appears firmly within our metaphoric vocabulary. As well as using
watchdogs, we try to police our functions. When we wish to mark the end of a file, we use a sentinel.
Parameters are personified when they need to be marshalled so they are converted from one form to
another.

Exceptions can be raised if you attempt to break someone's trust. Trust can exist both at a machine
level or at a code level. Code can be untrusted or trusted, and may be allowed to operate when
holding an appropriate certificate. Code must behave. It should be thread safe. Within C++,
functions can be friendly, but friends who do not behave in a structured manner could be considered
harmful.

Systems administrators, some of them who adopt a belt and braces approach to system management,
have a wide array of tools at their disposal. They can employ sniffers (not to be confused with
watchdogs), build out tripwires and lure renegade crackers, worms and viruses into honey pots. In the
game of defence, systems are patched up or locked down to prevent unwanted fiends from gaining
access through old back doors. To exert constraints on running software, processes are sometimes
allowed on to run in software jails, permitting only a limited number of actions. Certain software may
be assigned appropriate software policies, allowing them certain privileges.

Metaphor directs our thinking, providing a frame of reference, priming us so that something can be
understood. Security vulnerabilities may arise if elements of a system are used in a way that they
were never designed to be used, something that hackers, crackers and phreakers excel at. "To avoid
security vulnerabilities in your code, you must develop the habit of suspending, from time to time,
your voluntary immersion in the program's metaphors" write Graff and van Wyk (2003). To find
security holes, they reason, you must think like an alien and go beyond the developers original
conception to find situations where your system may be abused. Since anything is possible within
software, including changing the laws of physics, the use (and even overuse) of metaphor can be
dangerous.

The metaphoric situation is becoming increasingly complex for our professional programmer.
Recently, the term firehose cursor has been heard at a marketing presentation by the same operating
system vendor that coined the expression web garden. You may get back your data from a web-
service in a way like water is pumped through a firehose. The cursor in firehose cursor references a
location within a back end system from where data will be squirted from. Danger can be attributed to
fire. A firehose may be erroneously considered to be a security tool for a security firewall, for
example.

Finding a new metaphor to describe a software development or administrative approach is desirable
for a software vendor since it piques the interest of those seeking solutions to real-world problems.
Marketeers must be careful. Instead of being a metaphoric crutch to aid comprehension, poor (or
downright confusing) metaphors become badly designed sticks which have to be dragged around,
serving no real purpose, slowing down progress.

Theories of metaphor

Metaphors come from our interactions with the world. Without metaphor, it would be impossible to talk about
software. We use metaphoric language out of necessity, mapping our experience of the world onto our software
designs. Our experience of the world is presented to us through our modalities: vision, hearing, touch,

In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

smell/taste and proprioception. The software metaphors that have been described cover all these modalities.
We push, pull and yank things. We may find certain function noxious, or sweet. Interestingly, we also have
social metaphor, such as jails where we impose restrictions on others and certificates, as indicators of authority
and truth, and relationships.

Since we appear to use metaphoric language so widely it may be informative to try and consider
where metaphor comes from. One possibility, concerning synastesia, is proposed by Ramachandran
and Hubbard (2001). Synastesia is a known condition where senses merge. Smells can be sensed as
colours, sounds as tastes. One school of thought follows that our ability to generate and understand
metaphors, particularly colourful ones, are due to a residual organic ability to understand different
inputs from different sensory sources.

Consider simple metaphors for anger. People can become heated. Those angered may suddenly
explode. Emotion are closely associated to the autonomic nervous system (ATS). When people
become angered, it is perhaps no coincidence that these metaphors closely coincide with an increase in
heart rate and blood-pressure. Those with depression have the blues a colour immediately associated
with coldness. We can easily see similar merging of senses with software metaphor. One of the two
most obvious cases being the vanilla operating system and fragments of source code being attributed
with bad smells.

Just as we associate metaphor with modality, it is not unreasonable that metaphor can be associated
with the self (see Watt, 1998). This can be found when we consider the role and action of variables.
Comprehension of software and variable role is a subject that has recently received attention from
other PPIG members (Sajaniemi, 2002). Put simply, variables can have a role of a collector, for
example, creating a total for a list of numbers that are generated from an iterator or loop variable.
Combining roles with identification is, no doubt, an incredibly powerful didactic aid.

A learner relies on existing knowledge and attributes of concepts that are rigorously understood.
Understanding metaphor relies on similarity between the concept that is being discussed and the
framework of an existing idea to establish comprehension. When contemplating similarly, we step
into the arena of category, an area that is discussed by Lakoff and has been studied in great depth by
Rosch et. al. (1975). When proposing a metaphor to assist in comprehension, the level of the
representation used is important. Selecting a category or concept that it too specific (or high) may
confuse, especially if some of the attributes are not particularly relevant to the idea that is being
presented. Metaphors must be immediately accessible, and where possible, prototypical.

Discussion

As mentioned at the beginning of this paper, one of the first ever computing metaphor that we learn is
the loop. This may be preceeded or followed by the notion of a string. If faced with such terms, it
may be easier to comprehend software as something that is woven, rather then written. Indeed, we
have seen that there are a number of different ways to perceive software development. Lakoff and
Johnson propose that metaphors are not merely linguistic ornaments but are instead closely related to
the structure of thought and cognition.

As computing power has developed, the more widespread object-oriented languages have become.
Rather than develop a metaphoric representation to describe requirements and developing software in
the level of the target hardware, object-orientation allows the software developer to code using the
metaphors and concepts proposed during earlier stages of a software development life cycle.
Metaphor is central to the naming of classes, objects, functions, member attributes and variables.

Metaphors are, of course, abstractions. A large number of useful programming abstractions can be
found within the area of design patterns (Gamma et. al., 1995). Software developers sometimes talk
of constructing bridges and building façades. Objects can be decorated. Objects can be created using
factories, and singletons can exist on their own. Patterns can can describe groups of common
relationships between objects (model, view, controller), and also describe how groups of objects are
created (creational patterns) and work together. These abstractions are, of course, metaphorical.

In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Previous PPIG presentations (PPIG '99) have compared the concept of design patterns to the older
notion of a programming plan (Rist, 1986).

Metaphor and the efficacy of program comprehension are intrinsically related. During the
understanding of computer programs we can construct a comprehensible metaphor from what amounts
to an abstract mechanical representation of a machine in the form of a computer program. Conversely,
writing software requires a developer to paint a representation using constructs that are colours of our
chosen computation language.

Whilst performing this somewhat introspective survey of the metaphors used within software, it was
interesting to discover that the metaphors cover each of our modalities. Most obviously, programming
requires use of our visual and spatial abilities, to comprehend diagrammatic notations and to associate
sections of source code together. Similarly, auditory and linguistic abilities are drawn upon during the
reading of identifiers and the generation of linguistic labels for software artefacts.

The use of multi-modalities within programming has been hinted at by Petre (2003) who explores the
use of mental imagery within groups of programmers. Rather than using the regular 'what are you
thinking?' question so often used within protocol studies, Petre instead used more interesting probes
that could be considered to be modality specific.

One striking question that can be considered is whether the appreciation of computing metaphor is
something that could be taught. It is obvious that we teach using metaphor. In computer science
education, the selection of appropriate metaphor may make a difference between a blank face, and a
comprehend concept. Beyond the classroom, towards the industrial arena, software development
guidebooks actively encourage the use of an appropriate metaphor, emphasising that it should be
disposed if it ceases to be useful (Beck, 2000).

Finally, it is sad that so many of the colourful phrases and descriptions used in software are so often
anglocentric in origin, often of the American variety. Take the example garbage collector. In British
English, the garbage collector would be termed either the bin man (or bin 'person'), or rubbish
collector2. The vocabulary of expressions used to explain programming abstractions may become
richer as the need for software and its development becomes more evident within other cultures.

Conclusions

Software development is rich with metaphor. Since software development is such an abstract activity
the use of metaphor is considered a necessity. Some software design and development approaches
embrace the idea that a software project can be guided by a central metaphor. 'By asking for a
metaphor we are likely to get an architecture that is easy to communicate and elaborate', (Beck, 2000).
Metaphor within computing extends beyond architectural considerations and permeate into almost
every aspect of design, development and administration.

This paper is primarily an exploratory discourse, describing a number of common software metaphors
that are easily accessible. A more systematic approach to software metaphor analysis is, of course,
possible. The origins and application of metaphor is a fascinating topic and one that is of interest to
those working within other disciplines including cognitive psychology (see Tourangeau & Sternberg,
1982), and linguistics,notably by Lakoff (1987), and Lakoff and Johnson (1980). Cross-discipline
interest in metaphor has obviously arisen in the area of language translation from the field of
computational linguistics. Some researchers have utilised the data processing capacity of computers
to analyse selection portions of text, known as corpora (see Martin, 1994) to try to provide empirical
evidence to support theories. Philosophers also have an interest in understanding what metaphor is,
and how it relates to human thought and cognition (see Ortony, 1984).

Lakoff and Johnson argue that human cognitive processes are largely metaphorical. Software
developers not only need to be mathematicians, logicians, engineers and scientists. They also need to

2The author of this paper has always played in sand pits rather than sand boxes, and would prefer his
software to languish in a gaol rather than a jail.

In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

be playwrites and poets. Software developers need to nurture their metaphoric faculties to express the
abstract software forms using expressive language for greatly different audiences, both computational
and human. As computing and information technology develops, so will its associated vocabulary of
useful metaphors.

In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 111-120

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

References

Beck, K. (2000) Extreme Programming Explained: Embrace Change. Addison Wesley.

Blackwell, A. F. (1996) Metaphor or analogy: How should we see programming abstractions?
Proceedings of the 8th Annual Workshop of the Psychology of Programming Interest Group, 105-
113.

Fowler, M. (1999) Refactoring: Improving the Design of Existing Code. Addison-Wesley.

Gamma, E., Helm, R., et al. (1995). Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, Massachusetts, Addison-Wesley.

Graff, M. G and van Wyk, K. R. (2003) Secure Coding : Principles and Practices. O'Reilly and
Associates.

Lakoff, G. (1987) Women, Fire and Dangerous Things. University of Chicago Press.

Lakoff, G. and Johnson, M. (1980) Metaphors We Live By. University of Chicago Press.

Lawler, J. (1999) Metaphors we compute by. Figures of thought for college writers. Mayfield
Publishing.

Martin, J. H. (1994) A corpus-based analysis of context effects on metaphor comprehension.
Technical report, University of Colorado. CU-CS-738-94.

McConnell, S. (1993) Code Complete: a Practical Handbook of Software Construction. Microsoft
Press.

Ortony, S. (1984) Metaphor and Thought. Cambridge University Press.

Petre, M. (2003) Team coordination through externalised mental imagery. Proceedings of the 13th
Annual Workshop of the Psychology of Programming Interest Group.

Ramachandran, V.S. and Hubbard, E.M. (2001) Synaesthesia - a window into perception, thought and
language. Journal of Consciousness Studies,Vol 8, No. 12.

Rist, R. S. (1986). Plans in programming: definition, demonstration and development. Empirical
Studies of Programmers. Ablex.

Rosch, E. (1975) Cognitive references of semantic categories. Journal of Experimental Psychology :
General. 104, 192-233.

Tourangeau, R. & Sternberg, R. J. (1982) Understanding and appreciating metaphors. Cognition,
11(3), 203-244.

Sajaniemi, J. (2002) Visualizing roles of variables to novice programmers. Psychology of
Programming Interest Group. 18-21 June 2002, Brunel University, London, UK.

Watt, S. (1998) Syntonicity and the psychology of programming. Psychology of Programming
Interest Group. The Open University, Milton Keynes, UK.

