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Abstract 
For over 15 years visualization tools have attempted to present the complexity of concurrent 
programs in easily digestible formats. For example, visualization tools, that display an 
execution-based animation of concurrent algorithms, have been used extensively in 
educational contexts to illustrate the behavior of concurrent algorithms to students. However, 
there is little documented evidence that such tools significantly improve the users’ 
comprehension of the concurrent code.  

This paper proposes an evaluation method for determining programmers’ comprehension of 
concurrent systems. It is based on a review of current algorithm animation tools and on 
existing measures of comprehension. The resulting method proposes a framework within 
which creators of algorithm animation tools (and of other tools that support the understanding 
of concurrent systems) can evaluate their products. 

Introduction 
The term concurrent system is used here to refer to “any type of environment allowing the 
execution of application code on multiple processors simultaneously”  (Erbacher & Grinstien 
1996). The use of concurrent systems is becoming “increasingly widespread in all types of 
fields and occupations” (Erbacher & Grinstien 1996). Erbacher (2000) states that, “with the 
advent of symmetric multiprocessors in desktop machines, a new generation of concurrent 
systems is coming to reign”.  

A number of different architectures for the construction of parallel computers have been 
proposed. The most widely used classification for such architectures is the one proposed in 
Flynn (1972), who has given a classification based on the way data and instruction streams 
are processed (Santos Nicolau 2002). Flynn defines four main categories; SISD (single 
instruction stream, single data stream), SIMD (single instruction streams, multiple data 
stream), MISD (multiple instruction streams, single data stream) and MIMD (multiple 
instruction streams, multiple data streams). Of these categories SIMD and MIMD are the 
most widely used in parallel computing (Akl 1989).  

SIMD is a model where a single sequence of instructions is applied to multiple independent 
data streams; computers with this architecture will have each processor executing the same 
instruction, but each on it’s own data. MIMD is a model, that describes machines that can 
execute different types of instructions on different sets of data; each processor executes a 
different instruction on different data (Santos Nicolau 2002). 

Thus, shared memory systems are the most commonly found examples of concurrent systems, 
but whether the system is using shared memory or not, they typically are large, complex and 
produce vast amounts of data (Kreamer 1998). 

Consequently, understanding the behaviour of these systems is more challenging than 
understanding the behaviour of sequential programs (Appelbe et al 1991, Cox & Roman 
1991, Erbacher & Grinstien 1996, Erbacher 2000, Kreamer 1998). This difficulty is 
exacerbated because parallel programs must express not only sequential computations but 
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also the interactions (communication and synchronization) among those computations that 
define the parallelism (Browne et al 1995). Concurrent behaviour is susceptible to subtle 
variations in processor speed, load balancing, memory latency, the sequence and timing of 
external interrupts, communications topology etc. These susceptibilities create an inherently 
non-reproducible, non-deterministic behaviour, which is difficult to monitor and even more 
difficult to analyse (Pancake 1992). 

Given the additional complexity of concurrent systems visualisation of concurrent programs 
is a subject that has been probed by many computer scientists (Stasko 1990, Brown 1992, 
pancake 1995, Erbacher 2000). In these studies they try to use visualisation to reduce these 
systems’ inherent complexity. In the authors’ review of visualization tools, over seventy such 
concurrent visualisation tools were identified, and the number is growing. This review 
suggests none of these tools have been adopted by industry or been empirically validated as 
reducing the comprehension complexity. 

One means by which the maturity of such systems could be elevated is by providing an 
evaluation framework that informs developers as to the information portrayed by their 
visualisation tools and the quality of that information. This paper moves towards such an 
evaluation framework by reviewing algorithm animation tools and software comprehension 
research. Given the non-deterministic behaviour of concurrent systems when executing, 
algorithm animation tools would intuitively seem to be an effective aid when comprehending 
concurrent systems. Software comprehension research has identified several ways in which to 
characterize the information obtained by programmers when studying systems (Pennington 
1987), (Good 1999). Although these studies have concentrated on sequential code and 
information type as opposed to information quality, they can provide a basis for extension 
into the concurrent-code domain.  

This resultant framework was then assessed by means of a pilot study. This pilot study is 
described and the findings of the study, in terms of refining the schema, are discussed. 

Algorithm Animation Tools 
Most tools that have been created as concurrent program comprehension tools are algorithm 
animators (Kreamer 1998). Algorithm Animation systems provide highly application-specific 
views of a program’s data structures, the operations which update these data structures, 
abstract representation of the computation and its progress (Kreamer 1998). Alternatively, 
(Stasko 1990) defines algorithm animation as the process of abstracting a program’s data, 
operations, and semantics, and creating dynamic graphical views of those abstractions. The 
video Sorting out Sorting, presented at SIGGRAPH ’81, is generally credited with initiating 
the field of algorithm animation (Byrne et al 1996) 

Algorithm animation systems provide facilities for users to view and interact with an 
animated display of an algorithm (Brown 1992). The main use and reason for the 
development of algorithm animations was to be used as teaching aids to help explain how 
specific algorithms work (Stasko et al 1993). The best-known algorithm animation system 
and the pioneer for algorithm animation is Balsa (Brown & Sedgewick 1985), and its 
descendant Balsa-II (Brown 1988). Balsa’s approach to animating algorithms is for a 
programmer to annotate the algorithm with markers that identify the fundamental operations 
to be displayed. 

This interactive, workstation-based system allows users to watch a spatial, high-level 
representation of data structures in a running Pascal program. The current statement(s) being 
executed is(are) highlighted in the source code and each data structure graphic reflects its 
current contents. The user can stop and start the program at any time, as well as control the 
program speed and run the program backwards (Price et al 1992). Balsa-II evolved from 
Balsa to support colour (to increase the distinction between data), to support rudimentary 
sound and to provide a scripting facility. Both tools allow the user to view concurrent 
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algorithms. In 1998 Brown began to create Zeus, which provides support for watching and 
hearing a program in action, through several different views. Again, the programmer 
animating an application, provides a description of the application’s fundamental operations, 
called (as in Balsa) “interesting events.” Zeus is one of the earliest systems to use sound or 
audio, typically to reinforce visuals. In a sorting algorithm, as the data is being sorted into its 
specific tables, a different sound is emitted depending on which table the data is sorted into. 

Stasko (1990) contributed an animation model with precise semantics called the 
path/transition paradigm. The focus of the path/transition paradigm is creating smooth, 
continuous image movement. This is accomplished by conceptually viewing all types of 
animation as an image moving along a path of incremental changes. To implement the 
path/transition paradigm, Stasko developed a textual algorithm animation system called 
Tango. Algorithm animation construction using Tango is, like Zeus, based upon Balsa's 
concept of identifying interesting events in an algorithm (Carlson & Burnett 1996). Tango 
eventually evolved to XTANGO, which has additional features, one of the most important 
being its ability to animate concurrent algorithms 

Empirical Studies on tools 

The general belief is that algorithm animations succeed in explaining how algorithms and 
concurrent code works. It’s believed that the dynamic, symbolic images in an algorithm 
animation help provide a concrete appearance to the abstract notions of algorithm processing, 
thus making them more explicit and clear (Kehoe et al 1999). However, very little empirical 
research has supported this (Stasko et al 1993, Kehoe et al 1999, Byrne et al 1996, Hübscher-
Younger & Hari Narayanan 2003, Hundhausen et al 2002). Our research review suggests that 
few empirical studies have been carried out on such tools these showed little, if any advantage 
when using algorithm animations to assist in learning algorithms.  

A study conducted by Stasko et al (1993) used an interactive animation to teach the pairing 
heap data-structure to computer science students. The results showed a “non-significant trend 
favouring the animation group” in scores on a post-test used to evaluate understanding. The 
authors attributed the poor result to the possibility that the visualization represented an 
expert’s understanding of the algorithm but not a novice’s. 

Another study that found limited effects for undergraduates using interactive animations was 
conducted in 1996 (Byrne et al 1996). This study carried out two experiments to examine the 
general claim that animations can help students learn algorithms more effectively. In this 
study, half of the participants were asked to make predictions on the behaviour of the 
animation. This was implemented because the authors believed that algorithm animations 
might encourage predictions of what is going to happen at each step of the algorithm. 

Experiment 1 started with the participants being shown a six minute videotaped lecture on 
depth first search given by one of the authors. After watching the videotape, participants were 
given a three-page text describing the depth first search algorithm. The 88 participants were 
split into 4 groups, one group per condition. The first factor consisted of animation vs. no 
animation. Participants who were assigned to the animation condition watched an animation 
of the depth first search. Those in the no-animation condition worked with static paper 
materials (pages with illustrations of the algorithm). The second factor consisted of prediction 
vs. no prediction; participants in the prediction condition made a series of explicit predictions 
during training about the behaviour of the depth first search algorithm, those in the no-
prediction condition did not. This is illustrated in fig.1. Participants then had an unlimited 
amount of time to work on a post-test. Questions on the post-test were divided into two 
categories: difficult and easy. An example of an easy question would be that the participant 
was required to determine the next step in a search. Difficult question were those that 
involved complete searches of novel graphs. Questions on the post-test were scored 
stringently as being either completely correct or incorrect. 
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Fig 1. – Breakdown of experiment 1. carried out in Byrne et el 1996 

The second experiment was similar to experiment 1. Participants first watched a videotape of 
an 11-minute lecture on binomial heaps. After watching the videotape, participants were 
given a 12-page text describing binomial heaps. Participants were again broken into four 
groups as in experiment 1. Participants in the no-animation/no-prediction condition were 
given 35 minutes to read the text. The other 3 groups were given 20 minutes to read it. Those 
who received only 20 minutes with the text then either simply watched the algorithm 
animation (animation/no-prediction condition), made explicit predictions while watching the 
animation (animation/prediction condition), or made explicit predictions from printed graphs 
(no animation/prediction condition). All participants then received the post-test, on which 
they had 25 minutes to work. 

The results of experiment 1 were not statistically reliable. However, the authors did state that 
the algorithm animation was beneficial to those who used it to answer the challenging 
questions in the post-test. Experiment 2 did not show that the animation benefited the 
participant when answering the post-test questions. 

According to Kehoe there may be several explanations for the lack of statistically significant 
findings: 

� That there are no or only limited benefits from animation, 
� That there are benefits, but the statistics in the experiments used in the studies are not 

sensitive to them, or 
� That something in the design of the experiment is preventing participants from 

receiving the benefits. In other words, the theory of how animations could help needs 
to be re-examined. 

In 1999, Kehoe et al carried out an empirical study to assess if the third reason could be 
responsible. There hypothesis was that the pedagogical value of algorithm animations would 
be more apparent in open, interactive learning situations (such as a homework exercise) than 
in closed exam-style situations (Kehoe et al 1999). 

The study measured the effectiveness of algorithm animation in an open homework-style 
learning environment, in which students were provided the questions at the beginning of the 
experiment and there was no time limit. Twelve students participated in the study, all 
volunteers and all graduate students. The students were divided into two groups and provided 
with learning materials about binomial heaps, with one group having access to algorithm 
animations and the other with learning materials such as still figures of the operations’ key 
points, but no algorithm animation. To test the learning capacity of the students, questions 
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were asked on binomial heaps about operations, definitions, mathematical properties, and 
running times. The questions were actually taken from the post-test in Byrne et al (1996). 

The animation that was used was the priority queue implemented with a binomial heap. In this 
study, the students from both the animation and non-animation groups performed similarly on 
most of the exam questions. One notable difference occurred on questions about concrete 
instances of the insert, union and extract-min operations on specific examples of heaps. On 
those questions, the animation students clearly out-performed the non-animation students. 
Thus algorithm animations seem best suited to help convey the procedural step-by-step 
operations of an algorithm, providing an explicit visual representation of an otherwise abstract 
process raising the congruence of the representation (Green 1977, Kehoe et al 1999 & Good 
1999) 

Lessons Learnt 

Algorithm animations provide visualisations to data structures and operations, which do not 
have any pre-existing visual basis. So, animation is being used not only to explain a dynamic 
process but also to depict entities without existing visual representations (Kehoe et al 1996). 
To visualise these entities appropriately for novices is a large barrier in the creation of 
algorithm animations. As stated earlier, Stasko stated that the visualisations displayed 
represented an expert’s view of the algorithm, not a novice (Stasko et al 1993). As experts 
define most of the algorithm animations, to inform novices, this suggests that evaluation is a 
core element in the definition of powerful algorithm animation tools.  

Much can be learnt from Kehoe, Stasko and Taylor’s study (1999). The study, in part, 
validated computer scientists who believe that animations improve the learning of algorithms. 
However our review suggests that this study is alone in providing evidence for the utility of 
algorithm animation tools. In addition, the questions posed did not assess the algorithm’s 
concurrency per se and so no studies have been used in the domain where algorithm 
animation tools would seem to have high utility.  

Program Comprehension Theories 
Program comprehension, has been defined as “the task of building mental models of the 
underlying software at various abstraction levels, ranging from models of the code itself, to 
ones of the underlying application domain, for maintenance, evolution, and reengineering 
purposes” (Muller 1994). 

Theories and Models of Program Comprehension 

Current research suggests that programmers attempt to understand code using predominantly 
two main strategies (Brooks 1997, 1983, Von Mayrhauser & Vans 1995, Pennington 1987).  

The first of these strategies, commonly known as the ‘top-down approach’, suggests that the 
comprehension process is one of reconstructing knowledge about the domain of the program, 
and mapping that to the actual code itself. Initially high level domain goals are hypothesized, 
and these goals are broken down into sub-goals. These sub-goals will be searched for, and the 
programmers will try to identify their existence in the implementation (Brooks 1983).  

The other strategy, known as the ‘bottom-up approach’, suggests that understanding a 
program is built from the individual lines of code, by reading the code and then mentally 
chunking or grouping these statements into higher-level abstractions (Pennington 1987). 
Initially this chunking is based on the source code representation and later on its mapping to 
the domain. 

However, it is unlikely that any programmer exclusively relies on one of the mentioned 
strategies. It has been proposed that the programmer subconsciously chooses one of these to 
be there predominant strategy, based upon their knowledge of the domain under study (Von 



 

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org 

Mayrhauser & Vans 1997, O’Brien & Buckley 2001) but free to switch as suitable cues 
become available to them (Letovsky 1986). 

O’Brien (2003) mentions that although all software comprehension models differ significantly 
in their emphasis, they all consist of four common elements, a knowledge base, a mental 
model, external representation and some form of assimilation process. External 
representations are any external views, which assist the code comprehension. For example 
documentation, the source code, experts advice and comments in the code could all be 
considered external representations. In the context of this research, external representations 
are the representations of the concurrent systems that algorithm animation tools portray to the 
programmer. The mental model is a programmer’s existing understanding of the system under 
study  (O’Brien 2003). Hence, these 2 elements are the most relevant in our efforts to build an 
evaluation framework for animation algorithm tools.  

 

 
Fig 2. – The main components of a software comprehension model 

Permission of O’Brien (2001) 

Several empirical studies have been performed to evaluate programmers’ resultant mental 
models of their systems (Good 1996, Pennington 1987 and Ramalinghan & Widenbeck 1998). 
These studies have generated schemas that characterize the information captured by 
programmers after they study a software system. However, it would be interesting to study 
programmers’ knowledge as they view external representations, to more accurately capture 
the value of these representations. Here we propose to extend Good’s (1999) information-type 
framework for assessing programmer’s mental models. In applying this framework to 
programmers’ talk-aloud data, as they view external representations, we can evaluate the 
types of information that programmers use when trying to understand systems. In extending 
the schema, our aim is to identify the impact of concurrency on system comprehension and to 
evaluate the quality of the information captured by programmers. 
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Good’s Schema 

Good (1999) suggests a content-analysis (Krippendorff 1980) approach to analysing novice 
program comprehension, which is based on lessons learned from previous approaches. Her 
methodology in assessing learning was to gather retrospective program summaries and 
analyze them. It was based on previous work carried out by Corritore and Wiedenbeck (1991) 
and more specifically, Pennington (1987).  

Pennington carried out her analysis by dividing up program summaries into statements. She 
then performed two analyses on the program summaries, classifying each statement by both 
information type and level of detail. Pennington’s information type classifications were:  

� Function: The main goal of the program is described. 
� Control flow: The execution sequence of a program, the order in which actions will 

occur. 
� Data flow: The series of transformations that data objects (variables, files) undergo 

from there initial states to the final program outputs.  
� Operations: The actions the program performs at the level of individual lines of code.  
� State: The conditions that specify the execution sequence of the code.  

In terms of level of detail analysis, four levels were defined:  
� Detailed statements contained references to specific program operations and variables.  
� Program level statements referred to a program’s procedural blocks such as a search 

routine or to files as a whole. 
� Domain level statements referred to real world objects such as cables and buildings.  
� Vague statements did not have specific referents. 

From analysing Pennington’s analysis, Good’s main criticism was a lack of clarity in how 
these categories could be obtained from programmer’s summaries. Good stated, “This is not 
to say that the analysis scheme itself is necessarily inadequate in some ways, but the absence 
of detail does not allow this to be ascertained” (Good 1999). Good proposed two new 
schemes on the back of this information. The classification is similar to Pennington’s but the 
information types classification is more finely grained. The object classification is essentially 
a more restricted version of Pennington’s level of detail.  The revised information type 
classification now consists of eleven categories as opposed to Pennington’s five, as listed 
below:  

� Function: the overall aim of the program – “ The program calculates the differences 
between the input distances” 

� Actions: Aims occurring in the program, which are described at a lower level than 
function, and at a higher-level than operations – “This sub-program checks each 
individual element of this list.” 

� Operations: Small-scale, single line of code events, which occur in the program, such 
as tests, assignment, etc. – “Then the program sets the height to head (height)” 

� State-High: A high-level definition of the notion of state: a test condition being met. 
State-high differs from state-low in terms of granularity – if “all the elements have 
been processed…”  

� State-Low: A lower-level version of the category stated above.– “If the head is greater 
than 180”  

� Data: Inputs and outputs to the programs, data flow through the programs, and 
descriptions of data objects and data states – “The program accepted a list of numbers 
indicating sun hours”  

� Control: Information having to do with program control structures and with 
sequencing e.g. recursion, calls to subprograms, stopping conditions – “And the sub-
program is called recursively.”  
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� Elaborate: Further information about a process/event/data object which has already 
been described – “[If the current mark is above a certain pass level] (65 in this 
case)…”  

� Meta: Statements about the participant’s own reasoning process – “…I can’t 
remember.”  

� Unclear: Statements, which cannot be coded because their meaning is ambiguous, 
interpretable – “[...which is the initial class] if your looking at [so it calls QS…].” 

� Incomplete: statements, which cannot be coded because they are incomplete, e.g. 
unfinished sentences – no example was given 

Good’s aim for using this classification was to “look at the way in which objects are 
described”. The main distinction being made is between program objects and domain objects.  
Goods’ object classification comprises of seven categories, as opposed to Pennington’s three 
levels of detail. Pennington’s program and detailed classifications have been collapsed into 
one “program” classification, while other finer-grained distinctions were introduced. 

Concurrency and Good’s Comprehension schema 
This research aims to use, and extend, Good’s methodology, to extract information that would 
show the information-types that novice programmers focus on when comprehending a 
concurrent program, and their confidence in their captured knowledge. We believe that 
analysis of program summaries will not sufficiently aid us in discovering information on how 
effective representations are in facilitating novice programmers’ comprehension of a 
concurrent program. Our opinion is that, to gather (the most relevant) information with 
respect to tool evaluation, concurrent talk-aloud data must be employed. In other words, if we 
are trying to capture the programmers comprehension process the best way to do this is to 
gather information from the programmer while he/she is conceptualising/comprehending the 
program. Once we have gathered the talk aloud data, we then intend to apply our modified 
version of Good’s methodology to it.  

In the sections below, alterations to Good’s schema are proposed and evaluated by means of 
an informal pilot experiment. Lessons learnt from the pilot, with respect to refining the 
schema are documented. 

Proposed Alterations and Extensions to Good’s Schema 

In its current state, Good’s schema does not concern itself with concurrency issues or tool 
evaluation. Thus we have extended the schema in several ways. Firstly, our proposed 
information types classification now consists of twelve categories. Eleven of the categories 
are the same as Good’s information types with one added: Efficiency/Effectiveness: This 
information type is not explicit to concurrent programming but is a major concern when 
making programs concurrent. As concurrent programs are created to increase the performance 
of systems, it is possible that more utterances will mention the performance of a concurrent 
program. Hence the inclusion of this category – “This simultaneous processing must reduce 
the speed of the program…” 
Two new, orthogonal, coding dimensions have been added. The first describes the level of 
detail with respect to the concurrency used in a program. Each category in this dimension 
illustrates how deeply novices delve into the concurrency of the programs, and the amount of 
time they spend at each level: 

� Program Level: This is the master or the highest level in a concurrent program. This 
level is where a programmer creates and initializes variables, lists and arrays that are 
to be used in a program.  

� Admin-Thread Level: This is the level where threads are defined, created, 
synchronized, and / or destroyed.  
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� Inter-Thread Level: This level includes all utterances that involve the subject 
mentioning cross thread actions. E.g. Comparisons of one thread to another and checks 
for deadlock etc.  

� Intra-Thread Level: The lowest level is the intra-thread level. This level is where the 
(thread) client work is done. All utterances about simple calculations (variable 
swapping etc) occurring exclusively within a thread are included here.  

The second orthogonal dimension is one of confidence and this specifically relates to the goal 
of evaluating the representations used. Each category in this dimension refers to differing 
levels of confidence in programmers’ utterances: 

� Questioning: This category demonstrates the high level of uncertainty in the 
participants understanding of the code. Typically, it can be identified by question-type 
phrasing (are there…?, I wonder if…?) or can be based on intonation of the utterance, 
where the participants tone elevates as they finish their phrase (although this analysis 
does require access to the spoken material). 

� Hypotheses: At a slightly higher level of confidence, the programmer can state 
educated guesses about the system being viewed. Typically, these utterances are 
signalled by key-phrases such as ‘I presume…’, ‘I assume….’ or ‘I think…’. 

� Certainty: Phrases in this category demonstrate a very high degree of confidence in the 
participant. They believe that what they are saying is a statement of fact. It is signalled 
by key-phrases such as ‘it is…., ‘so, it does….’. 

Pilot Study 
The pilot study described in this section was primarily employed to evaluate the schema for 
our requirements: that is, it was used to determine how valid the schema was for evaluating 
comprehension of concurrent systems. However, it was also used to refine the experiment 
method, which may be used as a basis for future studies. As such was carried out in a fairly 
informal manner where questions and comments by participants were encouraged.  
Two post-graduate students in computer science were used as participants for the study (here 
on in, referred to as P1 and P2). After they had signed a consent form, they were informed 
that they would be asked to study a small software system and summarize it, retrospectively. 
They were then presented with a hard-copy, source-code representation of this program, a 
multi-threaded quick-sort algorithm to try and understand, for 15 minutes. The code was in 
java and was 80 lines long.  
The subjects were requested to think aloud for the duration of the experiment so that their 
utterances could be captured. If at any stage they began to work silently, they were simply 
prompted, “What are you thinking now?” by the experimenter. They were then asked to write 
a summary of the program and fill out a short profiling questionnaire. From this profile, both 
participants had studied java, but only one had programmed concurrent applications and done 
a ‘Data-structures / Algorithm’ course as part of their undergraduate degree program (P1). 
Neither of the programmers used the full fifteen minutes allocated. P1 took eleven minutes, 
and P2 took seven minutes. At this stage, they felt they had comprehended the code 
sufficiently to write a summary of the program. Unfortunately, a review of their summary 
indicated that the participants had only a very general understanding of the overall function of 
the algorithm. P2 stated in the summary that it was ‘some sort of sorting’ algorithm. P1, also 
alluded to this sorting function with statements like’…that sorts the array…’  

Result Analysis 
Due to the pilot nature of this experiment, the first author encoded the talk-aloud transcripts 
alone. However, in doing so, he adhered to the decision processes defined in a ‘coder’s 
manual’ which was generated for the experiment. This manual describes how to translate 
utterances into the categories of the schema, and provides concrete examples to facilitate this 
encoding. This ‘coder’s manual’ is available, on request from the first author, and while it is 
still in its prototype stages, it does provide a degree of transparency over the coding process. 
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Unfortunately, due to the fact that there was only one encoding of the data, the reliability of 
the findings cannot be guaranteed. The findings are presented in table 1. 
 

Confidence Dimension 

Participant Questioning Hypothesis Certainty Total 
P1 1 18 124 143 
P2 2 7 60 69 

 
Information Type 

Part 
No Function Actions Operations 

State-
High 

State-
Low Data Control 

Efficiency/ 
Effictiveness Elaborate Meta Unclear Incomplete Total

P1 0 9 24 1 7 48 28 0 19 8 3 0 147
P2 0 3 13 6 5 18 8 0 9 9 1 0 72 

 
 

Utterance Focus 

Participant Program Level Admin thread Level Inter thread level Intra thread level Total 
P1 79 16 2 45 142 
P2 53 13 2 1 69 

 

Table 1: Results from the Data Analysis 

The reason that the analyses totals are different across rows is that there are no ‘bucket’ 
(Good 1999) categories associated with the ‘Confidence’ dimension and the ‘Utterance’ 
dimension. However, on first viewing, it seems that all the new categories are relevant, bar 
perhaps the ‘efficiency/effectiveness’ category. This is probably due to the fact that the 
participants had still only achieved a basic understanding of the algorithm and were not at a 
stage where they could start evaluating it.   
One surprising finding is the high level of certainty associated with participants’ utterances, 
especially given the general nature of their summaries. On closer inspection, certainty seems 
to be associated with lower level descriptions of the code, such as ‘operation’ type statements. 
Participants often described single lines of code with certainty, even when referring to ‘data’, 
‘control’ and state-low’ type utterances. This suggests that the confidence dimension should 
be analyzed with respect to only certain (more aggregate) information-type utterances. 
Another surprising finding was the low level of inter-thread focus. Again, this seems to be 
related to the general understanding that the participants developed of the code. Specifically, 
while they had identified the overall functioning of the system, they were not very aware of 
the mechanics of the algorithm used or its threaded-ness.  

Pilot-Based Refinements 
The pilot experiment suggests some obvious refinements to make before the next experiment. 
The first refinement is based on the representation given to participants. Giving a hard copy of 
the code to the participants was too limiting, particularly given the non-deterministic, 
complex, execution behaviour of concurrent systems. A soft copy in an executable 
environment would be more familiar to the participants and would increase their ability to 
evaluate what the code was doing. The static nature of a hard copy representation serves to 
obscure the complex execution behaviour of concurrent programs (Kehoe et al. 1999).  
In terms of experiment mechanics, a number of points were observed. P2 suggested that there 
were no comments in the code, which they found frustrating. This will not be amended for a 
future experiment as they were omitted purposely to reduce the ease in which the participants 
could discover the goal of the program. Also, as both participants used only seven and eleven 
minutes of the allocated time while getting a general understanding of the system, we believe 
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that 15 minutes is satisfactory, even when seeking more comprehensive summaries from 
participants. However, a follow-on point is that achievement (in terms of comprehension) 
must be stressed to future participants. Both participants in this study failed to gather a 
comprehensive understanding of the code, and while this can inform us as to the difficulties of 
comprehending such systems, we also need information generated by participants who did 
manage a comprehensive understanding. This will allow comparisons across the reasoning of 
both groups. Possible solutions include having a comprehension competition where the 
summaries are independently evaluated and prizes are given for succinct algorithm 
descriptions.  
Another reason for the study was to refine the coding schema. The first and most obvious 
refinement is the fact that there is no correctness category in the confidence dimensions. For 
example, P1 uttered that the program was in a continuous loop, and that "the threads seem to 
keep running, they don't suspend themselves at any time ". Under our original coding scheme 
this would be classified under the confidence category as ‘certainty’ but, as it is an incorrect 
statement, it should not indicate elevated comprehension. Hence, we need to combine our 
confidence dimension with a correctness measure.  
As mentioned above, in this pilot, a high amount of certainty utterances were produced. This 
was because participants simply reiterated lines of code. In future a refinement of this 
dimension is that it should only be applied when statements are of an information-type higher 
than operational (or more generally ‘Line of Code’) level. 
   

Conclusion 
In operating systems courses and concurrent programming courses students study various 
classical synchronization problems and parallel versions of sorting algorithms (Hartley 1994b, 
Tenenbaum 1992, Quinn 1994). Using algorithm animators, several computer scientists have 
attempted to reduce the high learning curve needed to comprehend these highly complex 
algorithms. There is insufficient empirical evidence supporting the assertion that these tools 
actually reduce the difficulty of the comprehension process.  

This paper moves towards an evaluation method for determining programmer’s 
comprehension of concurrent systems. It attempts to identify the information types they focus 
on, the confidence of their assertions and their focus with respect to concurrency. It is felt that 
this framework, when established, will assist algorithm animation creators in evaluating the 
ability of their tool to facilitate comprehension of concurrent systems. Future developers may 
also use the framework as a common baseline when extracting relevant information from their 
studies of programmers, thus allowing comparisons across studies.   
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