
Metaphors we Program By:
Space, Action and Society in Java

Alan F. Blackwell

University of Cambridge Computer Laboratory
William Gates Building, Cambridge CB3 0FD, UK

Alan.Blackwell@cl.cam.ac.uk

Abstract. A corpus analysis of the standard Java documentation revealed the
range of conceptual metaphors shared by library authors and users of packages
such as java.util and java.bean. These metaphors included the expected mental
models of internal program behaviour, but also consistent references to a spatial
image-world with material properties and flows. More surprisingly, program
components are metaphorically understood as actors with beliefs and intentions,
working together according to social relationships. Rather than mechanical
imperative models or mathematical declarative ones, it seems that one of the
most widespread bases for conceptual models of programming is of social
entities that act as proxies for their developers. This may have significant
implications for the design of new programming languages and environments.

1. Introduction

Most people who write computer programs have some kind of understanding of what
will happen inside the computer when it runs their program. This mental model [16] is
derived from textbooks, from conversations with other programmers, from
commonsense interpretation of the language semantics, and from system
documentation. Wherever it comes from, just as with the mental models that users
have of other technical systems [5], one certainty is that the programmer’s mental
model of program behaviour will only partially resemble that of the expert computer
scientists who originally designed the language. In order to improve the usability of
programming systems, designers need to understand the nature of the mental model
that users have of program behaviour, and hopefully use that knowledge to assist
learning, improve user interface design, or even modify the language specification.

A great deal of previous research at PPIG has investigated mental models of
programs, both among students who may become professional programmers in future,
and among end-user programmers. These approaches have focused on the program
execution model, and on the way that it is understood through the user interface of the
programming environment. This paper has a similar concern, but addresses a different
aspect of the programming environment, and a different means of communicating
with the programmer. Rather than virtual machines, execution models or
programming language semantics, this paper addresses the basis for mental models of
standard component libraries. Expertise in a particular programming language

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 18 Pages 7 - 21

18th Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006 www.ppig.org

increasingly depends on understanding and application of such libraries, yet only a
few studies [4,12] have focused on usability of libraries or APIs. So far as I am aware,
this paper is the first systematic study that has investigated mental models of
programming libraries. This topic is clearly relevant to improving the usability of
programming environments. It also offers a new perspective on the “ecology” of the
end-user programmers’ mental models, because of the wide range of people who
write libraries, including open-source developers, professional technical authors, and
specialist engineers. The underlying concepts of a new programming language are
relatively coherent, often having been developed by a single person. In contrast, the
extensive libraries of a language such as Java have been written by a large community
of developers, and represent a collective rather than individual design.

2. Conceptual metaphors as the basis for mental models

The research method applied in this study was originally developed in the field of
cognitive anthropology, although it is now widely used in applied linguistics,
education, psychology, philosophy and other fields. Popularised by George Lakoff
and Mark Johnson in their book “Metaphors we Live By” [7], it analyses the
structures and vocabulary of ordinary language in order to identify underlying
conceptual metaphor schemata. A typical example of such analysis might observe that
the phrase “my confidence is rising” does not refer literally to my climbing the stairs
or riding a balloon, but is a metaphor employing the common schema that INCREASE
IS UPWARD MOTION (in the conceptual metaphor literature, a schema is conventionally
identified by typesetting in small caps). Indeed, almost all our everyday abstract
language is found to rely on metaphors of physical motion, space or the body [6],
although conceptual metaphor analysis also reveals schemata derived from social
relations and other experience.

Many works have been published in the field of conceptual metaphor studies since
Lakoff and Johnson’s seminal book. A typical survey, including both case studies and
advice on research methods, is that by Cameron & Low [3]. Among HCI researchers,
the best-known applied example is probably an analysis of the desktop metaphor by
Tim Rohrer, a professional philosopher specializing in conceptual metaphor [13]. A
more substantial analysis of the relationship between conceptual metaphor theory and
user-interface metaphor as promoted in HCI is forthcoming [2].

The usual method of conceptual metaphor research is to take some corpus of
human discourse, either textual or an oral transcript, and code each utterance
according to the “literal” meaning of the vocabulary. However the term “literal” must
be treated with caution, because all language has evolved from many layers of dead
metaphor [9,14]. The analysis therefore depends on some (perhaps implicit)
hypothesis. For example, if the hypothesis is that all abstraction must be traced to a
visuo-spatial image (the image-schematic view), then an analyst might not stop with a
familiar abstraction, but could consider archaic derivations of the word that may be
unknown to the modern user. The text of this paragraph itself contains such examples:
“depend” originally means “to hang from”, while “abstract” means “to pull away
from”. The justification for “mining” vocabulary to this degree seems problematic,

Blackwell

PPIG 2006 University of Sussex 8 www.ppig.org

when claiming to represent mental models of the user, so I have avoided extreme or
archaic interpretations in this study.

3. Method of this study

This study reports a conceptual metaphor analysis of the Java documentation. The
original intention was to identify the extent of spatial imagery in the descriptions of
computational abstraction in the Java libraries, motivated by [1]. The method used
was influenced by this spatial imagery hypothesis, although as shall be seen, the main
findings did not support that hypothesis.

The corpus used for analysis was the Java documentation (javadoc) that is
distributed with the standard Sun Java SDK release. The version of the SDK used was
the Java 2 platform, standard edition 5.0 [15]. The full documentation in this release
comprises more than 64MB of HTML text, so it was necessary to select a subset for
this initial study. Motivated by the spatial imagery hypothesis, I wished to focus on
the fundamental computational models of everyday Java programming, and to avoid
functions that one might already expect to be based on visual or spatial images. For
example, I did not code the AWT (abstract windowing toolkit) package, as it would
be expected to describe images and spatial layout of the screen. I chose to focus on
three packages that express the Java computational model, and would be highly
familiar to Java programmers: the applet package, the beans package, and the util
package.

The java.applet package is a simple one, including only one class containing 25
methods, plus 3 other interfaces. It is to some degree obsolete, as most programmers
would now use the Swing equivalent JApplet, but is useful in providing a fairly pure
description of basic architectural concepts in Java, independent of graphics
management considerations. The total documentation in java.applet is about 800 lines.
I used this as a pilot corpus, in order to develop the coding procedure used for the
other two packages. The java.beans package is somewhat larger, including 26 classes,
9 interfaces and 2 exception types. This provides a more contemporary view of Java
system architecture, used by many programmers every day. The documentation of
java.beans totals about 5500 lines. I coded this corpus by hand, in order to ensure that
all terminology was seen and interpreted in the context where it was used. Finally, the
java.util package is one of the largest, and most frequently used, in the Java
distribution. It includes 49 classes, 16 interfaces and 20 exception types. The
documentation totals around 20,000 lines. I analysed this larger corpus automatically,
using techniques that were informed by the manual analysis of the two smaller
corpora.

3.1 Coding technique

The main objective in each analysis phase was to inspect the characteristic vocabulary
used by the javadoc authors, in order to identify candidates for conceptual metaphors.
This involved collating every word in every sentence of the documentation, apart

Blackwell

PPIG 2006 University of Sussex 9 www.ppig.org

from conjunctions, tense markers and other grammatical elements of English. In the
pilot java.applet corpus, the resulting vocabulary was surprisingly small – only 90
unique words, after elimination of alternate conjugations of each word, and of some
other word categories that are described in the results section as being highly
conventionalised.

I wished to focus on natural language descriptions of program behaviour, so did
not analyse identifier names. The recent study of identifier names by Liblit, Begel and
Sweetser [8] is therefore complementary to this study. I also omitted descriptions of
application domains, or any aspect of the program involving interface to the external
world. I coded every remaining sentence, including the introductory description of the
package and each class, descriptions of methods, variables, interfaces, exceptions and
parameters. All of these appeared in the documentation according to javadoc
conventions, including some heading terms that are repeated continuously (class,
method and so on).

Javadoc is generated automatically from comments in the program source code, so
it can be assumed to reveal the mental model of the programmers who implemented
the Java libraries and wrote original comments. Of course, as the main documentation
for the Java product release, we can also assume that it has been edited by
professional editors in order to improve its consistency and usability by ordinary Java
programmers. This is evident in, for example, the repetition of conventional phrases
when the same parameter must be documented in the context of a dozen different
methods. When coding manually, I coded only a single occurrence of each repeated
passage. It was not so easy, in the automated third phase of analysis, to identify and
ignore such repeated texts. However the volume of text considered in the third phase
is sufficient that local repetition has not had any significant effect on relative word
frequency.

In the pilot phase, I had been expecting that it would be necessary to read past
many occurrences of Java language keywords. In fact, these seldom appeared.
Instead, it became apparent that the idiom of javadoc writing is heavily influenced by
the conventional vocabulary of computer science textbooks, especially those
describing object-oriented software design. In the second and third analysis phases I
considered this jargon separately from other vocabulary, firstly because it is so
frequent, and secondly because the conventionalised nature of the idiom means that it
may not be fully interpreted either by writers or readers. Nevertheless, conceptual
metaphor analysis does take an interest in such conventionalised idiom, so although it
is less surprising, because more obviously synthetic, I summarise that content also.

The manual coding of the java.beans package resulted in a collection of about 330
unique terms. These were obtained by reading all 5,500 lines of documentation one
sentence at a time, identifying every word that was not a grammatical element or part
of the conventional Java jargon already isolated in the pilot phase, and counting
occasions on which that term was repeated later in the package. As explained, the
words in duplicated phrases and sentences were only counted when they first
appeared. Common duplications included the documentation for many slightly
varying constructors in a single class, or certain standard parameters that were
repeatedly documented in the context of many different methods.

The automated coding of java.util in the third phase provided a larger corpus of
data that could be used to verify the results of the second phase. However automated

Blackwell

PPIG 2006 University of Sussex 10 www.ppig.org

coding brought disadvantages, in that it was not possible to make a decision on each
word in the context in which it appeared. Instead, all words in the documentation files
were uniquely identified and counted, resulting in a list of about 4,000 unique words
extracted from the 20,000 line corpus. Basic grammatical elements were eliminated
from this list, as were all compound words (assumed to be identifiers), and references
to application domain entities such as geographic locations, calendar and time
terminology, mathematical terms, financial terms and so on. The remaining words
were sorted and collapsed to combine different prefixes, postfixes and other
conjugations of a common root word. The final list used for analysis comprised 1,100
unique terms, including some categories that were not explicitly counted in the first
two phases (for example, the word “class” appears 899 times in the documentation of
java.util, and the word “element” appears 1858 times). The corpus will have included
some homonyms (e.g. the verb “turn” for rotation, and the noun “turn” for
alternation), and the automated analysis in phase 3 did not distinguish the proportion
of times each meaning has been used. My coding was simply based on the first
definition appearing in a standard dictionary, so long as this was consistent with the
computational domain. Judgments were not checked by dual coding, although some
problematic cases were discussed with colleagues. As discussed later, this may
weaken the results, although consistent with much common practice in conceptual
metaphor research.

4. Results

Fig. 1. Overall coding, showing total occurrences (dark blue bars, left Y axis) and

individual words (light yellow bars, right Y axis) in each category

The results are discussed using several broad categories of word classification. These
categories are shown in Figure 1, which indicates the relative size of each category as

Blackwell

PPIG 2006 University of Sussex 11 www.ppig.org

found in the largest corpus (java.util). In this figure, and all those that follow, the
category size is compared according to two different statistics. The first, shown on the
left axis, shows the total number of times that any word in that category appears in the
corpus. The most common words appear very frequently indeed (one would expect
some approximation to the Zipf distribution), so all comparisons of frequency are
made on a logarithmic scale. The left hand axis is therefore calibrated on a log 10
scale. The second statistic is the number of different word roots that are included in
that category. In figure 1 we can see, for example, that although there are a small
number of words in the “context” category, these appear very frequently in the
corpus. These two statistics can be interpreted as giving an indication of the
predominance (occurrences) and richness (different words) of the respective
conceptual metaphors. A reviewer of this paper has noted that similar measures,
known as “type-token ratios” are studied in statistical linguistics.

The seven overall coding categories shown in Figure 1 are broken down further in
the next seven sections of the paper (unfortunately in a different order to which they
appear on the X axis of Figure 1). In this discussion, a number of conceptual
metaphors are presented. The narrative description is based on my qualitative reading
from the first and second phases of analysis. The quantitative indications of
predominance and richness within each metaphor are based on the third phase.

4.1 Conventional Terminology of Programming

Fig. 2. Occurrences of conventional descriptions of computation and action

Most of the nouns that appeared in the sentences of JavaDoc were either identifiers or
domain entities, neither of which were analysed (because, as explained, they do not
reveal general concepts of program behaviour). The remaining nouns, after removing
these two categories, were almost exclusively the highly conventional idiomatic
jargon terms that might be found in a Java textbook. There are about 80 of these
terms, and they are highly recognisable to any computer scientist: nouns such as

Blackwell

PPIG 2006 University of Sussex 12 www.ppig.org

string, stream, type, object, instance, element, member, parameter, constant, event and
exception (as well as some adjectives such as public, static and void). Some of these
are keywords in Java, while some are keywords in other languages, that might easily
have been chosen as keywords by the designer of Java. They are technical terms with
precise definitions, and a documentation writer would have little choice other than to
use the correct term. Less frequent, but also conventional, standardized jargon was the
regular use of technical mathematical terms (e.g. function, factor, addition,
enumerate).

In addition to programming and mathematical jargon, there are several other
categories of vocabulary that are less specialized, but still highly conventional in
computing discourse. It is quite conventional to describe algorithms as processing
data structures that consist of sequences (e.g. insert, alternate, next), arrangements
(e.g. pair, allocate, merge), or grammars (e.g. syntax, clause). These technical
conventions are not analysed any further in this paper. Finally, I found frequent use of
the dialectical terminology that is required whenever we describe complex logical or
philosophical matters in English (e.g. explicit, example, otherwise, therefore).
Although it is possible to analyse the underlying conceptual metaphors in
philosophical discourse [6], the results do not have any specific bearing on mental
models in programming, so I have grouped this category with mathematical and
programming jargon as simply conventional terminology that we would expect to find
in any corpus, and do not have particular bearing on the main hypotheses of this
research.

4.2 Metaphors of Action

Much of the behaviour of software is described in terms of actions that are to be
performed by components, or by the program as a whole. My analysis found many
references to generic action (e.g. operate, perform, effect, use, activity), whose
description might include the importance or significance of the action (e.g. typical,
important, optional), the potential and likelihood with which it will occur (e.g. certain,
likely, impossible), and the nature and consequences of the action in terms of generic
change of state (e.g. terminate, new/old, modify, start, create). Overall, these can be
described by the conceptual metaphor COMPONENTS ARE AGENTS OF ACTION IN A
CAUSAL UNIVERSE.

The causal nature of software components and programs means that they have
individual histories, and that their internal state is described as changing over the
course of time (e.g. regular, recent, immediate) PROGRAMS OPERATE IN HISTORICAL
TIME. Furthermore, the effects of action in the causal universe are discrete, able to be
counted, compared and measured, thus requiring descriptions of quantity (e.g. large,
less, many). PROGRAM STATE CAN BE MEASURED IN QUANTITATIVE TERMS.

Description of program behaviour in terms of action and change may seem
unsurprising. Nevertheless, we should note that this was not a foregone conclusion.
Internal program operation might easily have been described using conventions that
are based on set operations or declarative constraints rather than actions, causality and
state change. The object-oriented programming paradigm supports both imperative
and declarative specification styles, and documentation writers might choose to define

Blackwell

PPIG 2006 University of Sussex 13 www.ppig.org

behaviour in a declarative style. For example, Pane’s study of natural specification
style among children found regular use of declarative specifications of behaviour
rather than descriptions of specific actions [10]. The frequency with which I found
metaphors of action suggests that professional programmers may be better served by a
combination of declarative and imperative specification styles.

4.3 Social Metaphors

Fig. 3. Occurrences of social and mental metaphors

A surprising finding in early phases of my analysis was the occasions on which
program behaviour was described in social terms (e.g. reconcile, collude,
accompany). Classes and methods of the java libraries are described as associating
and interacting with each other, as well as with new components that might be
implemented by the person reading the documentation. The underlying conceptual
metaphor can be described as COMPONENTS ARE MEMBERS OF A SOCIETY. The
mechanisms of this society mirror and imitate much of the range of human society.
There is some indication, for example, that components participate in democratic
decision making, although this was described too infrequently to be a major finding.
More significant findings were the many descriptions of economic activity (e.g.
distribute, deliver, obtain) suggesting that COMPONENTS OWN AND TRADE DATA. The
metaphorical society of software components is a highly structured one, and is
described in terms of legal constraints and authority structures (e.g. impose, permit,
contract, violate) so that COMPONENTS ARE SUBJECT TO LEGAL CONSTRAINTS.

Any society relies on communication between its members, and it seems that
components share a wide range of human communicative behaviour. There is
relatively frequent description of interaction between components as speech acts (e.g.
instruct, query, offer, advise), suggesting the conceptual metaphor that METHOD
CALLS ARE SPEECH ACTS. The nature and structure of the information communicated is

Blackwell

PPIG 2006 University of Sussex 14 www.ppig.org

not limited to technical terminology, but uses a wide range of communicative styles
(e.g. refer, describe, indicate, represent), such that we can say COMPONENTS HAVE
COMMUNICATIVE INTENT.

4.4 Mentalistic Metaphors

When systems are partitioned into components, one of the main objectives of such
partitioning is to achieve “information hiding”. This was often described and
interpreted by the javadoc authors as if the components are far more than containers
for information, but are cognitive agents having their own beliefs and intentions. The
information that a component has available to it is described in terms of knowledge
and belief (e.g. interpret, consider, assume). On the basis of this knowledge,
components are able to choose courses of action, but this too is described
mentalistically (e.g. intend, desire). These suggest that A COMPONENT HAS BELIEFS
AND INTENTIONS. Much of the activity of a component is concerned with gaining
access to information from elsewhere. From the mentalistic perspective, this seems to
be described in terms of observation (e.g. measure, observe, recognize, scan).
COMPONENTS OBSERVE AND SEEK INFORMATION IN THE EXECUTION ENVIRONMENT. As
agents with their own intentions, it seems that the action of a component can also be
evaluated in terms that might normally be restricted to descriptions of human actors
(e.g. fair, malevolent, graceful), such that COMPONENTS ARE SUBJECT TO MORAL AND
AESTHETIC JUDGMENT.

4.5 Physical Metaphors

Fig. 4. Occurrences of spatial and physical metaphors

Previous research reported by Petre and Blackwell [11] revealed that expert
programmers often conceive of their program structures in terms of visuospatial

Blackwell

PPIG 2006 University of Sussex 15 www.ppig.org

images. That study focused on private experience, rather than descriptions that would
ever be documented, or even described to another programmer. Nevertheless, the
analysis of javadoc does reveal references to such spatial environments, even if the
environments themselves are never explicitly described. Spatial relations occur
regularly (e.g. back, contain, between, position), confirming the metaphor that
PROGRAMS OPERATE IN A SPATIAL WORLD WITH CONTAINMENT AND EXTENT.
Algorithms often involve some notional reference point traveling or moving about in
this world (e.g. turn, ascend, flip), with descriptions such that EXECUTION IS A
JOURNEY IN SOME LANDSCAPE.

Petre and Blackwell reported that designs can be experienced as buildings, or
arrangements of structures and material within an artificial built environment. The
metaphorical space of program execution is indeed described as a space of
construction and physical mechanism (e.g. adjust, structure, form). These structures
have physical and material properties (e.g. dynamic, efficient, hard), and they may be
more or less durable, requiring intervention and maintenance (e.g. preserve, degrade,
maintain). The overall metaphor is that PROGRAM LOGIC IS A PHYSICAL STRUCTURE,
WITH MATERIAL PROPERTIES AND SUBJECT TO DECAY.

An interesting aspect of this environment is that data moves and is moved from one
component to another, potentially corresponding to movement through the overall
space. In addition to describing the physical paraphernalia of material flow (e.g.
buckets, channels), the flows themselves are regularly described (e.g. fill, source,
generate, empty). Within the metaphorically physical world of the program, DATA IS
A SUBSTANCE THAT FLOWS AND IS STORED.

4.6 Metaphorical Borrowings

Fig. 5. Metaphors borrowed from other domains, and context of operation

Blackwell

PPIG 2006 University of Sussex 16 www.ppig.org

In addition to the systematic metaphors described above, there are a number of more
specialized views of computing, which draw on metaphors from other domains of
knowledge. To some extent, these reflect the intellectual context in which computing
is carried out. Early software engineering was conducted in the context of military
funding and applications, and there are a few remaining metaphors that can be seen as
drawing on the vocabulary of weaponry (e.g. target, trigger). These appear in other
scientific domains also, suggesting a conceptual metaphor in which TECHNICAL
RELATIONSHIPS ARE VIOLENT ENCOUNTERS. Alternatively, there are a set of
conventions in which the data manipulated by a program is described in literary terms
as a text (e.g. annotate, abbreviate, write), suggesting the conceptual metaphor that
PROGRAMS CAN AUTHOR TEXTS. It is also possible to describe information constructs
in non-textual, visual forms (e.g. render, exhibit, display), so that PROGRAMS CAN
CONSTRUCT DISPLAYS. It is likely that new metaphors will continue to develop,
adopting academic terminology current at any time. The rise of biosciences and
bioinformatics is likely to result in increasing use of biological metaphors (e.g.
mutate, clone, family, head/body/tail). In the broadest terms, we may find that DATA
IS A GENETIC, METABOLIZING LIFEFORM WITH BODY PARTS.

4.7 Context of System Programming and Operation

The documentation of an application program is likely to be based mainly on
descriptions of the domain in which the application operates. Internal operation of the
program will interact with the requirements of that external world, so that
conventional programming work involves maintenance and manipulation of both
internal models and domain models. In the case of the Java libraries, there is no
specific application domain, but only a highly generic execution context.
Nevertheless, there are some interesting metaphors describing the nature of this
generic context. One of these describes the sharing of agency between the software
(e.g. automatic, code) and either application developers or application users (e.g.
manual, human), applying the metaphor that SOFTWARE TASKS AND BEHAVIOUR ARE
DELEGATED BY AUTOMATICITY.

The developers of the Java libraries are also highly aware of the context of
technical evolution and standardization within which their work is situated. This is
described in terms borrowed from human culture and history (e.g. legacy, traditional,
obsolete), with the perhaps obvious metaphor that SOFTWARE EXISTS IN A
CULTURAL/HISTORICAL CONTEXT.

5. Discussion

This research has revealed a number of systematic conceptual metaphors in the
documentation of central Java libraries. Although the relative frequency of different
categories is obviously influenced by the object-oriented programming paradigm,
many of the metaphors found do not appear to be specific to OO libraries, or to Java,
but reflect generic mental models of software operation. Some of them are already

Blackwell

PPIG 2006 University of Sussex 17 www.ppig.org

familiar, because they are derived from the standard concepts and terminology of
computer science and programming textbooks. I have not attempted to deconstruct
that standard terminology, although this would certainly be an interesting exercise,
perhaps based on a corpus of educational material. Many of the metaphors that I have
identified by induction map onto certain perspectives in OO programming and design,
for example the relationship between economic “ownership” of data that I have
described, and the familiar concept of encapsulation, which is often described loosely
as a matter of an object “owning” data. I have attempted to emphasise the external
reference of the metaphor rather than the existing formalisation, but certainly
recognize that they may appear very familiar to Java programmers.

Findings from this study that are worthy of note include the predominance of
descriptions of causal action (rather than more declarative style specifications of
component behaviour and interaction that might be supported within the OO
paradigm), and confirmation of Petre and Blackwell’s earlier findings regarding
programmers’ use of spatial and physical imagery [11]. The most interesting new
finding is the predominance of cognitive and social descriptions of software
components. The presumption of object-oriented languages, and indeed of packaged
libraries, is that software should be assembled from such components. The traditional
metaphorical view (e.g. [1]) is that these components should be viewed in mechanical
terms. Although this study did find reference to physical mechanisms with material
flow between them, social conventions and concepts seem to be at least as important
as the common conceptual basis of programming work.

It is interesting to observe that the java.bean documentation included only about 10
occasions on which the writer directly addressed the reader (there may also have been
similar occurrences in the java.util documentation, but the automated analysis
technique did not preserve them). These were phrased as advice: “we recommend …”,
“if you want, then you can …”, “you might want to check out …”, “we advise …”
and so on. It is perhaps surprising how seldom such phrasing occurs, given that
javadoc is the primary source of information for java developers. It seems that the
java package authors far more often allow their code to act as a social proxy for
themselves, describing the preferences and requirements of the class that they have
written, but not placing themselves in this relationship. (Of course educational
literature and tutorial guides are far more likely to include direct advice to the reader,
although less interesting as source data for mental model analysis, because less likely
to have been written by the programmers themselves).

The most novel metaphor implied by these findings is that SOFTWARE
COMPONENTS ARE SOCIAL PROXIES FOR THEIR AUTHORS. This is highly interesting, and
warrants further investigation of the social psychology of library authorship. For
example, in the case of metaphors of legal constraint, it is programmers who define
those constraints and make the laws of the society in which their components act. The
habitual use of legal terminology, political and business authority structures encodes
hierarchies or power relations. These range from harsh (violate, constrain) to
conciliatory (negotiate, elect). No doubt programmers and library developers are
aware of such dynamics, although the way that they are revealed in the vocabulary of
system documentation may be largely unconscious.

Blackwell

PPIG 2006 University of Sussex 18 www.ppig.org

5.1 Weaknesses of the Method

Conceptual metaphor analysis is always a subjective exercise, as it relies on the re-
interpretation of texts. In my own experience of the field, some research papers
appear far more like works of literary criticism than empirical scientific analysis.
There is some ground for empiricism in the quantitative comparison of frequency of
occurrence, and this allows a degree of replicability, at least with respect to the
generality of results, even if not their exact interpretation. In particular, the large scale
quantitative analysis in the final phase of this study, although apparently substantive
evidence, is also problematic. The quantitative information has enabled useful
frequency comparisons, but the frequency of individual words taken out of context
must be interpreted with care. In this study, the comparison to a prior manual coding
phase was essential, and even then, it was possible to make errors. For example, an
earlier version of this paper accidentally counted occurrences of the word “import” as
referring to economic activity, when in fact I should have remembered that this is a
Java keyword, and therefore fell into a group that would not be analysed as expressing
further metaphors. A more rigorous study might employ dual coding and inter-rater
reliability tests.

5.2 Implications for Design

This corpus analysis has found more diversity in conceptual metaphors of Java
programming than might have been expected on the basis of “official” advice and
jargon. Nevertheless, this diversity should not be surprising. Individual programmers
will have differing habits of thought and preferences, and different applications and
technical problems require different conceptual approaches. In the domain of software
specification and design, the need to support diverse models has been recognized in
the wide variety of different notational formalisms that were been brought together in
the definition of the Unified Modeling Language (UML). UML thus helps
programmers (and non-programmers) who think in different ways to work together.
Different programming languages also cater for different conceptual models, but it is
unusual to see a very wide range of programming paradigms used in a single
commercial project, to the extent that is common in UML use.

Now that multi-language development and execution environments such as Eclipse
and .NET are becoming widespread, it would be sensible to think more carefully
about the conceptual models on which they are founded. In particular, the history of
UML (incorporating earlier generations of notations from other paradigms alongside
more recent object oriented concepts) suggests that it is both useful and possible to
support a variety of conceptual design models, so long as these can be integrated via
common interface semantics. In the case of programming languages, optional
alternatives might include conventional declarative and imperative programming
models, but could also allow for the some of the conceptual models revealed in this
study that are not directly supported by conventional languages. Support for visuo-
spatial imagery is one of these, and may well explain the persistent intuition that there
is some advantage in visual programming languages. More significantly, support for
the widespread social metaphors found in this study is absent both from contemporary

Blackwell

PPIG 2006 University of Sussex 19 www.ppig.org

programming environments, and from programming language research. The use of
social metaphors as a fundamental model of programming may be a productive
direction for future research.

6. Future work

This analysis has been based on a single corpus, and the findings therefore describe
mental models of programmers working with the Java language, and within the
object-oriented programming paradigm. It seems likely, given the range of conceptual
metaphors that have been found, that many of these will also be found among
programmers working with other paradigms, although probably in different
proportions and frequencies. Nevertheless, this should be confirmed by similar studies
of corpora developed within those other paradigms. An obvious target would be the
libraries of one of the major functional programming languages, such as Haskell or
ML. Where these libraries include components intended for use by a larger
community, will the documentation of those components also describe interaction in
terms of material flows, and in terms of social relationships with the components
constructed by others? It seems likely that they will, but this can only be determined
by further study.

The method applied here has been an inductive one, and has not attempted to
address the question of where these metaphors come from. Undoubtedly they will be
reflected in textbooks, course material, online tutorials (including the overview
“guide” material that is also included, alongside JavaDoc documentation, in the
standard Java distribution), and professional resources such as documentation of
advanced programming patterns. Analysis of these different sources would be a
valuable complement to the present study. In particular, it would allow further
inspection of my (problematic) claim that some jargon terms are so completely
embedded in educational and professional discourse that they should not be analysed.
In the present study, that particular decision was taken in order to focus on the
identification of novel and unanticipated metaphors. In future, I suggest that only
language keywords be excluded (and even these might be a focus of analysis in order
more deeply to inspect the mental models of language designers).

Acknowledgements

William Billingsley and Darren Edge provided valuable assistance, criticism and
suggestions in this work.

References

1. Blackwell, A.F. (1996). Metaphor or Analogy: How Should We See Programming
Abstractions? In P. Vanneste, K. Bertels, B. De Decker & J.-M. Jaques (Eds.),

Blackwell

PPIG 2006 University of Sussex 20 www.ppig.org

Proceedings of the 8th Annual Workshop of the Psychology of Programming Interest
Group, pp. 105-113.

2. Blackwell, A.F. (in press). The reification of metaphor as a design tool. To appear in
ACM Transactions on CHI.

3. Cameron, L. & Low, G. (eds.) (1999). Researching and applying metaphor.
Cambridge, UK: Cambridge University Press

4. Clarke, S. & C.Becker (2003). Using the cognitive dimensions framework to measure
the usability of a class library. In Proceedings of the First Joint Conference of EASE
& PPIG (PPIG 15).

5. Gentner, D. and Stevens A.L. (Eds.) (1983) Mental Models. Lawrence Erlbaum
Associates, Hillsdale, NJ, pp. 99-130.

6. Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination
and reason. Chicago: University of Chicago Press

7. Lakoff, G. & Johnson, M. (1980). Metaphors We Live By. Chicago, The University of
Chicago Press.

8. Liblit, B., Begel, A. and Sweetser, E. (2006). Cognitive perspectives on the role of
naming in computer programs. In Proceedings of PPIG 2006 (this volume).

9. Nietzsche, F. (1873/ 1999). On truth and lying in a non-moral sense. In R. Geuss and
R. Speirs (Eds), The birth of tragedy and other writings. Cambridge, UK: Cambridge
University Press pp. 139-153

10. Pane, J.F., Ratanamahatana, C.A. and Myers, B.A. (2001). Studying the language and
structure in non-programmers' solutions to programming problems. International
Journal of Human-Computer Studies, 54(2), 237-264.

11. Petre, M. & Blackwell, A.F. (1999). Mental imagery in program design and visual
programming. International Journal of Human-Computer Studies, 51(1), 7-30.

12. Rodden, K. and Blackwell, A.F. (2002). Class libraries: A challenge for programming
usability research. In Proceedings of PPIG 2002, pp. 186-195.

13. Rohrer, T. (1995). Metaphors we compute by: Bringing magic into interface design.
Online report of University of Oregon Philosophy Department, Center for the
Cognitive Science of Metaphor,
http://philosophy.uoregon.edu/metaphor/gui4web.htm (accessed 7 June 2005)

14. Rorty, R. (1989). Contingency, irony and solidarity. Cambridge, UK: Cambridge
University Press.

15. Sun Microsystems Inc. (2006). Sun Developer Network J2SE 5.0 – Download page
for Java 2 Platform Standard Edition 5.0. Available online at
http://java.sun.com/j2se/1.5.0/download.jsp. Last accessed 18 May 2006.

16. Young, R.M. (1981). The machine inside the machine: Users’ models of pocket
calculators. International Journal of Man-Machine Studies, 15(1), 51-85.

Blackwell

PPIG 2006 University of Sussex 21 www.ppig.org

