
Subsetability as a New Cognitive Dimension?  
 

Robert M. Dondero, Jr.1 and Susan Wiedenbeck2

1 Drexel University, School of Information Science and Technology 
Philadelphia, PA, U.S.A. 

robert.m.dondero@drexel.edu 
http://www.ischool.drexel.edu 

2 Drexel University, School of Information Science and Technology 
Philadelphia, PA, U.S.A. 

susan.wiedenbeck@ischool.drexel.edu 
http://www.ischool.drexel.edu/faculty/wiedenbeck/index.html 

Abstract. Subsetability is the ability to decompose programming languages 
and environments into a hierarchy of subsets, each of which can be used by stu-
dents to create complete, meaningful computer programs. This paper argues 
that a programming language/environment's subsetability positively affects its 
learnability and teachability. The argument is supported by citing relevant theo-
retical research, little of which is grounded in empirical studies. Then the paper 
goes on to argue that subsetability may be a new "cognitive dimension of nota-
tional systems," as defined by Green and Blackwell. It does so by analyzing 
subsetability in terms of Blackwell's criteria for dealing with new cognitive di-
mensions. 

1   Introduction 

In many years of experience with learning and teaching programming languages and 
environments (PL/Es), we have observed that some PL/Es are much easier to learn 
and teach than others. We believe that the ease of learning and teaching a PL/E is 
correlated with its subsetability. Informally, we define a PL/E's subsetability as the 
ability to decompose the PL/E into a hierarchy of subsets, each of which can be used 
by students to create complete, meaningful computer programs. Subsequent sections 
of this paper provide a more rigorous definition. Furthermore, we believe that the 
correlation is causal: a PL/E's subsetability positively affects its learnability and 
teachability; conversely, a PL/E's lack of subsetability negatively affects its learnabil-
ity and teachability. 

The first part of this paper defines subsetability, and describes theoretical argu-
ments that subsetability implies learnability and teachability. The second part pro-
poses that subsetability may be a valid "dimension" along which many "notational 
systems" (i.e. notation plus environment) can be analyzed. That is, subsetability may 
be a new cognitive dimension of notational systems [1]. 

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 18 Pages 230 - 243

18th Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006 www.ppig.org



More specifically, Sections 2 and 3 describe the conceptual foundations of the con-
cept of subsetability: "nearly decomposable hierarchies" and "increasingly complex 
microworlds." Section 4 defines subsetability, and Section 5 shows how the concept 
applies to PL/Es. Section 6 claims that a PL/E's subsetability positively affects its 
learnability and teachability, and describes some research supporting that claim. Sec-
tion 7 presents arguments that subsetability may be a new cognitive dimension of 
notational systems. The final section offers a summary and some potential ramifica-
tions of this on-going research. 

2   Nearly Decomposable Hierarchies 

Simon eloquently explains that many natural systems are nearly decomposable hier-
archies. He argues that their decomposability facilitates our learning and teaching of 
them. "The fact then that many complex systems have a nearly decomposable, hierar-
chic structure is a major facilitating factor enabling us to understand, describe, and 
even 'see' such systems and their parts. Or perhaps the proposition should be put the 
other way around. If there are important systems in the world that are complex with-
out being hierarchic, they may to a considerable extent escape our observation and 
understanding" [2]. By implication, the fact that many natural ─ and artificial ─ sys-
tems are only "nearly" decomposable inhibits our learning and teaching of them. 

3   Increasingly Complex Microworlds 

Related to Simon's concept of system decomposition is the microworld concept. The 
term microworld was popularized by Papert in his classic "Mindstorms" book. A 
microworld is "an incubator for knowledge, a 'place' ... where certain kinds or mathe-
matical thinking could hatch and grow with particular ease" [3]. As the name implies, 
a microworld is a "small world," a subset of some "world" of skills that a student is 
attempting to learn. 

According to Burton, Brown, and Fischer, "A microworld is created by manipulat-
ing three elements: the equipment used in executing the skill, the physical setting in 
which the skill is examined, and the task specification for the given equipment and 
physical setting" [4]. For example, in the world of skiing, equipment includes skis of 
various lengths, bindings, poles, etc.  Physical settings include mild slopes, steep 
slopes, combinations of downward and upward slopes, etc. Task specifications in-
clude snowplowing, stopping, changing direction, etc. A teacher should construct a 
microworld so it provides: 

• "The right entry points into an environment, making it easier to get started 
on a subskill. 

• An environment in which the student feels safe, allowing him to focus his 
attention on learning skills. 

• Intermediate goals or challenges that are, and seem to be, attainable. 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 231 www.ppig.org



• Practice of the important subskills in isolation, allowing the common 'bugs' 
to occur one at a time instead of in bunches" [4]. 

Burton et al elaborate upon the microworld concept by suggesting that a teacher 
should define a linear sequence of microworlds to guide the student toward under-
standing of the world at hand. The first microworld in the sequence should constrain 
the world substantially, and each subsequent microworld should remove some of the 
constraints imposed by its predecessor. Thus the student learns about the world by 
traversing a linear sequence of increasingly complex microworlds (ICM). 

4   Subsetability 

Inspired by Simon's concept of nearly decomposable hierarchy, we suggest that the 
ICM concept can be extended beyond the linear topology that Burton et al describe. 
Specifically, we suggest that many "worlds" can and should be decomposed into a 
hierarchy (more properly, a directed acyclic graph, alias lattice) of microworlds, of 
the form illustrated by Figure 1. 

 

Microworld A

Microworld FMicroworld E

Microworld DMicroworld CMicroworld B

Microworld G

 
Fig. 1. A lattice of microworlds 

 
In the lattice, each node denotes a microworld, and each directed edge denotes a 

learning dependency: an edge from node X to node Y (for any X and Y) indicates that 
the student must become comfortable with the skills illustrated by microworld X 
before moving to microworld Y. In other words, microworld X is prerequisite to 
microworld Y. Part of the teacher's job is to present the student with a linear sequence 
of microworlds that respects the learning dependency relationships defined by the 
lattice. 

As with Burton et al's linear model, we suggest that each microworld in the lattice 
should be small, thus allowing the student to focus on a few new skills. More pre-
cisely, the "root" microworld(s) should constrain the world substantially, and each 
"child" microworld should remove only a few of the constraints imposed by its parent 
microworld(s). 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 232 www.ppig.org



We define subsetability as the extent to which a world can be decomposed into 
such a lattice of microworlds. 

5   Subsetability of Programming Languages and Environments 

In our experience, the concept of subsetability applies to the learning and teaching of 
PL/Es. In the world of PL/Es, the equipment consists of the programming language: 
C, C++, Java, Scheme, etc. The physical setting consists of the programming envi-
ronment: text editor and command-line interface, Eclipse, Microsoft Visual C++, 
Borland JBuilder, etc. The task specifications consist of programming projects. Ex-
amples of reasonable microworlds for many PL/Es might be entitled hello-world, 
read-compute-write, transfer-of-control, functional-decomposition, arrays, files, 
classes-and-objects, etc. 

To illustrate the applicability of subsetability to PL/Es, we note that many popular 
PL/Es are not particularly subsetable, especially near the "roots" of their microworld 
lattices. Consider these examples: 

5.1   Example 1: "Hello-World" in C 

Consider the hello-world microworld ─ arguably the microworld at the root of the 
lattice of many PL/Es. That microworld has a single task specification: command the 
computer to print "hello, world." Suppose the equipment is the C programming lan-
guage, and the physical setting consists of an ordinary text editor and command-line 
interface. 

To implement the task, the student must use the editor to create, and the command-
line interface to prepare, this code: 
#include <stdio.h> 
int main(void) 
{ 
   printf("hello, world\n"); 
   return 0; 
} 

Note how many language features the student must know to create that code: pre-
processor directives, header files, function declarations, function definitions, function 
return types, the main() function, parameters, "void" as a parameter specification, 
statements, function calls, the printf() function, strings, the newline character, the 
"return" statement, function return values, and the "0 as successful termination" con-
vention. Thus note the enormous size of the equipment subset corresponding to that 
microworld. In that sense, we claim that the C/text-editor PL/E world is not particu-
larly subsetable, at least at the root of its microworld lattice. The hello-world mi-
croworld has an equipment set that is not "micro." 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 233 www.ppig.org



5.2   Example 2: "Hello-World" in Java 

The Java programming language is even worse with respect to subsetability at the 
root of its microworld lattice. Consider the same hello-world microworld imple-
mented using Java as the equipment and a text editor and command-line interface as 
the physical setting. To implement the task, the student must create this code: 
class Hello 
{ 
   public static void main(String[] args) 
   { 
      System.out.println("hello, world"); 
   } 
} 

Again note how many language features the student must know: classes, method 
definitions, the main() method, public methods, static methods, method return types, 
"void" as a method return type, the String class, arrays, parameters, statements, the 
System class, static fields, the public static "out" field within the System class, the 
println() method within the PrintStream class, and String literals. The equipment set 
for the hello-world microworld has enormous cardinality. Thus we claim that the 
Java/text-editor PL/E is not particularly subsetable, at least at the root of its mi-
croworld lattice. 

5.3   Example 3: "Read-Compute-Write" in C 

Now consider the read-compute-write microworld ─ arguably a microworld near the 
root of the microworld lattice of many programming languages. A typical task speci-
fication in that microworld might be "read an integer, and compute and write its 
square." Suppose the equipment is the C programming language, and the physical 
setting is a text editor and command-line interface. The student must create this code: 
#include <stdio.h> 
int main(void) 
{ 
   int i; 
   printf("Enter an integer:\n"); 
   scanf("%d", &i); 
   printf("The integer squared is %d\n", i * i); 
   return 0; 
} 

Note that the student must learn several new language features beyond those used 
in the hello-world microworld: variables, the scanf() function, scanf() conversion 
specifications, printf() conversion specifications, and the multiplication operator. 
Most problematic is the need to use the "address of" operator in the call to scanf() ─ 
an operator whose meaning the student cannot adequately understand until he/she 
becomes comfortable with the, say, arrays-and-pointers microworld, which appears 
much lower in the lattice. In that sense, we claim that the C/text-editor PL/E is not 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 234 www.ppig.org



particularly subsetable near the root of its microworld lattice. The read-compute-write 
microworld has an equipment set that is not "micro." 

5.4   Example 4: "Read-Compute-Write" in Java 

Finally, consider the read-compute-write microworld and its "read an integer, and 
compute and write its square" task in Java using a text editor and command-line inter-
face. The student must use the editor to create this code: 
class Square 
{ 
   public static void main(String[] args) 
   { 
      int i; 
      System.out.println("Enter an integer:"); 
      i = NonStandardClass.readInt(); 
      System.out.print("The integer squared is "); 
      System.out.println(i * i); 
   } 
} 

Again note that the student must learn a few language features beyond those in the 
hello-world microworld: variables, the print() method within the PrintStream class, 
and the multiplication operator. More significantly, the Java language contains no 
standard class for handling keyboard input. So the teacher must introduce some non-
standard class, accompanied by some rather awkward baggage: instructions about 
how to place that class in the CLASSPATH, perhaps by copying the class definition 
into the current directory, explanations about why that class does not appear in the 
Java documentation or textbook, etc. Thus we claim that the Java/text-editor PL/E is 
not particularly subsetable near the root of its microworld lattice. 

5.5   The Interplay of Programming Language and Environment 

In fact, for the C/text-editor and Java/text-editor PL/Es, the ICM approach is not 
feasible in its proper form.  Instead the teacher must formulate compromised mi-
croworlds consisting of proper physical settings (programming environment), proper 
task specifications (programming project), and "improper" equipment sets (program-
ming language features) containing multiple forward references to features that more 
properly belong to "child" microworlds. The teacher must ask the students blindly to 
accept the forward references "on faith" or "as part of a fixed template," with the 
promise of covering those advanced features later. 

Note, however, that the choice of physical setting (programming environment) can 
affect a world's subsetability dramatically. For example, the ProfessorJ programming 
environment [5] implements a read-eval-print loop (REPL) that allows students to 
instantiate new objects of existing classes, and then send them messages, without 
defining a main() method. Thus the Java/ProfessorJ PL/E has a substantially different 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 235 www.ppig.org



microworld lattice than the Java/text-editor PL/E does. That microworld might be 
substantially more subsetable. 

6   PL/E Subsetability, Learnability, and Teachability 

We believe that the "nearly decomposable hierarachy" and "increasingly complex 
microworlds" theoretical arguments strongly suggest that a PL/E's subsetability posi-
tively affects its learnability and teachability. Can the effect be shown empirically? 
The following sections describe several efforts to develop or evaluate restricted lan-
guages for novice programmers. 

6.1   Language Levels 

Findler and his colleagues developed DrScheme, a programming environment for 
Scheme designed to support students in introductory courses [6, 7]. While the envi-
ronment includes many tools to aid students, the most interesting aspect of DrScheme 
is the implementation of language levels. A language level provides the programming 
language features needed to teach a certain set of constructs, but it hides language 
features that are unnecessary and may interfere with the current pedagogical goals. 
For example, a beginning student might use an identifier without realizing that it is a 
keyword. This would result in an error message that is inexplicable to the student, at 
once frustrating and slowing the progress of the individual. 

DrScheme implements four language levels, with each successive level extending 
the previous level. The Beginner Level includes definitions, conditionals and a large 
number of functional primitives. The Intermediate Level provides structure defini-
tions and local binding constructs. The Advanced Level adds variable assignments, 
data mutations, and implicit and explicit sequencing. Finally, the highest level, re-
ferred to as Full, corresponds to the full Scheme language. DrScheme has been used 
in introductory programming courses but no empirical evaluation has been done. 
Another similar pedagogical environment, ProfessorJ, implements language levels for 
Java, but like DrScheme has not been evaluated rigorously in the classroom [5]. 

6.2   Mini-Languages, Sub-languages, and the Incremental Approach 

Mini-languages and sub-languages are two approaches for helping beginners learn to 
program. As described by Brusilovsky, mini-languages are small, simple languages 
meant to support the earliest experiences in programming [8, 9]. Mini-languages 
often have physical actors, such as a turtle, that the learner controls by issuing simple 
commands or by writing programs in the case of executing more complex actions. 
Mini-languages also can have virtual actors that the learner controls via programming 
[10]. One advantage of mini-languages is that the language itself is small and simple, 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 236 www.ppig.org



and in addition the learner is not exposed to a complex environment. Another advan-
tage is that the actions of the actors are visible, allowing learners to understand the 
effects of their programs. The syntax and semantics of mini-languages are usually not 
tied directly to the syntax and semantics of a professional programming language. 
This allows students to learn principals of problem solving through programming 
without the overhead of a full programming language [8, 9]. 

Sub-languages are similar to mini-languages in their goal of introducing beginners 
to programming in a way that protects them from the complexity of a full-blown 
programming language. However, sub-languages differ from mini-languages because 
they are "starting subsets" of a full language rather than miniature languages with 
their own unique syntax and semantics [8]. A sub-language extends a programming 
language by providing additional commands used in combination with standard con-
trol structures of the programming language. For example, including turtle graphic 
commands in a standard programming language is an extension to aid learners. The 
sub-language approach may be better than mini-languages for students who plan to 
go on to learn the full language because the transfer to the full language will be 
smoother. In effect, moving to the full language is equivalent to the concept of fading 
scaffolds as the student gains mastery [11, 12] 

Finally, the incremental approach to language learning (also referred to as subset-
ting) is also meant for learning introductory programming in a manner that will help 
the learner to migrate to the full language. The difference between the incremental 
approach and the sub-language approach is that in the incremental approach the stu-
dent is taught a sequence of language subsets, leading toward the full programming 
language [8]. There are no special purpose commands and features that extend the 
standard language for novices. Instead the learner moves from one subset to the next 
in a staged manner, while keeping all the features of the previous subset(s). Each 
subset is defined and can be learned independent of other subsequent subsets [8]. 
DrScheme and ProfessorJ are examples of the incremental approach. 

6.3   Programming Environment Subsets 

As mentioned previously, subsetting has been developed and used as a pedagogical 
strategy in DrScheme and ProfessorJ, but there have been no empirical evaluations of 
them. However, one empirical evaluation of subsetting has been reported in the litera-
ture [13]. The setting of the evaluation was a first programming course using Java 
over a semester of 13 weeks. Two experimental groups used Java with an environ-
ment specially designed for simplicity: one group used subsetting while the other 
used the full Java language. The two groups worked in the simple environment for 
nine weeks and then both groups transferred to the professional Java.net environment 
(including the full Java language) for the last four weeks of the semester. The results 
for the first nine weeks indicated that there was no significant difference in perform-
ance between the group that used subsetting and the group that used the full Java 
language. Furthermore, when the two groups migrated to Java.net there was no sig-
nificant difference in their assignment scores. While these results do not favor subset-
ting, more empirical study is warranted. This is a single study that needs to be repli-

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 237 www.ppig.org



cated, perhaps with methodological changes. In particular, the study appears to have 
faced the dilemma of ecological validity versus experimental control.  

7   Subsetability as a New Cognitive Dimension 

The rest of this paper addresses the issue of whether subsetability might be consid-
ered a new cognitive dimension (CD) of notational systems. In that regard, Blackwell 
[14] provides a road map. He lists six criteria that any proposed new cognitive dimen-
sion should satisfy: applicability, polarity, object of description, orthogonality, granu-
larity, and effect of manipulation. Each of the following subsections considers subse-
tability with respect to one of those criteria. 

7.1   Applicability 

"One of the desirable properties of a CD is that it should make sense to talk about it in 
a wide range of different situations. This has not always been achieved with the cur-
rent set of dimensions" [14]. 

We believe that subsetability applies to notational systems in addition to PL/Es. 
Consider alarm clocks ─ notational systems far removed from PL/Es. Although using 
alarm clocks is much simpler than using PL/Es, we submit that alarm clocks, to vary-
ing degrees, suggest simple lattices of microworlds: set-and-read-the-time, set-and-
activate-and-deactivate-the-alarm, set-the-snooze-feature, etc. Thus we believe that 
subsetability applies to alarm clocks. 

Consider video cassette recorders.  We submit that VCRs suggest lattices of mi-
croworlds: set-time, playback-program, record-program-now, record-program-later, 
record-multiple-programs-later, record-one-program-while-watching-another, dupli-
cate-tape, etc. Indeed we suggest that the infamous difficulty of learning to use VCRs 
may be related to their non-subsetability. For example, to set the time (a task within a 
simple microworld), many VCRs require the user to learn how to traverse an elabo-
rate hierarchical function menu (ideally, a task within more complex microworlds). 

Indeed, in accord with the theoretical arguments described previously, we believe 
that the concept of subsetability applies to any "system" (Simon) or "world" (Burton, 
Brown, and Fischer), and thus any notational system, that users must learn. 

7.2   Polarity 

"As CDs are not supposed to be either good or bad ..., they should have interesting 
properties in both directions – i.e. both when present and absent" [14]. 

As noted previously, we believe that subsetability has a beneficial effect upon 
learnability. But it is also possible that subsetability could have a detrimental effect 
upon learnability, perhaps depending upon the nature of the notational system or the 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 238 www.ppig.org



nature of the learner. For example, for some notational systems and learners, subse-
tability might imply faster/deeper learning via smooth learning paths. For other nota-
tional systems or learners, non-subsetability might imply faster/deeper learning be-
cause "forward references" attune the student to the existence of advanced features, 
and motivate the student to learn those features. 

7.3   Object of Description 

"There is an outstanding question regarding what it is that the dimensions are sup-
posed to describe. Some possible options for suitable objects of description (no doubt 
not a complete list) are: (i) structural properties of the information within the nota-
tion/device, (ii) the external representation of that structure (iii) the semantics of that 
information, and (iv) the relationship between the notated information and domain-
level concepts – some of which are inevitably not notated... Regarding the definition 
of a criterion for new dimensions … whichever subset of (i)-(iv) (or more) we 
choose, the proposed dimension should describe something that falls within that sub-
set" [14]. 

Subsetability describes structural properties of the notational system itself (i.e. 
PL/Es), rather than structural properties of artifacts built using the notational system 
(i.e. computer programs). Given that distinction, we claim that subsetability falls 
within option (ii), which we paraphrase as "the external representation of the struc-
tural properties of the information within the notation." Frankly, we are somewhat 
unclear about the interpretation of that option, so we make the claim only tentatively. 

7.4   Orthogonality 

"Most important, the term 'dimension' was chosen to imply that these are mutually 
orthogonal – they all describe different directions within the design space. Further-
more, it is hoped that the trade-off relationships between them might be similar to 
those of the Ideal Gas Law – so that it is probably not possible to design a notation 
system that achieves specific values on any two dimensions, without having the value 
of a third imposed by necessary constraints. But these notions of orthogonality are 
intuitive rather than exact, and they are described in this way mainly so that designers 
recognise the nature of the constraints on their design... mutual orthogonality can only 
really be tested at present via a qualitative approach – going through all current di-
mensions, and checking to see whether any of them might describe the same phe-
nomenon as that described by the proposed new dimension... It is also necessary to be 
aware that the new dimension might simply be the obverse case of an existing dimen-
sion" [14]. 

The most authoritative list of cognitive dimensions is given in the cognitive di-
mensions tutorial [1]. We indeed did go through all dimensions described in that 
paper, checking to see whether any of them might describe the same phenomenon as 
that described by subsetability.  

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 239 www.ppig.org



In our opinion, of all the cognitive dimensions described by that paper, abstraction 
is the closest to subsetability. "An abstraction is a class of entities, or a grouping of 
elements to be treated as one entity, either to lower the viscosity or to make the nota-
tion more like the user’s conceptual structure" [1]. 

At first glance, abstraction and subsetability seem quite similar, as illustrated by 
these quotes:   

• "Systems that enforce abstraction will be difficult to learn" [1]. Similarly, 
we believe that systems that are not subsetable will be difficult to learn. 

• "The abstraction barrier is determined by the minimum number of new ab-
stractions that must be mastered before using the system" [1]. Similarly, we 
believe that systems that are not subsetable present the user with a "subse-
tability barrier" that requires the user to learn many new features before us-
ing the system.  

• "Programming languages often use many abstractions (procedures, data 
structures, modules, etc.) although spreadsheets use rather few" [1]. Simi-
larly, the concept of programming language subsetability is built upon pro-
gramming language "features," some of which are procedures, data struc-
tures, and modules. And programming language indeed do contain more 
features than spreadsheets do. 

However, consider these quotes: 
• "The characteristic of an abstraction from our point of view here is that it 

changes the notation" [1]. But subsetability describes a notational system 
"out of the box," and is unrelated to changes made by the user. 

• Abstractions "must be maintained... Creating and editing them takes time 
and effort and has potential for mistakes" [1].  But, again, subsetability is 
unrelated to user changes to the notational system. 

So, clearly, abstraction and subsetability are different concepts. The distinction is 
related to the previous "object of description" analysis. Whereas subsetability is a 
property of a notational system (e.g. a PL/E), we believe that abstraction is primarily 
a property of the artifacts created using that notational system (e.g. computer pro-
grams).  Subsetability comments on the learnability of PL/E entities such as proce-
dures, data structures, classes, and modules, all of which are part of the PL/E's base-
line syntax and semantics. Abstraction comments on the learnability of computer 
program entities such as procedure A, data structure B, class C, and module D, all of 
which are defined by the user. 

7.5   Granularity 

"The CDs seem to describe activities at a reasonably consistent level of granularity. It 
is probably a good thing that they should continue to describe phenomena at a similar 
scale. They do not directly describe large cognitive tasks (design a system, write a 
play), but the structural constituents of those tasks. They also tend not to describe 
low-level perceptual processes... Some things that are too low a level of granularity 
might include Gestalt phenomena, or observations related to individual motions (e.g. 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 240 www.ppig.org



selection target size, as analysed by Fitts’ law). If they were to be characterised using 
GOMS analysis (which they are not going to be …), we might say that CDs do not 
apply either to leaf nodes in the goal tree, or to the whole tree, but to subtrees" [14]. 

Subsetability clearly does not describe low-level perceptual processes. And, by 
definition, subsetability does not describe large cognitive tasks. Instead, it describes 
how a large cognitive task (e.g. learn a PL/E) can be decomposed into smaller, man-
ageable cognitive tasks (e.g. learn a sequence of PL/E subsets).  

7.6   Effect of Manipulation 

"It ought to be possible to consider each dimension and say ‘if you change the design 
in the following way, you will move its value on this dimension’. That’s a criterion of 
understanding how the dimension works, as well as the basis for design manoeuvres... 
So the criterion is that when we define a new dimension, we should be able to say 
something about how to manipulate it" [14]. 

Consider this design maneuver: to increase subsetability, add defaults to the nota-
tion and/or environment. Defaults can hide features of the notation and/or environ-
ment, allowing them to appear in lower (i.e. more complex) microworlds in the lat-
tice. For example, the Java notation has a "package" feature, as well as a default pack-
age. The existence of the default package shields the user from the package feature 
when working within higher (i.e. simpler) microworlds in the lattice. The cost of 
adding defaults is decreased visibility: the features of the notation and/or environment 
that have been replaced by defaults will no longer be visible to the user. So the user 
might not know of their existence. 

Clearly subsetability can be manipulated via defaults. 

8   Conclusion 

In this paper we defined the concept of subsetability. A world is subsetable to the 
extent that it can be decomposed into a lattice of microworlds, where each mi-
croworld consists of an equipment set, a physical setting, and a task specification. 
More specifically, we argued that subsetability applies to the world of notational 
systems, and that subsetability may be a new cognitive dimension of notational sys-
tems. Even more specifically, we argued that subsetability applies to notational sys-
tem of programming languages and environments (PL/Es). Furthermore, we de-
scribed some theoretical research which strongly argues that a world's subsetability 
positively affects its learnability and teachability. We also noted that, sadly, little 
empirical support for that argument exists. 

In doing so, we described connections between subsetability and several largely 
disjoint threads of research: 

• The theoretical observations of Simon regarding the learnability and 
teachability of nearly decomposable hierarchies. 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 241 www.ppig.org



• The theoretical observations of Papert, Burton, Brown, Fischer, and oth-
ers regarding the value of microworlds and sequences of increasingly 
complex microworlds as an approach to learning and teaching. 

• The pragmatic research of Findler, Brusilovsky, DePasquale, and others 
on the value of PL/E subsets. 

• The theoretical yet pragmatic work of Green, Blackwell, and others on 
cognitive dimensions of notational systems. 

Clearly more empirical research on subsetability is needed. If the empirical re-
search supports the theoretical arguments, then we believe that subsetability will be 
prescriptive for programming education. The concept will prescribe how learners can 
best approach the learning of a PL/E, and how teachers can best provide support for 
that learning. We expect that software engineering students, as well as non-
professional end-user programmers, will benefit from subsetability. 

Moreover, we believe that subsetability will be prescriptive for software engineer-
ing itself. Subsetability prescribes how one should learn and teach a PL/E. But when 
"stood on its head," is also prescribes how one should design a PL/E so it is easy to 
learn and teach. Certainly PL/E designers have many goals of varying priorities; 
learnability and teachability may not be high on the list. Nevertheless, a PL/E that is 
easy to learn and teach has a greater chance of acceptance than one that is not. So 
PL/E designers cannot afford to ignore subsetability. 

Acknowledgments 

This work was supported in part by the EUSES Consortium via NSF grant CCR-
0324844. 

References 

1. Green, T. and A. Blackwell, Cognitive Dimensions of Information Artefacts:  A Tutorial 
(Version 1.2 October 1998). 1998. 

2. Simon, H.A., The Sciences of the Artificial. Third ed. 2001, Cambridge, MA: The MIT 
Press. 

3. Papert, S., Mindstorms:  Children, Computers, and Powerful Ideas. 1980, New York: Basic 
Books. 

4. Burton, R.R., J.S. Brown, and G. Fischer, Skiing as a Model of Instruction, in Everyday 
Cognition:  Its Development in Social Context, B. Rogoff and J. Lave, Editors. 1984, Har-
vard University Press: Cambridge, MA. p. 139-150. 

5. Gray, K.E. and M. Flatt. ProfessorJ:  A Gradual Introduction to Java through Language 
Levels. 2003. OOPSLA'03. 

6. Findler, R.B., et al. DrScheme: A Pedagogic Programming Environment for Scheme. In 
International Symposium on Programmming Languages, Implementations, Logics, and 
Programs. 1997. 

7. Findler, R.B., et al., DrScheme: A Programming Environment for Scheme. Journal of Func-
tional Programming, 2002. 12(2): p. 159-182. 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 242 www.ppig.org



8. Brusilovsky, P., et al. Teaching Programming to Novices: A Review of Approaches and 
Tools. In ED_MEDIA'94: World Conference on Educational Multimedia and Hypermedia. 
1994. 

9. Brusilovsky, P., et al., Mini-languages: A Way to Learn Programming Principles. Educa-
tion and Information Technologies, 1997. 2(1): p. 65-83. 

10. Kelleher, C. and R. Pausch, Lowering the Barriers to Programming: A Taxonomy of Envi-
ronments and Languages for Novice Programmers. ACM Computing Surveys, 2006. 37(2): 
p. 83-137. 

11. Catrambone, R. and J.R. Carroll. Learning a Word Processing System with Training 
Wheels and Guided Exploration. In SIGCHI/GI Conference on Human Factors in Comput-
ing Systems and Graphics Interface CHI '87. 1987. New York: ACM Press. 

12. Puntambekar, S. and R. Hübscher, Tools for Scaffolding Students in a Complex Learning 
Environment: What have we Gained and What have we Missed? Educational Psychologist, 
2005. 40(1): p. 1-12. 

13. DePasquale, P., J.A.N. Lee, and M.A. Pérez-Quiñones. Evaluation of Subsetting Program-
ming Language Elements in a Novice's Programming Environment. In Proceedings of 
SIGCSE'04. 2004. New York: ACM Press. 

14. Blackwell, A.F. Dealing with New Cognitive Dimensions. In Workshop on Cognitive Di-
mensions. 2000. University of Hertfordshire. 

 
 

Dondero and Wiedenbeck

PPIG 2006 University of Sussex 243 www.ppig.org


	6.1   Language Levels
	6.2   Mini-Languages, Sub-languages, and the Incremental App
	6.3   Programming Environment Subsets
	7.1   Applicability
	7.2   Polarity
	7.3   Object of Description
	7.4   Orthogonality
	7.5   Granularity
	7.6   Effect of Manipulation

