
Human language and its role in reference-point errors

Craig S. Miller
School of Computing

DePaul University
cmiller@cdm.depaul.edu

July 30, 2016

Abstract
A reference-point error occurs when a programmer writes code that mistakenly refers to one element
when the intention is to refer to an element structurally related to it. I review these errors and their
relation to the use of metonymy in human communication. Using a working example, I draw upon cog-
nitive theories of human communication and problem-solving to explore three accounts of why these
reference errors occur in novice programming. The first account involves a deficient mental model, the
second assumes a misconception of the notional machine, and the third considers implicit, procedural-
ized habits of communication. I conclude with learning objectives for students that address these sources
of difficulty.

1. Introduction
Human language has long served as a basis for analyzing the errors and misconceptions of novices as
they learn to program (e.g. Clancy, 2004; Bonar & Soloway, 1985; L. A. Miller, 1981). In many cases,
novice mistakes involve conflating the human language meaning of a word with its meaning in the pro-
gramming context. For example, Spohrer and Soloway (1986) discuss how the English meaning of the
word ‘OR’ may be misapplied in the construction of a Boolean expression. Other researchers have taken
a broader view. For example, Tenenberg and Kolikant (2014) discuss how practices of human communi-
cation in general may shape novices approach to programming. Despite these efforts, less understood is
the underlying cognitive mechanisms for which human language may shape novice performance when
learning to program. There is some uncertainty as to whether language knowledge is a cause of the
mistakes or whether it too is just a reflection of underlying mental representations.

The goal of this paper is to explore possible mechanistic relationships between human language and
novice programming behavior. It does so with a pointed focus on just one aspect of programming,
namely that of reference specification. Moreover, it just focuses on one type of error, albeit one that has
been repeatedly identified and then systematically studied. Here the novice behavior involves reference-
point errors and their parallel to metonymy in human communication. Metonymy in human language
occurs when the speaker explicitly names one element with the intention of referencing a related element
(see Lakoff & Johnson, 1980, for an overview of metonymy in the context of other figurative language).
In previous work I have presented how reference-point phenomena in novice programming matches
those in human communication (C. S. Miller, 2014) but have yet to explore possible sources of the
phenomena in detail.

In this paper, I draw upon cognitive theories of human communication and problem-solving to suggest
plausible accounts of why reference errors occur in novice programming. Of course, reference errors
that parallel the use of metonymy only represent a very small portion of novice difficulties as they learn
to program. Yet, reference errors have been identified as a significant source of difficulty for students
(Goldman et al., 2008). Perhaps more importantly, the clear focus allows us to explore possible theories
in greater detail and work us toward a more coherent and systematic theory. If successful, it may provide
some direction for analyzing other categories of novice errors.

2. Metonymy and Programming
A reference-point error is an expression that refers to an entity that is not the programmer’s intended
target. Often the intended referent and the actual referent are elements in a computer data structure, but

they could also be file references, database elements or conceptual constructions. While all programmers
may make reference-point errors, scholars have noted that novice programmers have particular difficulty
with them. For example, Du Boulay (1986) describes “confusion between the subscript of an array cell
and the value stored there.” Holland, Griffiths, and Woodman (1997) describe cases where students
conflate a whole object and an identifying attribute of the object. In these cases, a student may write
a coded reference that indicates an attribute when the specification required a reference to the object
itself. Reference-point errors have also been noted in exercises where students are asked to give precise
instructions to the instructor acting as a robot (Davis & Rebelsky, 2007).

In previous work, I analyzed reference-point errors in terms of metonymy (C. S. Miller, 2014).
Metonymy is a rhetorical device used in human-to-human communication, often to emphasize a par-
ticular attribute or to aid identification. For example, consider the phrase: “Open the ice cream and
serve two scoops.” In this phrase, the intention is not to literally open the ice cream but rather the con-
tainer holding the ice cream. The speaker may be emphasizing the ice cream in order to distinguish
it from sorbet or some other frozen dessert. The container does not need to be mentioned since the
recipient of the request can readily infer that it is the container of the ice cream that needs to be opened.

Use of metonymy in human language parallels some reference-point errors produced by novice pro-
grammers. Consistent with the observations by Holland et al. (1997), students are more likely to specify
an attribute in place of an object (and vice versa), when the attribute is an identifying property such as
the name. Elsewhere I have presented multiple experiments that systematically produce this effect and
discussed its relationship with metonymy (C. S. Miller, 2012, 2014). Finally, other accounts (Ragonis
& Ben-Ari, 2005; Vahrenhold & Paul, 2014) note student confusion between an object’s identity and its
attributes, although these observations are not framed in terms of human-to-human communication.

The goal of this paper is not to provide a comprehensive account of reference-point errors, nor even an
account of all such errors based on metonymy. Rather, we use this kind of reference error as a particular
case that has a clear specification, directly parallels metonymic constructions in human language and is
documented in diverse reports. This direction does not just consider cognitive mechanisms but allows
us to explore external factors that shape mental models and habits of communication, considerations
advocated by Tenenberg and Knobelsdorf (2014). Similarly use of language may influence how students
construct their mental models (Holmboe, 2005; Diethelm & Goschler, 2015).

2.1. Working Example
In this section, I will provide an example for further reference throughout the paper. While the syntax has
been simplified to make it more analogous to diverse programming contexts, the construction is derived
from previous study (C. S. Miller, 2014). The working example will also illustrate the phenomena
presented in this study (also consistent with other reports Davis & Rebelsky, 2007; Holland et al., 1997).

The example assumes a set of objects (described by attributes and values) and an API for manipulating
them. This API provides a simple retrieval of an object based on an attribute and value of the object.
The retrieved object can then be added to a collection object. Below is an example of its correct use:

obj = catalog.find("name", "peach")
cart.add(obj)

Note that the retrieval requires the explicit specification of the attribute (i.e. “name”) and its value (i.e.
“peach”). The retrieved object can then be passed to the add method as a parameter. For now, we assume
that the API has been reasonably presented to students, although, as we shall see, as students commit a
reference-point error, they are essentially incorrectly using the API.

While the API is not the programming language, it offers instructions that students need to understand
for successful programming. In this context, the API arguably extends what Du Boulay (1986) calls the
notional machine. As Sorva (2013) explains, the notional machine includes what students need to learn
for successful programming in a particular context. Later in this section we will see an example that
does not require an API for eliciting similar reference errors.

Given the API, a reference-point error occurs when the student tries to add the item by using one of its
attributes (e.g. name) instead of the object itself. Below is such an example:

cart.add("peach")

In another version of the error, a student may try to access the object using the attribute as a principal
identifier and thus omit the explicit reference to the attribute name. In this example, the student may
be using the string “peach” as the fundamental means for accessing the object rather than realizing that
“peach” is just another attribute value for the object.

obj = catalog.find("peach")
cart.add(obj)

As already discussed, students are more likely to commit these reference-point errors when the attribute
is an identifying property (e.g. name, title, label) instead of a descriptive property (e.g. color, texture) as
correctly demonstrated below:

obj = catalog.find("color", "yellow")
cart.add(obj)

Note that this initial presentation of the working example does not provide the whole context for which
it would be applied. For example, we have (so far) not considered how students are taught that the
add operation requires an object reference. Also, the task instructions may bias the student towards a
reference-point error. Let us consider the following task instructions:

1. Add the peach to the cart

2. Add the peach object to the cart

3. Add the object whose name is peach to the cart

The first of these task instructions is effectively using metonymy while the remaining instructions in-
dicate a distinction between the object and the attribute. Presumably students would be more likely to
commit a reference-point error with the first of these task instructions. However, previous work reports
students making these mistakes even when the task instructions explicitly indicated the attribute and its
value such as the wording found in the last task instruction (C. S. Miller, 2014).

An alternate version of the task may ask students to write a general function for adding by name any
object to the cart. Below is a correctly coded example:

def addToCard(item, cart)
obj = catalog.find("name", item)
cart.add(obj)

end

Different contexts such as this task may produce different results and our analysis should provide some
insights on how student answers may vary depending on the context.

While the working example in this paper uses an API, reference difficulties may occur without an API.
Below is an example, where the task is to write a function that serially searches an array of objects,
returning true if there is an object that matches its name attribute:

def isNameInList(item, list)
list.each do |obj|

if obj.name == item
return true

end
end

return false
end

This next example shows this example with a reference-point error consistent with the use of metonymy:

def isNameInList(item, list)
list.each do |obj|

if obj == item
return true

end
end
return false

end

In this example, the intended referent is the name attribute for the obj object, but the code refers to the
whole object in its place. While reference-point errors have yet to be studied extensively in this non-
API context, a forthcoming paper (C. S. Miller & Settle, 2016) reveals similar reference-point errors
including those consistent with previous findings.

3. Overview of theories
The source and even the definition of metonymy in human communication is subject to some debate. For
example, some scholars question whether metonymy represents a shift in reference or simply involves a
shift in meaning (Rebollar, 2015). More generally, such as in the construction of noun phrases, there are
opposing views as to whether speakers deliberately construct a reference to aid the recipient in efficiently
identifying the referent or whether its construction is more a product of what is active in the speaker’s
working memory (Gatt, Krahmer, van Deemter, & van Gompel, 2014).

For this paper, the goal is not so much to resolve these debates but to explore possible sources for the
errors seen in programming. I nevertheless draw upon the diverse theories of metonymy in human lan-
guage and possible mechanisms that underlie it. Such treatment will allow us to consider how these
mechanisms might relate to the reference-point errors we see in novice programming. These mech-
anisms thus hypothesize one source or even a combination of sources when a student constructs an
incorrect reference.

As we look at sources, we will look beyond the cognitive mechanisms employed by the student, and
include background knowledge and context, which arguably inform student behavior (Tenenberg &
Knobelsdorf, 2014). As we shall see, all draw upon external domain knowledge that is arguably involved
in creating and resolving metonymic references for human communication (Croft, 1993).

3.1. Mental Models and Verbal Reasoning
We first consider how a student’s mental model of an object may lead to reference-point constructions
that parallel the use of metonymy. A mental model is person’s conceptualization of how a system or arti-
fact works in the environment. Norman (1983) has shown how differences between a human user’s con-
ceptual model and an accurate working model can account for errors in the context of human-machine
interaction. Similarly, Sorva (2013) discusses how differences between a student’s mental model of the
notional machine and an effective conceptualization of it can account for novice programming errors.

In this paper, I propose possible differences between a student’s model and an effective model in order
to account for reference errors. I draw upon mental model theory as it has been applied to deductive
reasoning in the form of syllogisms (Johnson-Laird, 1986; Polk & Newell, 1995). In these problems,
people are given premises (e.g. “All clowns are artists”, “no mechanics are artists”) and asked to produce
a valid conclusion (e.g. “no mechanics are clowns”).

Johnson-Laird (1986) theorized that people work with situation models and their ability to produce
valid conclusions depends on their ability to reason with multiple alternative models. Failure to consider
alternative models accounts for many of the errors observed in the studies. In a departure from the

Deficient model
peach | color: yellow, size: large, shape: sphere
apple | color: green, size: medium, shape: square
pear | color: green, size: large, shape: pear

add peach to cart

Effective model
obj1 | name: peach color: yellow, size: large, shape: sphere
obj2 | name: apple color: green, size: medium, shape: square
obj3 | name: pear color: green, size: large, shape: pear

add obj1 to cart

Figure 1 – Two mental models encoding the task of adding an object.

Johnson-Laird account, Polk and Newell (1995) hypothesize that people construct situation models as
an immediate product of processing linguistic input. Characterized as “verbal reasoning,” the ability to
draw valid conclusions depends on successfully encoding and reencoding the premises in an annotated
situation model. Both the mental model theory of Johnson-Laird and the verbal reasoning theory make
use of situation models instead of logical inference rules to account for human performance.

A consequence of verbal reasoning is that people often make assumptions that are not warranted or
produce models that are incomplete. Moreover, their structure may facilitate particular inferences or
operations while omitting other possibilities, unless further encoding or reformulation occurs. Since
people have well practiced routines constructing mental models as they comprehend linguistic content,
they are likely to apply such routines to diverse domains. Here I explore how a plausible encoding of a
computer programming task could lead to the reference-point errors presented in our working example.

In the style of Johnson-Laird’s models, Figure 1 depicts two mental models that encode the example
problem from the previous section. They include both the goal (i.e. “add the peach to the cart") and a
model of various objects, one of which is the targeted object. The first (deficient) model would produce
a reference-point error by referring to the object by its name rather than the object itself. The second
(effective) model is a possible reencoding, which properly distinguishes between the name of the object
and a reference that refers to the whole object.

Let us consider the first, deficient model in more detail. While the actual details would vary among
students and contexts, application of the model could lead to a reference-point error if it has the following
characteristics:

1. Each object consists of a list of values (e.g. yellow, large), each with a named attribute.

2. Each element has a singular value that primarily identifies the object from a set of objects.

3. The identifying value does not have an explicitly named attribute.

Technically the identifying value (e.g. ‘peach’) is just another attribute of the model, but its privileged
representation could lead to a reference error. If students applied this model, they may write code that
just references attribute and not the whole object:

cart.add("peach")

Following Polk and Newell’s verbal reasoning hypothesis, the construction of this deficient mental model
is likely a consequence of human language and communication. First, the name of the attribute is
significant. Knowing its identifying role gives it a privileged state as reflected in the model. Second,

the model may have also been constructed by presenting objects using metonymic constructions. The
following examples use metonymic constructions to reference objects in the domain:

1. In this example, we will add a peach to the cart.

2. This literal representation of the pear object shows that it has the attributes of color, size and shape.

3. Note that the peach and the pear have the same size.

In all cases, the name attribute is used to refer to the object without explicitly indicating the attribute. A
literal interpretation would then lead to the construction of the first (deficient) model show in Figure 1.
More generally, because we routinely use metonymy to describe our world, this language may produce
mental models that reflect the literal interpretations of task instructions. Reference-point errors result as
a straight-forward application of literal interpretation.

Of course a student may construct a more accurate model that correctly distinguishes between the iden-
tifying attribute and the object itself. Such is the ‘Effective model’ in Figure 1. This model more
accurately represents how objects are actually constructed. From this construction, a student could
reason that the name is one of several attributes that does not technically identify the needed object
for the operation of adding to the cart (although an API could be designed and implemented to allow
such an operation). The presentation of this particular model commits to naming the connecting symbols
(i.e. ‘obj1’, ‘obj2’ and ‘obj3’), although this detail may be unspecified in a hypothesized working model.

3.2. Communication design
Another possibility is that the student knows that the name is organized by attribute but believes that
the computer can resolve a reference that omits the relationship between the object and the identifying
attribute value. In this case, the student’s mental model may explicitly distinguish between the name
attribute and the reference to the entire object. Yet, the student knowingly refers to just the name value
with the view that the identifying nature of its name allows the computer to effectively infer that the
whole object is intended.

Here the novice programmer may be intentionally employing principles of communication such as those
presented by Grice (1975). Perhaps most relevant is Grice’s maxim on Quantity, where the amount of
information should be no more or less than what the recipient requires. If the student believes that
the system can effectively resolve the reference without explicit mention of the attribute, then it is a
reasonable communication principle to omit the attribute. Moreover, for human communication, the
so-called literal expression is not necessarily more efficient than an expression based on metonymy. It
has been well argued that the literal interpretation is not necessarily processed first by human listeners
(Recanati, 1995).

Knowingly referencing the attribute in place of the whole object suggests that the student believes that
some provision has been made so that the computer can successfully resolve the attribute reference to the
object itself. Pea (1986) calls this type of mistake a “hidden mind superbug” if the student performs as if
the computer has a human-like mind that can successfully infer the intention of the student programmer.
Pea warns that students do not necessarily believe that the computer literally works like a human mind.
In fact, if asked, the student may disavow a hidden mind. For this reason, Pea suggests that this bug may
be a product of unconscious knowledge, something we consider in the next section.

The explicit assumption that the computer can infer the intended referent may seem naive, unless we
consider that designers of computing technology often consider the likely intentions of its users or
programmers. In this specific case, it would not be unreasonable to provide a method in the API that
gives identifying attributes, such as name, a privileged method for referring to objects when adding
them to the cart. In any case, as Sorva (2013, p. 8:7) notes, “the novice needs to learn what the notional
machine does for them on one hand, and what their responsibility as a programmer is on the other.”

object: <label>
goal: add to <cart-obj>

--->
write-code <cart-obj>.add(<label>)

Figure 2 – Production rule for referencing an object.

3.3. Acquired habits of communication
We finally consider the case where a student relies on implicit communication knowledge for construct-
ing the reference. In this case, the student may possess an effective mental model (such as that presented
in Figure 1) and have no (explicit) expectation that the computer can successfully resolve the point of
reference. Instead, the reference error occurs by drawing upon implicit, procedural skills, plausibly ob-
tained through the practice of human-to-human communication. At one time, the source of this practice
may have been the same as used to produce Grice’s maxims (Grice, 1975) or processes for selecting
attributes, such the computationally efficient method proposed by Dale and Reiter (1995). In such cases,
the student does not need to be aware that he or she is drawing on these practiced skills.

A proceduralized application of knowledge can be modeled with a production-based system. Produc-
tions are associative rules that match internal representations (including those that correspond to mental
models) and perform an action, either to the internal representations or as a perceptual/motor operation.
Production systems have been offered as cognitive architectures, such as Soar (Newell, 1994) and ACT-
R (Anderson, 1993). In these models, productions can be acquired through deliberate practice. Once
acquired, explicit access may not be available.

Here I consider a simple production-based model that would produce a reference-point error. Figure 2
depicts a production that selects an attribute from an object and uses it to write code. The elements in
brackets (e.g. <label>) are variables and can match any symbol. Its condition matches one object with
any attribute and the goal of adding that object to the cart. The production is very general and could
match in many ways. However, assuming an activation-based process for selecting a production, the
production only matches the attribute with the greatest activation and directly places it in the expression.

If the model assumes that identifying attributes are most salient, carrying the greatest activation, it
accounts for why reference-point errors occur more frequently with identifying attributes than those
that are just descriptive. In a model, salience could be based on perceptual properties as well as any pre-
processing that highlights the attribute. Such preprocessing may draw upon attribute selection algorithms
such as those proposed by Dale and Reiter (1995) in human-to-human communication.

This third account does not depend on a particular mental model—the production could match either
representation in Figure 1. It also does not assume any explicit understanding of the notional machine.
Instead, it relies on default habits, plausibly acquired or at least reinforced in human-to-human commu-
nication.

4. Discussion
The three accounts of reference-point errors stem from three different sources: a deficient mental repre-
sentation, a misunderstanding of what the system can do, and a reliance on implicit habits for commu-
nication. Since these sources are not mutually exclusive, it is possible that student mistakes arise from
any of them, given the right context.

A goal for future work is the development of strategies for diagnosing which account is producing a
reference error for any given circumstance. For example, it may be possible to manipulate task instruc-
tions to encourage the construction of an effective mental model. If a defective mental model is a root
cause, better instructions should reduce the frequency of errors. As another example, priming selected
elements may elicit different habits and thus show support for the third account.

In the absence of an effective strategy for identifying the source of errors, the three accounts nevertheless

suggest necessary prerequisites for successfully producing a well-formed reference. These accounts
allow us to devise learning objectives for students. For successfully constructing a reference, students
need to learn the following:

• Fully encode attribute/value pairs for modeling an object.

• Acquire a rigorous model of the notional machine.

• Obtain practiced routines (i.e. productions) for extracting the appropriate elements from the men-
tal representation.

• Employ a validation step to ensure proper alignment.

The first three correspond to each of the three accounts. Fully encoding the object in terms of its at-
tributes and values gives students explicit access to the identifying attribute name. Understanding the
limits of the notional machine—the API in our example—informs their obligation to fully specify the
reference. Obtaining a practiced routine ensures proper inclusion of the needed attribute label and in-
creases its likelihood to be selected among other competing habits. This practice also enables students
to appropriately chunk components to make better use of working memory (Soloway & Ehrlich, 1984).
Finally, the last learning objective could be deployed as a defense against any of the error accounts.

Experimenting with instructional interventions that focus on any particular objective may also provide
indirect evidence of where students have most difficulty. For example, an exercise may ask students to
draw representations of the objects and check them against correct answers. If such an exercise improves
student performance on specifying references, it suggests that the underlying mental model had been at
fault.

Another issue for further work is whether these accounts are relevant for other disciplines. As an ex-
ample, Zandieh and Knapp (2006) discuss the role of metonymy in mathematical understanding. They
report that a student may express a derivative as the tangent line rather than the slope of the tangent
line. Like the analysis here, instructional materials may have led students to develop a deficient mental
model that ultimately affects their ability to solve problems. On the other hand, unlike almost any other
discipline, problem solving in computing requires human-to-machine communication, an activity whose
difference from the human-to-human kind can cause its own problems.

5. References
Anderson, J. R. (1993). Rules of the mind. New York: Lawrence Erlbaum Associates.
Bonar, J., & Soloway, E. (1985). Preprogramming knowledge: A major source of misconceptions in

novice programmers. Human–Computer Interaction, 1(2), 133–161.
Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to program. In S. Fincher

& M. Petre (Eds.), Computer science education research (pp. 85–100). Taylor and Francis Group,
London.

Croft, W. (1993). The role of domains in the interpretation of metaphors and metonymies. Cognitive
Linguistics, 4(4), 335–370.

Dale, R., & Reiter, E. (1995). Computational interpretations of the gricean maxims in the generation of
referring expressions. Cognitive science, 19(2), 233–263.

Davis, J., & Rebelsky, S. A. (2007). Food-first computer science: starting the first course right with
PB&J. In SIGCSE ’07: Proceedings of the 38th SIGCSE technical symposium on computer sci-
ence education (pp. 372–376). New York, NY, USA: ACM.

Diethelm, I., & Goschler, J. (2015). Questions on spoken language and terminology for teaching
computer science. In Proceedings of the 2015 acm conference on innovation and technology in
computer science education (pp. 21–26).

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing
Research, 2(1), 57–73.

Gatt, A., Krahmer, E., van Deemter, K., & van Gompel, R. P. (2014). Models and empirical data for the
production of referring expressions. Language, Cognition and Neuroscience, 29(8), 899–911.

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M. C., & Zilles, C. (2008).
Identifying important and difficult concepts in introductory computing courses using a delphi
process. In Proceedings of the 39th sigcse technical symposium on computer science education
(pp. 256–260). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10
.1145/1352135.1352226 doi: 10.1145/1352135.1352226

Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics
volume 3: Speech acts. Academic Press, New York.

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions. SIGCSE Bull.,
29(1), 131–134.

Holmboe, C. (2005). Conceptualization and labelling as cognitive challenges for students of data
modelling. Computer Science Education, 15(2), 143–161.

Johnson-Laird, P. N. (1986). Mental models. Cambridge, MA, USA: Harvard University Press.
Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: The University of Chicago

Press.
Miller, C. S. (2012). Metonymic errors in a web development course. In Proceedings of the 13th annual

conference on information technology education (pp. 65–70). New York, NY, USA: ACM.
Miller, C. S. (2014). Metonymy and reference-point errors in novice programming. Computer Science

Education, 24(3).
Miller, C. S., & Settle, A. (2016). Some trouble with transparency: An analysis of student errors with

object-oriented python. In Proceedings of the 12th annual conference on international computing
education research. New York, NY, USA: ACM. Retrieved from http://dx.doi.org/
10.1145/2960310.2960327 doi: 10.1145/2960310.2960327

Miller, L. A. (1981). Natural language programming: Styles, strategies, and contrasts. IBM Systems
Journal, 20(2), 184–215.

Newell, A. (1994). Unified theories of cognition. Harvard University Press.
Norman, D. A. (1983). Some observations on mental models. In D. Genter & A. L. Stevens (Eds.),

Mental models (pp. 7–14). Psychology Press, New York.
Pea, R. D. (1986). Language-independent conceptual “bugs” in novice programming. Journal of

Educational Computing Research, 2(1), 25–36.
Polk, T. A., & Newell, A. (1995). Deduction as verbal reasoning. Psychological Review, 102(3), 533.
Ragonis, N., & Ben-Ari, M. (2005). A long-term investigation of the comprehension of oop concepts

by novices. Computer Science Education, 15(3), 203–221.
Rebollar, B. E. (2015). A relevance-theoretic perspective on metonymy. Procedia-Social and Behavioral

Sciences, 173, 191–198.
Recanati, F. (1995). The alleged priority of literal interpretation. Cognitive science, 19(2), 207–232.
Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. Software Engineering,

IEEE Transactions on(5), 595–609.
Sorva, J. (2013). Notional machines and introductory programming education. ACM Transactions on

Computing Education (TOCE), 13(2), 8.
Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct? Communications

of the ACM, 29(7), 624–632.
Tenenberg, J., & Knobelsdorf, M. (2014). Out of our minds: a review of sociocultural cognition theory.

Computer Science Education, 24(1), 1–24.
Tenenberg, J., & Kolikant, Y. B.-D. (2014). Computer programs, dialogicality, and intentionality. In

Proceedings of the tenth annual conference on international computing education research (pp.
99–106). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/
2632320.2632351 doi: 10.1145/2632320.2632351

Vahrenhold, J., & Paul, W. (2014). Developing and validating test items for first-year computer science
courses. Computer Science Education, 24(4), 304–333.

Zandieh, M. J., & Knapp, J. (2006). Exploring the role of metonymy in mathematical understanding
and reasoning: The concept of derivative as an example. The Journal of Mathematical Behavior,
25(1), 1–17.

